Proof of Theorem rhmsubcALTVlem4
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝜑) |
| 2 | 1 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝜑) |
| 3 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ 𝑅) |
| 4 | 3 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ 𝑅) |
| 5 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝑦 ∈ 𝑅) |
| 6 | 5 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ 𝑅) |
| 7 | | rngcrescrhmALTV.u |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| 8 | | rngcrescrhmALTV.c |
. . . . . . . 8
⊢ 𝐶 = (RngCatALTV‘𝑈) |
| 9 | | rngcrescrhmALTV.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
| 10 | | rngcrescrhmALTV.h |
. . . . . . . 8
⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
| 11 | 7, 8, 9, 10 | rhmsubcALTVlem2 48224 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦)) |
| 12 | 2, 4, 6, 11 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦)) |
| 13 | 12 | eleq2d 2821 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥 RingHom 𝑦))) |
| 14 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝑧 ∈ 𝑅) |
| 15 | 14 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ 𝑅) |
| 16 | 7, 8, 9, 10 | rhmsubcALTVlem2 48224 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧)) |
| 17 | 2, 6, 15, 16 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧)) |
| 18 | 17 | eleq2d 2821 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑦 RingHom 𝑧))) |
| 19 | 13, 18 | anbi12d 632 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ↔ (𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧)))) |
| 20 | | rhmco 20466 |
. . . . 5
⊢ ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (𝑥 RingHom 𝑦)) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧)) |
| 21 | 20 | ancoms 458 |
. . . 4
⊢ ((𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧)) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧)) |
| 22 | 19, 21 | biimtrdi 253 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧))) |
| 23 | 22 | imp 406 |
. 2
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧)) |
| 24 | | eqid 2736 |
. . 3
⊢
(RngCatALTV‘𝑈)
= (RngCatALTV‘𝑈) |
| 25 | | eqid 2736 |
. . 3
⊢
(Base‘(RngCatALTV‘𝑈)) = (Base‘(RngCatALTV‘𝑈)) |
| 26 | 7 | ad3antrrr 730 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈 ∈ 𝑉) |
| 27 | | eqid 2736 |
. . 3
⊢
(comp‘(RngCatALTV‘𝑈)) = (comp‘(RngCatALTV‘𝑈)) |
| 28 | | incom 4189 |
. . . . . . . 8
⊢ (Ring
∩ 𝑈) = (𝑈 ∩ Ring) |
| 29 | | ringrng 20250 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ Ring → 𝑥 ∈ Rng) |
| 30 | 29 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ Ring → 𝑥 ∈ Rng)) |
| 31 | 30 | ssrdv 3969 |
. . . . . . . . 9
⊢ (𝜑 → Ring ⊆
Rng) |
| 32 | | sslin 4223 |
. . . . . . . . 9
⊢ (Ring
⊆ Rng → (𝑈 ∩
Ring) ⊆ (𝑈 ∩
Rng)) |
| 33 | 31, 32 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng)) |
| 34 | 28, 33 | eqsstrid 4002 |
. . . . . . 7
⊢ (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng)) |
| 35 | 24, 25, 7 | rngcbasALTV 48208 |
. . . . . . 7
⊢ (𝜑 →
(Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng)) |
| 36 | 34, 9, 35 | 3sstr4d 4019 |
. . . . . 6
⊢ (𝜑 → 𝑅 ⊆ (Base‘(RngCatALTV‘𝑈))) |
| 37 | 36 | sselda 3963 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈))) |
| 38 | 37 | adantr 480 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈))) |
| 39 | 38 | adantr 480 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈))) |
| 40 | 36 | sseld 3962 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝑅 → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))) |
| 41 | 40 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (𝑦 ∈ 𝑅 → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))) |
| 42 | 41 | com12 32 |
. . . . . 6
⊢ (𝑦 ∈ 𝑅 → ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))) |
| 43 | 42 | adantr 480 |
. . . . 5
⊢ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))) |
| 44 | 43 | impcom 407 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈))) |
| 45 | 44 | adantr 480 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈))) |
| 46 | 36 | sseld 3962 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ 𝑅 → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))) |
| 47 | 46 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (𝑧 ∈ 𝑅 → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))) |
| 48 | 47 | adantld 490 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))) |
| 49 | 48 | imp 406 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈))) |
| 50 | 49 | adantr 480 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈))) |
| 51 | | rhmisrnghm 20445 |
. . . . . . 7
⊢ (𝑓 ∈ (𝑥 RingHom 𝑦) → 𝑓 ∈ (𝑥 RngHom 𝑦)) |
| 52 | 13, 51 | biimtrdi 253 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓 ∈ (𝑥 RngHom 𝑦))) |
| 53 | 52 | com12 32 |
. . . . 5
⊢ (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑓 ∈ (𝑥 RngHom 𝑦))) |
| 54 | 53 | adantr 480 |
. . . 4
⊢ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑓 ∈ (𝑥 RngHom 𝑦))) |
| 55 | 54 | impcom 407 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RngHom 𝑦)) |
| 56 | | rhmisrnghm 20445 |
. . . . . 6
⊢ (𝑔 ∈ (𝑦 RingHom 𝑧) → 𝑔 ∈ (𝑦 RngHom 𝑧)) |
| 57 | 18, 56 | biimtrdi 253 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔 ∈ (𝑦 RngHom 𝑧))) |
| 58 | 57 | adantld 490 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RngHom 𝑧))) |
| 59 | 58 | imp 406 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RngHom 𝑧)) |
| 60 | 24, 25, 26, 27, 39, 45, 50, 55, 59 | rngccoALTV 48213 |
. 2
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) = (𝑔 ∘ 𝑓)) |
| 61 | 7, 8, 9, 10 | rhmsubcALTVlem2 48224 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧)) |
| 62 | 2, 4, 15, 61 | syl3anc 1373 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧)) |
| 63 | 62 | adantr 480 |
. 2
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧)) |
| 64 | 23, 60, 63 | 3eltr4d 2850 |
1
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |