![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubcALTVlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for rhmsubcALTV 47096. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngcrescrhmALTV.u | β’ (π β π β π) |
rngcrescrhmALTV.c | β’ πΆ = (RngCatALTVβπ) |
rngcrescrhmALTV.r | β’ (π β π = (Ring β© π)) |
rngcrescrhmALTV.h | β’ π» = ( RingHom βΎ (π Γ π )) |
Ref | Expression |
---|---|
rhmsubcALTVlem2 | β’ ((π β§ π β π β§ π β π ) β (ππ»π) = (π RingHom π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5714 | . . . 4 β’ ((π β π β§ π β π ) β β¨π, πβ© β (π Γ π )) | |
2 | 1 | 3adant1 1129 | . . 3 β’ ((π β§ π β π β§ π β π ) β β¨π, πβ© β (π Γ π )) |
3 | 2 | fvresd 6912 | . 2 β’ ((π β§ π β π β§ π β π ) β (( RingHom βΎ (π Γ π ))ββ¨π, πβ©) = ( RingHom ββ¨π, πβ©)) |
4 | df-ov 7415 | . . 3 β’ (ππ»π) = (π»ββ¨π, πβ©) | |
5 | rngcrescrhmALTV.h | . . . 4 β’ π» = ( RingHom βΎ (π Γ π )) | |
6 | 5 | fveq1i 6893 | . . 3 β’ (π»ββ¨π, πβ©) = (( RingHom βΎ (π Γ π ))ββ¨π, πβ©) |
7 | 4, 6 | eqtri 2759 | . 2 β’ (ππ»π) = (( RingHom βΎ (π Γ π ))ββ¨π, πβ©) |
8 | df-ov 7415 | . 2 β’ (π RingHom π) = ( RingHom ββ¨π, πβ©) | |
9 | 3, 7, 8 | 3eqtr4g 2796 | 1 β’ ((π β§ π β π β§ π β π ) β (ππ»π) = (π RingHom π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 = wceq 1540 β wcel 2105 β© cin 3948 β¨cop 4635 Γ cxp 5675 βΎ cres 5679 βcfv 6544 (class class class)co 7412 Ringcrg 20128 RingHom crh 20361 RngCatALTVcrngcALTV 46946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-res 5689 df-iota 6496 df-fv 6552 df-ov 7415 |
This theorem is referenced by: rhmsubcALTVlem3 47094 rhmsubcALTVlem4 47095 |
Copyright terms: Public domain | W3C validator |