Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubcALTVlem4 Structured version   Visualization version   GIF version

Theorem rhmsubcALTVlem4 46395
Description: Lemma 4 for rhmsubcALTV 46396. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcrescrhmALTV.u (𝜑𝑈𝑉)
rngcrescrhmALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcrescrhmALTV.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhmALTV.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubcALTVlem4 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑦,𝑈   𝑦,𝑉   𝜑,𝑦   𝑧,𝑅,𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑅(𝑓,𝑔)   𝑈(𝑥,𝑧,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑉(𝑥,𝑧,𝑓,𝑔)

Proof of Theorem rhmsubcALTVlem4
StepHypRef Expression
1 simpl 483 . . . . . . . 8 ((𝜑𝑥𝑅) → 𝜑)
21adantr 481 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝜑)
3 simpr 485 . . . . . . . 8 ((𝜑𝑥𝑅) → 𝑥𝑅)
43adantr 481 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑥𝑅)
5 simpl 483 . . . . . . . 8 ((𝑦𝑅𝑧𝑅) → 𝑦𝑅)
65adantl 482 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑦𝑅)
7 rngcrescrhmALTV.u . . . . . . . 8 (𝜑𝑈𝑉)
8 rngcrescrhmALTV.c . . . . . . . 8 𝐶 = (RngCatALTV‘𝑈)
9 rngcrescrhmALTV.r . . . . . . . 8 (𝜑𝑅 = (Ring ∩ 𝑈))
10 rngcrescrhmALTV.h . . . . . . . 8 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
117, 8, 9, 10rhmsubcALTVlem2 46393 . . . . . . 7 ((𝜑𝑥𝑅𝑦𝑅) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦))
122, 4, 6, 11syl3anc 1371 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦))
1312eleq2d 2823 . . . . 5 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥 RingHom 𝑦)))
14 simpr 485 . . . . . . . 8 ((𝑦𝑅𝑧𝑅) → 𝑧𝑅)
1514adantl 482 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑧𝑅)
167, 8, 9, 10rhmsubcALTVlem2 46393 . . . . . . 7 ((𝜑𝑦𝑅𝑧𝑅) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
172, 6, 15, 16syl3anc 1371 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
1817eleq2d 2823 . . . . 5 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑦 RingHom 𝑧)))
1913, 18anbi12d 631 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ↔ (𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧))))
20 rhmco 20171 . . . . 5 ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (𝑥 RingHom 𝑦)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
2120ancoms 459 . . . 4 ((𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
2219, 21syl6bi 252 . . 3 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧)))
2322imp 407 . 2 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
24 eqid 2736 . . 3 (RngCatALTV‘𝑈) = (RngCatALTV‘𝑈)
25 eqid 2736 . . 3 (Base‘(RngCatALTV‘𝑈)) = (Base‘(RngCatALTV‘𝑈))
267ad3antrrr 728 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈𝑉)
27 eqid 2736 . . 3 (comp‘(RngCatALTV‘𝑈)) = (comp‘(RngCatALTV‘𝑈))
28 incom 4161 . . . . . . . 8 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
29 ringrng 46167 . . . . . . . . . . 11 (𝑥 ∈ Ring → 𝑥 ∈ Rng)
3029a1i 11 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ Ring → 𝑥 ∈ Rng))
3130ssrdv 3950 . . . . . . . . 9 (𝜑 → Ring ⊆ Rng)
32 sslin 4194 . . . . . . . . 9 (Ring ⊆ Rng → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
3331, 32syl 17 . . . . . . . 8 (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
3428, 33eqsstrid 3992 . . . . . . 7 (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng))
3524, 25, 7rngcbasALTV 46271 . . . . . . 7 (𝜑 → (Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng))
3634, 9, 353sstr4d 3991 . . . . . 6 (𝜑𝑅 ⊆ (Base‘(RngCatALTV‘𝑈)))
3736sselda 3944 . . . . 5 ((𝜑𝑥𝑅) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈)))
3837adantr 481 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈)))
3938adantr 481 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈)))
4036sseld 3943 . . . . . . . 8 (𝜑 → (𝑦𝑅𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4140adantr 481 . . . . . . 7 ((𝜑𝑥𝑅) → (𝑦𝑅𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4241com12 32 . . . . . 6 (𝑦𝑅 → ((𝜑𝑥𝑅) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4342adantr 481 . . . . 5 ((𝑦𝑅𝑧𝑅) → ((𝜑𝑥𝑅) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4443impcom 408 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))
4544adantr 481 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))
4636sseld 3943 . . . . . . 7 (𝜑 → (𝑧𝑅𝑧 ∈ (Base‘(RngCatALTV‘𝑈))))
4746adantr 481 . . . . . 6 ((𝜑𝑥𝑅) → (𝑧𝑅𝑧 ∈ (Base‘(RngCatALTV‘𝑈))))
4847adantld 491 . . . . 5 ((𝜑𝑥𝑅) → ((𝑦𝑅𝑧𝑅) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈))))
4948imp 407 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))
5049adantr 481 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))
51 rhmisrnghm 46208 . . . . . . 7 (𝑓 ∈ (𝑥 RingHom 𝑦) → 𝑓 ∈ (𝑥 RngHomo 𝑦))
5213, 51syl6bi 252 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓 ∈ (𝑥 RngHomo 𝑦)))
5352com12 32 . . . . 5 (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑓 ∈ (𝑥 RngHomo 𝑦)))
5453adantr 481 . . . 4 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑓 ∈ (𝑥 RngHomo 𝑦)))
5554impcom 408 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RngHomo 𝑦))
56 rhmisrnghm 46208 . . . . . 6 (𝑔 ∈ (𝑦 RingHom 𝑧) → 𝑔 ∈ (𝑦 RngHomo 𝑧))
5718, 56syl6bi 252 . . . . 5 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔 ∈ (𝑦 RngHomo 𝑧)))
5857adantld 491 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RngHomo 𝑧)))
5958imp 407 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RngHomo 𝑧))
6024, 25, 26, 27, 39, 45, 50, 55, 59rngccoALTV 46276 . 2 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) = (𝑔𝑓))
617, 8, 9, 10rhmsubcALTVlem2 46393 . . . 4 ((𝜑𝑥𝑅𝑧𝑅) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
622, 4, 15, 61syl3anc 1371 . . 3 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
6362adantr 481 . 2 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
6423, 60, 633eltr4d 2853 1 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cin 3909  wss 3910  cop 4592   × cxp 5631  cres 5635  ccom 5637  cfv 6496  (class class class)co 7357  Basecbs 17083  compcco 17145  Ringcrg 19964   RingHom crh 20143  Rngcrng 46162   RngHomo crngh 46173  RngCatALTVcrngcALTV 46246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-hom 17157  df-cco 17158  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-ghm 19006  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-rnghom 20146  df-mgmhm 46063  df-rng 46163  df-rnghomo 46175  df-rngcALTV 46248
This theorem is referenced by:  rhmsubcALTV  46396
  Copyright terms: Public domain W3C validator