Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubcALTVlem3 Structured version   Visualization version   GIF version

Theorem rhmsubcALTVlem3 45291
Description: Lemma 3 for rhmsubcALTV 45293. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcrescrhmALTV.u (𝜑𝑈𝑉)
rngcrescrhmALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcrescrhmALTV.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhmALTV.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubcALTVlem3 ((𝜑𝑥𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑈(𝑥)   𝐻(𝑥)   𝑉(𝑥)

Proof of Theorem rhmsubcALTVlem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rngcrescrhmALTV.r . . . . . 6 (𝜑𝑅 = (Ring ∩ 𝑈))
21eleq2d 2819 . . . . 5 (𝜑 → (𝑥𝑅𝑥 ∈ (Ring ∩ 𝑈)))
3 elinel1 4099 . . . . 5 (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring)
42, 3syl6bi 256 . . . 4 (𝜑 → (𝑥𝑅𝑥 ∈ Ring))
54imp 410 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ Ring)
6 eqid 2734 . . . 4 (Base‘𝑥) = (Base‘𝑥)
76idrhm 19723 . . 3 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
85, 7syl 17 . 2 ((𝜑𝑥𝑅) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
9 rngcrescrhmALTV.u . . . . 5 (𝜑𝑈𝑉)
109adantr 484 . . . 4 ((𝜑𝑥𝑅) → 𝑈𝑉)
11 eqid 2734 . . . . 5 (RngCatALTV‘𝑈) = (RngCatALTV‘𝑈)
12 eqid 2734 . . . . 5 (Base‘(RngCatALTV‘𝑈)) = (Base‘(RngCatALTV‘𝑈))
1311, 12rngccatidALTV 45174 . . . 4 (𝑈𝑉 → ((RngCatALTV‘𝑈) ∈ Cat ∧ (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦)))))
14 simpr 488 . . . 4 (((RngCatALTV‘𝑈) ∈ Cat ∧ (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦)))) → (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦))))
1510, 13, 143syl 18 . . 3 ((𝜑𝑥𝑅) → (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦))))
16 fveq2 6706 . . . . 5 (𝑦 = 𝑥 → (Base‘𝑦) = (Base‘𝑥))
1716reseq2d 5840 . . . 4 (𝑦 = 𝑥 → ( I ↾ (Base‘𝑦)) = ( I ↾ (Base‘𝑥)))
1817adantl 485 . . 3 (((𝜑𝑥𝑅) ∧ 𝑦 = 𝑥) → ( I ↾ (Base‘𝑦)) = ( I ↾ (Base‘𝑥)))
19 incom 4105 . . . . . . . 8 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
201, 19eqtrdi 2790 . . . . . . 7 (𝜑𝑅 = (𝑈 ∩ Ring))
2120eleq2d 2819 . . . . . 6 (𝜑 → (𝑥𝑅𝑥 ∈ (𝑈 ∩ Ring)))
22 ringrng 45064 . . . . . . . 8 (𝑥 ∈ Ring → 𝑥 ∈ Rng)
2322anim2i 620 . . . . . . 7 ((𝑥𝑈𝑥 ∈ Ring) → (𝑥𝑈𝑥 ∈ Rng))
24 elin 3873 . . . . . . 7 (𝑥 ∈ (𝑈 ∩ Ring) ↔ (𝑥𝑈𝑥 ∈ Ring))
25 elin 3873 . . . . . . 7 (𝑥 ∈ (𝑈 ∩ Rng) ↔ (𝑥𝑈𝑥 ∈ Rng))
2623, 24, 253imtr4i 295 . . . . . 6 (𝑥 ∈ (𝑈 ∩ Ring) → 𝑥 ∈ (𝑈 ∩ Rng))
2721, 26syl6bi 256 . . . . 5 (𝜑 → (𝑥𝑅𝑥 ∈ (𝑈 ∩ Rng)))
2827imp 410 . . . 4 ((𝜑𝑥𝑅) → 𝑥 ∈ (𝑈 ∩ Rng))
29 rngcrescrhmALTV.c . . . . . 6 𝐶 = (RngCatALTV‘𝑈)
3029eqcomi 2743 . . . . . . 7 (RngCatALTV‘𝑈) = 𝐶
3130fveq2i 6709 . . . . . 6 (Base‘(RngCatALTV‘𝑈)) = (Base‘𝐶)
3229, 31, 9rngcbasALTV 45168 . . . . 5 (𝜑 → (Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng))
3332adantr 484 . . . 4 ((𝜑𝑥𝑅) → (Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng))
3428, 33eleqtrrd 2837 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈)))
35 fvexd 6721 . . . 4 ((𝜑𝑥𝑅) → (Base‘𝑥) ∈ V)
3635resiexd 7021 . . 3 ((𝜑𝑥𝑅) → ( I ↾ (Base‘𝑥)) ∈ V)
3715, 18, 34, 36fvmptd 6814 . 2 ((𝜑𝑥𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥)))
38 rngcrescrhmALTV.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
399, 29, 1, 38rhmsubcALTVlem2 45290 . . 3 ((𝜑𝑥𝑅𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
40393anidm23 1423 . 2 ((𝜑𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
418, 37, 403eltr4d 2849 1 ((𝜑𝑥𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3401  cin 3856  cmpt 5124   I cid 5443   × cxp 5538  cres 5542  cfv 6369  (class class class)co 7202  Basecbs 16684  Catccat 17139  Idccid 17140  Ringcrg 19534   RingHom crh 19704  Rngcrng 45059  RngCatALTVcrngcALTV 45143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-fz 13079  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-plusg 16780  df-hom 16791  df-cco 16792  df-0g 16918  df-cat 17143  df-cid 17144  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-mhm 18190  df-grp 18340  df-minusg 18341  df-ghm 18592  df-cmn 19144  df-abl 19145  df-mgp 19477  df-ur 19489  df-ring 19536  df-rnghom 19707  df-mgmhm 44960  df-rng0 45060  df-rnghomo 45072  df-rngcALTV 45145
This theorem is referenced by:  rhmsubcALTV  45293
  Copyright terms: Public domain W3C validator