![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubcALTVlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for rhmsubcALTV 47121. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngcrescrhmALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcrescrhmALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngcrescrhmALTV.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
rngcrescrhmALTV.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
Ref | Expression |
---|---|
rhmsubcALTVlem2 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5713 | . . . 4 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → 〈𝑋, 𝑌〉 ∈ (𝑅 × 𝑅)) | |
2 | 1 | 3adant1 1129 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → 〈𝑋, 𝑌〉 ∈ (𝑅 × 𝑅)) |
3 | 2 | fvresd 6911 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (( RingHom ↾ (𝑅 × 𝑅))‘〈𝑋, 𝑌〉) = ( RingHom ‘〈𝑋, 𝑌〉)) |
4 | df-ov 7415 | . . 3 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
5 | rngcrescrhmALTV.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
6 | 5 | fveq1i 6892 | . . 3 ⊢ (𝐻‘〈𝑋, 𝑌〉) = (( RingHom ↾ (𝑅 × 𝑅))‘〈𝑋, 𝑌〉) |
7 | 4, 6 | eqtri 2759 | . 2 ⊢ (𝑋𝐻𝑌) = (( RingHom ↾ (𝑅 × 𝑅))‘〈𝑋, 𝑌〉) |
8 | df-ov 7415 | . 2 ⊢ (𝑋 RingHom 𝑌) = ( RingHom ‘〈𝑋, 𝑌〉) | |
9 | 3, 7, 8 | 3eqtr4g 2796 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∩ cin 3947 〈cop 4634 × cxp 5674 ↾ cres 5678 ‘cfv 6543 (class class class)co 7412 Ringcrg 20134 RingHom crh 20367 RngCatALTVcrngcALTV 47099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-res 5688 df-iota 6495 df-fv 6551 df-ov 7415 |
This theorem is referenced by: rhmsubcALTVlem3 47119 rhmsubcALTVlem4 47120 |
Copyright terms: Public domain | W3C validator |