Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubcALTVlem3 Structured version   Visualization version   GIF version

Theorem rhmsubcALTVlem3 45552
Description: Lemma 3 for rhmsubcALTV 45554. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcrescrhmALTV.u (𝜑𝑈𝑉)
rngcrescrhmALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcrescrhmALTV.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhmALTV.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubcALTVlem3 ((𝜑𝑥𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑈(𝑥)   𝐻(𝑥)   𝑉(𝑥)

Proof of Theorem rhmsubcALTVlem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rngcrescrhmALTV.r . . . . . 6 (𝜑𝑅 = (Ring ∩ 𝑈))
21eleq2d 2824 . . . . 5 (𝜑 → (𝑥𝑅𝑥 ∈ (Ring ∩ 𝑈)))
3 elinel1 4125 . . . . 5 (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring)
42, 3syl6bi 252 . . . 4 (𝜑 → (𝑥𝑅𝑥 ∈ Ring))
54imp 406 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ Ring)
6 eqid 2738 . . . 4 (Base‘𝑥) = (Base‘𝑥)
76idrhm 19890 . . 3 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
85, 7syl 17 . 2 ((𝜑𝑥𝑅) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
9 rngcrescrhmALTV.u . . . . 5 (𝜑𝑈𝑉)
109adantr 480 . . . 4 ((𝜑𝑥𝑅) → 𝑈𝑉)
11 eqid 2738 . . . . 5 (RngCatALTV‘𝑈) = (RngCatALTV‘𝑈)
12 eqid 2738 . . . . 5 (Base‘(RngCatALTV‘𝑈)) = (Base‘(RngCatALTV‘𝑈))
1311, 12rngccatidALTV 45435 . . . 4 (𝑈𝑉 → ((RngCatALTV‘𝑈) ∈ Cat ∧ (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦)))))
14 simpr 484 . . . 4 (((RngCatALTV‘𝑈) ∈ Cat ∧ (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦)))) → (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦))))
1510, 13, 143syl 18 . . 3 ((𝜑𝑥𝑅) → (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦))))
16 fveq2 6756 . . . . 5 (𝑦 = 𝑥 → (Base‘𝑦) = (Base‘𝑥))
1716reseq2d 5880 . . . 4 (𝑦 = 𝑥 → ( I ↾ (Base‘𝑦)) = ( I ↾ (Base‘𝑥)))
1817adantl 481 . . 3 (((𝜑𝑥𝑅) ∧ 𝑦 = 𝑥) → ( I ↾ (Base‘𝑦)) = ( I ↾ (Base‘𝑥)))
19 incom 4131 . . . . . . . 8 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
201, 19eqtrdi 2795 . . . . . . 7 (𝜑𝑅 = (𝑈 ∩ Ring))
2120eleq2d 2824 . . . . . 6 (𝜑 → (𝑥𝑅𝑥 ∈ (𝑈 ∩ Ring)))
22 ringrng 45325 . . . . . . . 8 (𝑥 ∈ Ring → 𝑥 ∈ Rng)
2322anim2i 616 . . . . . . 7 ((𝑥𝑈𝑥 ∈ Ring) → (𝑥𝑈𝑥 ∈ Rng))
24 elin 3899 . . . . . . 7 (𝑥 ∈ (𝑈 ∩ Ring) ↔ (𝑥𝑈𝑥 ∈ Ring))
25 elin 3899 . . . . . . 7 (𝑥 ∈ (𝑈 ∩ Rng) ↔ (𝑥𝑈𝑥 ∈ Rng))
2623, 24, 253imtr4i 291 . . . . . 6 (𝑥 ∈ (𝑈 ∩ Ring) → 𝑥 ∈ (𝑈 ∩ Rng))
2721, 26syl6bi 252 . . . . 5 (𝜑 → (𝑥𝑅𝑥 ∈ (𝑈 ∩ Rng)))
2827imp 406 . . . 4 ((𝜑𝑥𝑅) → 𝑥 ∈ (𝑈 ∩ Rng))
29 rngcrescrhmALTV.c . . . . . 6 𝐶 = (RngCatALTV‘𝑈)
3029eqcomi 2747 . . . . . . 7 (RngCatALTV‘𝑈) = 𝐶
3130fveq2i 6759 . . . . . 6 (Base‘(RngCatALTV‘𝑈)) = (Base‘𝐶)
3229, 31, 9rngcbasALTV 45429 . . . . 5 (𝜑 → (Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng))
3332adantr 480 . . . 4 ((𝜑𝑥𝑅) → (Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng))
3428, 33eleqtrrd 2842 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈)))
35 fvexd 6771 . . . 4 ((𝜑𝑥𝑅) → (Base‘𝑥) ∈ V)
3635resiexd 7074 . . 3 ((𝜑𝑥𝑅) → ( I ↾ (Base‘𝑥)) ∈ V)
3715, 18, 34, 36fvmptd 6864 . 2 ((𝜑𝑥𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥)))
38 rngcrescrhmALTV.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
399, 29, 1, 38rhmsubcALTVlem2 45551 . . 3 ((𝜑𝑥𝑅𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
40393anidm23 1419 . 2 ((𝜑𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
418, 37, 403eltr4d 2854 1 ((𝜑𝑥𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  cmpt 5153   I cid 5479   × cxp 5578  cres 5582  cfv 6418  (class class class)co 7255  Basecbs 16840  Catccat 17290  Idccid 17291  Ringcrg 19698   RingHom crh 19871  Rngcrng 45320  RngCatALTVcrngcALTV 45404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-hom 16912  df-cco 16913  df-0g 17069  df-cat 17294  df-cid 17295  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-ghm 18747  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-rnghom 19874  df-mgmhm 45221  df-rng0 45321  df-rnghomo 45333  df-rngcALTV 45406
This theorem is referenced by:  rhmsubcALTV  45554
  Copyright terms: Public domain W3C validator