Proof of Theorem rhmsubcALTVlem4
Step | Hyp | Ref
| Expression |
1 | | simpl 486 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝜑) |
2 | 1 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝜑) |
3 | | simpr 488 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ 𝑅) |
4 | 3 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ 𝑅) |
5 | | simpl 486 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝑦 ∈ 𝑅) |
6 | 5 | adantl 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ 𝑅) |
7 | | rngcrescrhmALTV.u |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
8 | | rngcrescrhmALTV.c |
. . . . . . . 8
⊢ 𝐶 = (RngCatALTV‘𝑈) |
9 | | rngcrescrhmALTV.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
10 | | rngcrescrhmALTV.h |
. . . . . . . 8
⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
11 | 7, 8, 9, 10 | rhmsubcALTVlem2 45145 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦)) |
12 | 2, 4, 6, 11 | syl3anc 1368 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦)) |
13 | 12 | eleq2d 2837 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥 RingHom 𝑦))) |
14 | | simpr 488 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝑧 ∈ 𝑅) |
15 | 14 | adantl 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ 𝑅) |
16 | 7, 8, 9, 10 | rhmsubcALTVlem2 45145 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧)) |
17 | 2, 6, 15, 16 | syl3anc 1368 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧)) |
18 | 17 | eleq2d 2837 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑦 RingHom 𝑧))) |
19 | 13, 18 | anbi12d 633 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ↔ (𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧)))) |
20 | | rhmco 19573 |
. . . . 5
⊢ ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (𝑥 RingHom 𝑦)) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧)) |
21 | 20 | ancoms 462 |
. . . 4
⊢ ((𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧)) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧)) |
22 | 19, 21 | syl6bi 256 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧))) |
23 | 22 | imp 410 |
. 2
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧)) |
24 | | eqid 2758 |
. . 3
⊢
(RngCatALTV‘𝑈)
= (RngCatALTV‘𝑈) |
25 | | eqid 2758 |
. . 3
⊢
(Base‘(RngCatALTV‘𝑈)) = (Base‘(RngCatALTV‘𝑈)) |
26 | 7 | ad3antrrr 729 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈 ∈ 𝑉) |
27 | | eqid 2758 |
. . 3
⊢
(comp‘(RngCatALTV‘𝑈)) = (comp‘(RngCatALTV‘𝑈)) |
28 | | incom 4108 |
. . . . . . . 8
⊢ (Ring
∩ 𝑈) = (𝑈 ∩ Ring) |
29 | | ringrng 44919 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ Ring → 𝑥 ∈ Rng) |
30 | 29 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ Ring → 𝑥 ∈ Rng)) |
31 | 30 | ssrdv 3900 |
. . . . . . . . 9
⊢ (𝜑 → Ring ⊆
Rng) |
32 | | sslin 4141 |
. . . . . . . . 9
⊢ (Ring
⊆ Rng → (𝑈 ∩
Ring) ⊆ (𝑈 ∩
Rng)) |
33 | 31, 32 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng)) |
34 | 28, 33 | eqsstrid 3942 |
. . . . . . 7
⊢ (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng)) |
35 | 24, 25, 7 | rngcbasALTV 45023 |
. . . . . . 7
⊢ (𝜑 →
(Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng)) |
36 | 34, 9, 35 | 3sstr4d 3941 |
. . . . . 6
⊢ (𝜑 → 𝑅 ⊆ (Base‘(RngCatALTV‘𝑈))) |
37 | 36 | sselda 3894 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈))) |
38 | 37 | adantr 484 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈))) |
39 | 38 | adantr 484 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈))) |
40 | 36 | sseld 3893 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝑅 → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))) |
41 | 40 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (𝑦 ∈ 𝑅 → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))) |
42 | 41 | com12 32 |
. . . . . 6
⊢ (𝑦 ∈ 𝑅 → ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))) |
43 | 42 | adantr 484 |
. . . . 5
⊢ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))) |
44 | 43 | impcom 411 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈))) |
45 | 44 | adantr 484 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈))) |
46 | 36 | sseld 3893 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ 𝑅 → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))) |
47 | 46 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (𝑧 ∈ 𝑅 → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))) |
48 | 47 | adantld 494 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))) |
49 | 48 | imp 410 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈))) |
50 | 49 | adantr 484 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈))) |
51 | | rhmisrnghm 44960 |
. . . . . . 7
⊢ (𝑓 ∈ (𝑥 RingHom 𝑦) → 𝑓 ∈ (𝑥 RngHomo 𝑦)) |
52 | 13, 51 | syl6bi 256 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓 ∈ (𝑥 RngHomo 𝑦))) |
53 | 52 | com12 32 |
. . . . 5
⊢ (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑓 ∈ (𝑥 RngHomo 𝑦))) |
54 | 53 | adantr 484 |
. . . 4
⊢ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑓 ∈ (𝑥 RngHomo 𝑦))) |
55 | 54 | impcom 411 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RngHomo 𝑦)) |
56 | | rhmisrnghm 44960 |
. . . . . 6
⊢ (𝑔 ∈ (𝑦 RingHom 𝑧) → 𝑔 ∈ (𝑦 RngHomo 𝑧)) |
57 | 18, 56 | syl6bi 256 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔 ∈ (𝑦 RngHomo 𝑧))) |
58 | 57 | adantld 494 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RngHomo 𝑧))) |
59 | 58 | imp 410 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RngHomo 𝑧)) |
60 | 24, 25, 26, 27, 39, 45, 50, 55, 59 | rngccoALTV 45028 |
. 2
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) = (𝑔 ∘ 𝑓)) |
61 | 7, 8, 9, 10 | rhmsubcALTVlem2 45145 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧)) |
62 | 2, 4, 15, 61 | syl3anc 1368 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧)) |
63 | 62 | adantr 484 |
. 2
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧)) |
64 | 23, 60, 63 | 3eltr4d 2867 |
1
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |