Proof of Theorem rhmsubcALTVlem4
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝜑) | 
| 2 | 1 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝜑) | 
| 3 |  | simpr 484 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ 𝑅) | 
| 4 | 3 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ 𝑅) | 
| 5 |  | simpl 482 | . . . . . . . 8
⊢ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝑦 ∈ 𝑅) | 
| 6 | 5 | adantl 481 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ 𝑅) | 
| 7 |  | rngcrescrhmALTV.u | . . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ 𝑉) | 
| 8 |  | rngcrescrhmALTV.c | . . . . . . . 8
⊢ 𝐶 = (RngCatALTV‘𝑈) | 
| 9 |  | rngcrescrhmALTV.r | . . . . . . . 8
⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | 
| 10 |  | rngcrescrhmALTV.h | . . . . . . . 8
⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | 
| 11 | 7, 8, 9, 10 | rhmsubcALTVlem2 48203 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦)) | 
| 12 | 2, 4, 6, 11 | syl3anc 1372 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦)) | 
| 13 | 12 | eleq2d 2826 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥 RingHom 𝑦))) | 
| 14 |  | simpr 484 | . . . . . . . 8
⊢ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝑧 ∈ 𝑅) | 
| 15 | 14 | adantl 481 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ 𝑅) | 
| 16 | 7, 8, 9, 10 | rhmsubcALTVlem2 48203 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧)) | 
| 17 | 2, 6, 15, 16 | syl3anc 1372 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧)) | 
| 18 | 17 | eleq2d 2826 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑦 RingHom 𝑧))) | 
| 19 | 13, 18 | anbi12d 632 | . . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ↔ (𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧)))) | 
| 20 |  | rhmco 20502 | . . . . 5
⊢ ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (𝑥 RingHom 𝑦)) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧)) | 
| 21 | 20 | ancoms 458 | . . . 4
⊢ ((𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧)) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧)) | 
| 22 | 19, 21 | biimtrdi 253 | . . 3
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧))) | 
| 23 | 22 | imp 406 | . 2
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧)) | 
| 24 |  | eqid 2736 | . . 3
⊢
(RngCatALTV‘𝑈)
= (RngCatALTV‘𝑈) | 
| 25 |  | eqid 2736 | . . 3
⊢
(Base‘(RngCatALTV‘𝑈)) = (Base‘(RngCatALTV‘𝑈)) | 
| 26 | 7 | ad3antrrr 730 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈 ∈ 𝑉) | 
| 27 |  | eqid 2736 | . . 3
⊢
(comp‘(RngCatALTV‘𝑈)) = (comp‘(RngCatALTV‘𝑈)) | 
| 28 |  | incom 4208 | . . . . . . . 8
⊢ (Ring
∩ 𝑈) = (𝑈 ∩ Ring) | 
| 29 |  | ringrng 20283 | . . . . . . . . . . 11
⊢ (𝑥 ∈ Ring → 𝑥 ∈ Rng) | 
| 30 | 29 | a1i 11 | . . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ Ring → 𝑥 ∈ Rng)) | 
| 31 | 30 | ssrdv 3988 | . . . . . . . . 9
⊢ (𝜑 → Ring ⊆
Rng) | 
| 32 |  | sslin 4242 | . . . . . . . . 9
⊢ (Ring
⊆ Rng → (𝑈 ∩
Ring) ⊆ (𝑈 ∩
Rng)) | 
| 33 | 31, 32 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng)) | 
| 34 | 28, 33 | eqsstrid 4021 | . . . . . . 7
⊢ (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng)) | 
| 35 | 24, 25, 7 | rngcbasALTV 48187 | . . . . . . 7
⊢ (𝜑 →
(Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng)) | 
| 36 | 34, 9, 35 | 3sstr4d 4038 | . . . . . 6
⊢ (𝜑 → 𝑅 ⊆ (Base‘(RngCatALTV‘𝑈))) | 
| 37 | 36 | sselda 3982 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈))) | 
| 38 | 37 | adantr 480 | . . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈))) | 
| 39 | 38 | adantr 480 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈))) | 
| 40 | 36 | sseld 3981 | . . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝑅 → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))) | 
| 41 | 40 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (𝑦 ∈ 𝑅 → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))) | 
| 42 | 41 | com12 32 | . . . . . 6
⊢ (𝑦 ∈ 𝑅 → ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))) | 
| 43 | 42 | adantr 480 | . . . . 5
⊢ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))) | 
| 44 | 43 | impcom 407 | . . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈))) | 
| 45 | 44 | adantr 480 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈))) | 
| 46 | 36 | sseld 3981 | . . . . . . 7
⊢ (𝜑 → (𝑧 ∈ 𝑅 → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))) | 
| 47 | 46 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (𝑧 ∈ 𝑅 → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))) | 
| 48 | 47 | adantld 490 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))) | 
| 49 | 48 | imp 406 | . . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈))) | 
| 50 | 49 | adantr 480 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈))) | 
| 51 |  | rhmisrnghm 20481 | . . . . . . 7
⊢ (𝑓 ∈ (𝑥 RingHom 𝑦) → 𝑓 ∈ (𝑥 RngHom 𝑦)) | 
| 52 | 13, 51 | biimtrdi 253 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓 ∈ (𝑥 RngHom 𝑦))) | 
| 53 | 52 | com12 32 | . . . . 5
⊢ (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑓 ∈ (𝑥 RngHom 𝑦))) | 
| 54 | 53 | adantr 480 | . . . 4
⊢ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑓 ∈ (𝑥 RngHom 𝑦))) | 
| 55 | 54 | impcom 407 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RngHom 𝑦)) | 
| 56 |  | rhmisrnghm 20481 | . . . . . 6
⊢ (𝑔 ∈ (𝑦 RingHom 𝑧) → 𝑔 ∈ (𝑦 RngHom 𝑧)) | 
| 57 | 18, 56 | biimtrdi 253 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔 ∈ (𝑦 RngHom 𝑧))) | 
| 58 | 57 | adantld 490 | . . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RngHom 𝑧))) | 
| 59 | 58 | imp 406 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RngHom 𝑧)) | 
| 60 | 24, 25, 26, 27, 39, 45, 50, 55, 59 | rngccoALTV 48192 | . 2
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) = (𝑔 ∘ 𝑓)) | 
| 61 | 7, 8, 9, 10 | rhmsubcALTVlem2 48203 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧)) | 
| 62 | 2, 4, 15, 61 | syl3anc 1372 | . . 3
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧)) | 
| 63 | 62 | adantr 480 | . 2
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧)) | 
| 64 | 23, 60, 63 | 3eltr4d 2855 | 1
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |