Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubcALTVlem2 Structured version   Visualization version   GIF version

Theorem rhmsubcALTVlem2 48243
Description: Lemma 2 for rhmsubcALTV 48246. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcrescrhmALTV.u (𝜑𝑈𝑉)
rngcrescrhmALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcrescrhmALTV.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhmALTV.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubcALTVlem2 ((𝜑𝑋𝑅𝑌𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌))

Proof of Theorem rhmsubcALTVlem2
StepHypRef Expression
1 opelxpi 5668 . . . 4 ((𝑋𝑅𝑌𝑅) → ⟨𝑋, 𝑌⟩ ∈ (𝑅 × 𝑅))
213adant1 1130 . . 3 ((𝜑𝑋𝑅𝑌𝑅) → ⟨𝑋, 𝑌⟩ ∈ (𝑅 × 𝑅))
32fvresd 6860 . 2 ((𝜑𝑋𝑅𝑌𝑅) → (( RingHom ↾ (𝑅 × 𝑅))‘⟨𝑋, 𝑌⟩) = ( RingHom ‘⟨𝑋, 𝑌⟩))
4 df-ov 7372 . . 3 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
5 rngcrescrhmALTV.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
65fveq1i 6841 . . 3 (𝐻‘⟨𝑋, 𝑌⟩) = (( RingHom ↾ (𝑅 × 𝑅))‘⟨𝑋, 𝑌⟩)
74, 6eqtri 2752 . 2 (𝑋𝐻𝑌) = (( RingHom ↾ (𝑅 × 𝑅))‘⟨𝑋, 𝑌⟩)
8 df-ov 7372 . 2 (𝑋 RingHom 𝑌) = ( RingHom ‘⟨𝑋, 𝑌⟩)
93, 7, 83eqtr4g 2789 1 ((𝜑𝑋𝑅𝑌𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cin 3910  cop 4591   × cxp 5629  cres 5633  cfv 6499  (class class class)co 7369  Ringcrg 20118   RingHom crh 20354  RngCatALTVcrngcALTV 48224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-res 5643  df-iota 6452  df-fv 6507  df-ov 7372
This theorem is referenced by:  rhmsubcALTVlem3  48244  rhmsubcALTVlem4  48245
  Copyright terms: Public domain W3C validator