| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubcALTVlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for rhmsubcALTV 48270. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rngcrescrhmALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcrescrhmALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
| rngcrescrhmALTV.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
| rngcrescrhmALTV.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
| Ref | Expression |
|---|---|
| rhmsubcALTVlem3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhmALTV.r | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
| 2 | 1 | eleq2d 2814 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑅 ↔ 𝑥 ∈ (Ring ∩ 𝑈))) |
| 3 | elinel1 4164 | . . . . 5 ⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring) | |
| 4 | 2, 3 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑅 → 𝑥 ∈ Ring)) |
| 5 | 4 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ Ring) |
| 6 | eqid 2729 | . . . 4 ⊢ (Base‘𝑥) = (Base‘𝑥) | |
| 7 | 6 | idrhm 20399 | . . 3 ⊢ (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
| 8 | 5, 7 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
| 9 | rngcrescrhmALTV.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑈 ∈ 𝑉) |
| 11 | eqid 2729 | . . . . 5 ⊢ (RngCatALTV‘𝑈) = (RngCatALTV‘𝑈) | |
| 12 | eqid 2729 | . . . . 5 ⊢ (Base‘(RngCatALTV‘𝑈)) = (Base‘(RngCatALTV‘𝑈)) | |
| 13 | 11, 12 | rngccatidALTV 48257 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → ((RngCatALTV‘𝑈) ∈ Cat ∧ (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦))))) |
| 14 | simpr 484 | . . . 4 ⊢ (((RngCatALTV‘𝑈) ∈ Cat ∧ (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦)))) → (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦)))) | |
| 15 | 10, 13, 14 | 3syl 18 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (Id‘(RngCatALTV‘𝑈)) = (𝑦 ∈ (Base‘(RngCatALTV‘𝑈)) ↦ ( I ↾ (Base‘𝑦)))) |
| 16 | fveq2 6858 | . . . . 5 ⊢ (𝑦 = 𝑥 → (Base‘𝑦) = (Base‘𝑥)) | |
| 17 | 16 | reseq2d 5950 | . . . 4 ⊢ (𝑦 = 𝑥 → ( I ↾ (Base‘𝑦)) = ( I ↾ (Base‘𝑥))) |
| 18 | 17 | adantl 481 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ 𝑦 = 𝑥) → ( I ↾ (Base‘𝑦)) = ( I ↾ (Base‘𝑥))) |
| 19 | incom 4172 | . . . . . . . 8 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
| 20 | 1, 19 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝜑 → 𝑅 = (𝑈 ∩ Ring)) |
| 21 | 20 | eleq2d 2814 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑅 ↔ 𝑥 ∈ (𝑈 ∩ Ring))) |
| 22 | ringrng 20194 | . . . . . . . 8 ⊢ (𝑥 ∈ Ring → 𝑥 ∈ Rng) | |
| 23 | 22 | anim2i 617 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Ring) → (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) |
| 24 | elin 3930 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑈 ∩ Ring) ↔ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Ring)) | |
| 25 | elin 3930 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑈 ∩ Rng) ↔ (𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng)) | |
| 26 | 23, 24, 25 | 3imtr4i 292 | . . . . . 6 ⊢ (𝑥 ∈ (𝑈 ∩ Ring) → 𝑥 ∈ (𝑈 ∩ Rng)) |
| 27 | 21, 26 | biimtrdi 253 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑅 → 𝑥 ∈ (𝑈 ∩ Rng))) |
| 28 | 27 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ (𝑈 ∩ Rng)) |
| 29 | rngcrescrhmALTV.c | . . . . . 6 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
| 30 | 29 | eqcomi 2738 | . . . . . . 7 ⊢ (RngCatALTV‘𝑈) = 𝐶 |
| 31 | 30 | fveq2i 6861 | . . . . . 6 ⊢ (Base‘(RngCatALTV‘𝑈)) = (Base‘𝐶) |
| 32 | 29, 31, 9 | rngcbasALTV 48251 | . . . . 5 ⊢ (𝜑 → (Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng)) |
| 33 | 32 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng)) |
| 34 | 28, 33 | eleqtrrd 2831 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈))) |
| 35 | fvexd 6873 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (Base‘𝑥) ∈ V) | |
| 36 | 35 | resiexd 7190 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ( I ↾ (Base‘𝑥)) ∈ V) |
| 37 | 15, 18, 34, 36 | fvmptd 6975 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥))) |
| 38 | rngcrescrhmALTV.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
| 39 | 9, 29, 1, 38 | rhmsubcALTVlem2 48267 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑥 ∈ 𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) |
| 40 | 39 | 3anidm23 1423 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) |
| 41 | 8, 37, 40 | 3eltr4d 2843 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ↦ cmpt 5188 I cid 5532 × cxp 5636 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Catccat 17625 Idccid 17626 Rngcrng 20061 Ringcrg 20142 RingHom crh 20378 RngCatALTVcrngcALTV 48248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-hom 17244 df-cco 17245 df-0g 17404 df-cat 17629 df-cid 17630 df-mgm 18567 df-mgmhm 18619 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-ghm 19145 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-rnghm 20345 df-rhm 20381 df-rngcALTV 48249 |
| This theorem is referenced by: rhmsubcALTV 48270 |
| Copyright terms: Public domain | W3C validator |