Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubcALTVlem2 Structured version   Visualization version   GIF version

Theorem rhmsubcALTVlem2 48321
Description: Lemma 2 for rhmsubcALTV 48324. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcrescrhmALTV.u (𝜑𝑈𝑉)
rngcrescrhmALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcrescrhmALTV.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhmALTV.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubcALTVlem2 ((𝜑𝑋𝑅𝑌𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌))

Proof of Theorem rhmsubcALTVlem2
StepHypRef Expression
1 opelxpi 5651 . . . 4 ((𝑋𝑅𝑌𝑅) → ⟨𝑋, 𝑌⟩ ∈ (𝑅 × 𝑅))
213adant1 1130 . . 3 ((𝜑𝑋𝑅𝑌𝑅) → ⟨𝑋, 𝑌⟩ ∈ (𝑅 × 𝑅))
32fvresd 6842 . 2 ((𝜑𝑋𝑅𝑌𝑅) → (( RingHom ↾ (𝑅 × 𝑅))‘⟨𝑋, 𝑌⟩) = ( RingHom ‘⟨𝑋, 𝑌⟩))
4 df-ov 7349 . . 3 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
5 rngcrescrhmALTV.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
65fveq1i 6823 . . 3 (𝐻‘⟨𝑋, 𝑌⟩) = (( RingHom ↾ (𝑅 × 𝑅))‘⟨𝑋, 𝑌⟩)
74, 6eqtri 2754 . 2 (𝑋𝐻𝑌) = (( RingHom ↾ (𝑅 × 𝑅))‘⟨𝑋, 𝑌⟩)
8 df-ov 7349 . 2 (𝑋 RingHom 𝑌) = ( RingHom ‘⟨𝑋, 𝑌⟩)
93, 7, 83eqtr4g 2791 1 ((𝜑𝑋𝑅𝑌𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  cin 3896  cop 4579   × cxp 5612  cres 5616  cfv 6481  (class class class)co 7346  Ringcrg 20151   RingHom crh 20387  RngCatALTVcrngcALTV 48302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-res 5626  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by:  rhmsubcALTVlem3  48322  rhmsubcALTVlem4  48323
  Copyright terms: Public domain W3C validator