Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubcALTVlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for rhmsubcALTV 45554. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngcrescrhmALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcrescrhmALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngcrescrhmALTV.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
rngcrescrhmALTV.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
Ref | Expression |
---|---|
rhmsubcALTVlem2 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5617 | . . . 4 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → 〈𝑋, 𝑌〉 ∈ (𝑅 × 𝑅)) | |
2 | 1 | 3adant1 1128 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → 〈𝑋, 𝑌〉 ∈ (𝑅 × 𝑅)) |
3 | 2 | fvresd 6776 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (( RingHom ↾ (𝑅 × 𝑅))‘〈𝑋, 𝑌〉) = ( RingHom ‘〈𝑋, 𝑌〉)) |
4 | df-ov 7258 | . . 3 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
5 | rngcrescrhmALTV.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
6 | 5 | fveq1i 6757 | . . 3 ⊢ (𝐻‘〈𝑋, 𝑌〉) = (( RingHom ↾ (𝑅 × 𝑅))‘〈𝑋, 𝑌〉) |
7 | 4, 6 | eqtri 2766 | . 2 ⊢ (𝑋𝐻𝑌) = (( RingHom ↾ (𝑅 × 𝑅))‘〈𝑋, 𝑌〉) |
8 | df-ov 7258 | . 2 ⊢ (𝑋 RingHom 𝑌) = ( RingHom ‘〈𝑋, 𝑌〉) | |
9 | 3, 7, 8 | 3eqtr4g 2804 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 〈cop 4564 × cxp 5578 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 Ringcrg 19698 RingHom crh 19871 RngCatALTVcrngcALTV 45404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-res 5592 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: rhmsubcALTVlem3 45552 rhmsubcALTVlem4 45553 |
Copyright terms: Public domain | W3C validator |