Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubcALTVlem3 Structured version   Visualization version   GIF version

Theorem rhmsubcALTVlem3 45664
Description: Lemma 3 for rhmsubcALTV 45666. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcrescrhmALTV.u (𝜑𝑈𝑉)
rngcrescrhmALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcrescrhmALTV.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhmALTV.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubcALTVlem3 ((𝜑𝑥𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑈(𝑥)   𝐻(𝑥)   𝑉(𝑥)

Proof of Theorem rhmsubcALTVlem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rngcrescrhmALTV.r . . . . . 6 (𝜑𝑅 = (Ring ∩ 𝑈))
21eleq2d 2824 . . . . 5 (𝜑 → (𝑥𝑅𝑥 ∈ (Ring ∩ 𝑈)))
3 elinel1 4129 . . . . 5 (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring)
42, 3syl6bi 252 . . . 4 (𝜑 → (𝑥𝑅𝑥 ∈ Ring))
54imp 407 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ Ring)
6 eqid 2738 . . . 4 (Base‘𝑥) = (Base‘𝑥)
76idrhm 19975 . . 3 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
85, 7syl 17 . 2 ((𝜑𝑥𝑅) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
9 rngcrescrhmALTV.u . . . . 5 (𝜑𝑈𝑉)
109adantr 481 . . . 4 ((𝜑𝑥𝑅) → 𝑈𝑉)
11 eqid 2738 . . . . 5 (RngCatALTV‘𝑈) = (RngCatALTV‘𝑈)
12 eqid 2738 . . . . 5 (Base‘(RngCatALTV‘𝑈)) = (Base‘(RngCatALTV‘𝑈))
1311, 12rngccatidALTV 45547 . . . 4 (𝑈𝑉 → ((RngCatALTV‘𝑈) ∈ Cat ∧ (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦)))))
14 simpr 485 . . . 4 (((RngCatALTV‘𝑈) ∈ Cat ∧ (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦)))) → (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦))))
1510, 13, 143syl 18 . . 3 ((𝜑𝑥𝑅) → (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦))))
16 fveq2 6774 . . . . 5 (𝑦 = 𝑥 → (Base‘𝑦) = (Base‘𝑥))
1716reseq2d 5891 . . . 4 (𝑦 = 𝑥 → ( I ↾ (Base‘𝑦)) = ( I ↾ (Base‘𝑥)))
1817adantl 482 . . 3 (((𝜑𝑥𝑅) ∧ 𝑦 = 𝑥) → ( I ↾ (Base‘𝑦)) = ( I ↾ (Base‘𝑥)))
19 incom 4135 . . . . . . . 8 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
201, 19eqtrdi 2794 . . . . . . 7 (𝜑𝑅 = (𝑈 ∩ Ring))
2120eleq2d 2824 . . . . . 6 (𝜑 → (𝑥𝑅𝑥 ∈ (𝑈 ∩ Ring)))
22 ringrng 45437 . . . . . . . 8 (𝑥 ∈ Ring → 𝑥 ∈ Rng)
2322anim2i 617 . . . . . . 7 ((𝑥𝑈𝑥 ∈ Ring) → (𝑥𝑈𝑥 ∈ Rng))
24 elin 3903 . . . . . . 7 (𝑥 ∈ (𝑈 ∩ Ring) ↔ (𝑥𝑈𝑥 ∈ Ring))
25 elin 3903 . . . . . . 7 (𝑥 ∈ (𝑈 ∩ Rng) ↔ (𝑥𝑈𝑥 ∈ Rng))
2623, 24, 253imtr4i 292 . . . . . 6 (𝑥 ∈ (𝑈 ∩ Ring) → 𝑥 ∈ (𝑈 ∩ Rng))
2721, 26syl6bi 252 . . . . 5 (𝜑 → (𝑥𝑅𝑥 ∈ (𝑈 ∩ Rng)))
2827imp 407 . . . 4 ((𝜑𝑥𝑅) → 𝑥 ∈ (𝑈 ∩ Rng))
29 rngcrescrhmALTV.c . . . . . 6 𝐶 = (RngCatALTV‘𝑈)
3029eqcomi 2747 . . . . . . 7 (RngCatALTV‘𝑈) = 𝐶
3130fveq2i 6777 . . . . . 6 (Base‘(RngCatALTV‘𝑈)) = (Base‘𝐶)
3229, 31, 9rngcbasALTV 45541 . . . . 5 (𝜑 → (Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng))
3332adantr 481 . . . 4 ((𝜑𝑥𝑅) → (Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng))
3428, 33eleqtrrd 2842 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈)))
35 fvexd 6789 . . . 4 ((𝜑𝑥𝑅) → (Base‘𝑥) ∈ V)
3635resiexd 7092 . . 3 ((𝜑𝑥𝑅) → ( I ↾ (Base‘𝑥)) ∈ V)
3715, 18, 34, 36fvmptd 6882 . 2 ((𝜑𝑥𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥)))
38 rngcrescrhmALTV.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
399, 29, 1, 38rhmsubcALTVlem2 45663 . . 3 ((𝜑𝑥𝑅𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
40393anidm23 1420 . 2 ((𝜑𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
418, 37, 403eltr4d 2854 1 ((𝜑𝑥𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  cmpt 5157   I cid 5488   × cxp 5587  cres 5591  cfv 6433  (class class class)co 7275  Basecbs 16912  Catccat 17373  Idccid 17374  Ringcrg 19783   RingHom crh 19956  Rngcrng 45432  RngCatALTVcrngcALTV 45516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-hom 16986  df-cco 16987  df-0g 17152  df-cat 17377  df-cid 17378  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-ghm 18832  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-rnghom 19959  df-mgmhm 45333  df-rng0 45433  df-rnghomo 45445  df-rngcALTV 45518
This theorem is referenced by:  rhmsubcALTV  45666
  Copyright terms: Public domain W3C validator