Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubcALTVlem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for rhmsubcALTV 45635. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngcrescrhmALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcrescrhmALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngcrescrhmALTV.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
rngcrescrhmALTV.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
Ref | Expression |
---|---|
rhmsubcALTVlem3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcrescrhmALTV.r | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
2 | 1 | eleq2d 2826 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑅 ↔ 𝑥 ∈ (Ring ∩ 𝑈))) |
3 | elinel1 4134 | . . . . 5 ⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring) | |
4 | 2, 3 | syl6bi 252 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑅 → 𝑥 ∈ Ring)) |
5 | 4 | imp 407 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ Ring) |
6 | eqid 2740 | . . . 4 ⊢ (Base‘𝑥) = (Base‘𝑥) | |
7 | 6 | idrhm 19973 | . . 3 ⊢ (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
8 | 5, 7 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
9 | rngcrescrhmALTV.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
10 | 9 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑈 ∈ 𝑉) |
11 | eqid 2740 | . . . . 5 ⊢ (RngCatALTV‘𝑈) = (RngCatALTV‘𝑈) | |
12 | eqid 2740 | . . . . 5 ⊢ (Base‘(RngCatALTV‘𝑈)) = (Base‘(RngCatALTV‘𝑈)) | |
13 | 11, 12 | rngccatidALTV 45516 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → ((RngCatALTV‘𝑈) ∈ Cat ∧ (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦))))) |
14 | simpr 485 | . . . 4 ⊢ (((RngCatALTV‘𝑈) ∈ Cat ∧ (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦)))) → (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦)))) | |
15 | 10, 13, 14 | 3syl 18 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦)))) |
16 | fveq2 6771 | . . . . 5 ⊢ (𝑦 = 𝑥 → (Base‘𝑦) = (Base‘𝑥)) | |
17 | 16 | reseq2d 5890 | . . . 4 ⊢ (𝑦 = 𝑥 → ( I ↾ (Base‘𝑦)) = ( I ↾ (Base‘𝑥))) |
18 | 17 | adantl 482 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ 𝑦 = 𝑥) → ( I ↾ (Base‘𝑦)) = ( I ↾ (Base‘𝑥))) |
19 | incom 4140 | . . . . . . . 8 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
20 | 1, 19 | eqtrdi 2796 | . . . . . . 7 ⊢ (𝜑 → 𝑅 = (𝑈 ∩ Ring)) |
21 | 20 | eleq2d 2826 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑅 ↔ 𝑥 ∈ (𝑈 ∩ Ring))) |
22 | ringrng 45406 | . . . . . . . 8 ⊢ (𝑥 ∈ Ring → 𝑥 ∈ Rng) | |
23 | 22 | anim2i 617 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Ring) → (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) |
24 | elin 3908 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑈 ∩ Ring) ↔ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Ring)) | |
25 | elin 3908 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑈 ∩ Rng) ↔ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) | |
26 | 23, 24, 25 | 3imtr4i 292 | . . . . . 6 ⊢ (𝑥 ∈ (𝑈 ∩ Ring) → 𝑥 ∈ (𝑈 ∩ Rng)) |
27 | 21, 26 | syl6bi 252 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑅 → 𝑥 ∈ (𝑈 ∩ Rng))) |
28 | 27 | imp 407 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ (𝑈 ∩ Rng)) |
29 | rngcrescrhmALTV.c | . . . . . 6 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
30 | 29 | eqcomi 2749 | . . . . . . 7 ⊢ (RngCatALTV‘𝑈) = 𝐶 |
31 | 30 | fveq2i 6774 | . . . . . 6 ⊢ (Base‘(RngCatALTV‘𝑈)) = (Base‘𝐶) |
32 | 29, 31, 9 | rngcbasALTV 45510 | . . . . 5 ⊢ (𝜑 → (Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng)) |
33 | 32 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng)) |
34 | 28, 33 | eleqtrrd 2844 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈))) |
35 | fvexd 6786 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (Base‘𝑥) ∈ V) | |
36 | 35 | resiexd 7089 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ( I ↾ (Base‘𝑥)) ∈ V) |
37 | 15, 18, 34, 36 | fvmptd 6879 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥))) |
38 | rngcrescrhmALTV.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
39 | 9, 29, 1, 38 | rhmsubcALTVlem2 45632 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑥 ∈ 𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) |
40 | 39 | 3anidm23 1420 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) |
41 | 8, 37, 40 | 3eltr4d 2856 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∩ cin 3891 ↦ cmpt 5162 I cid 5489 × cxp 5588 ↾ cres 5592 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 Catccat 17371 Idccid 17372 Ringcrg 19781 RingHom crh 19954 Rngcrng 45401 RngCatALTVcrngcALTV 45485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-fz 13239 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-plusg 16973 df-hom 16984 df-cco 16985 df-0g 17150 df-cat 17375 df-cid 17376 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-mhm 18428 df-grp 18578 df-minusg 18579 df-ghm 18830 df-cmn 19386 df-abl 19387 df-mgp 19719 df-ur 19736 df-ring 19783 df-rnghom 19957 df-mgmhm 45302 df-rng0 45402 df-rnghomo 45414 df-rngcALTV 45487 |
This theorem is referenced by: rhmsubcALTV 45635 |
Copyright terms: Public domain | W3C validator |