Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubcALTVlem4 Structured version   Visualization version   GIF version

Theorem rhmsubcALTVlem4 43876
Description: Lemma 4 for rhmsubcALTV 43877. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcrescrhmALTV.u (𝜑𝑈𝑉)
rngcrescrhmALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcrescrhmALTV.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhmALTV.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubcALTVlem4 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑦,𝑈   𝑦,𝑉   𝜑,𝑦   𝑧,𝑅,𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑅(𝑓,𝑔)   𝑈(𝑥,𝑧,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑉(𝑥,𝑧,𝑓,𝑔)

Proof of Theorem rhmsubcALTVlem4
StepHypRef Expression
1 simpl 483 . . . . . . . 8 ((𝜑𝑥𝑅) → 𝜑)
21adantr 481 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝜑)
3 simpr 485 . . . . . . . 8 ((𝜑𝑥𝑅) → 𝑥𝑅)
43adantr 481 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑥𝑅)
5 simpl 483 . . . . . . . 8 ((𝑦𝑅𝑧𝑅) → 𝑦𝑅)
65adantl 482 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑦𝑅)
7 rngcrescrhmALTV.u . . . . . . . 8 (𝜑𝑈𝑉)
8 rngcrescrhmALTV.c . . . . . . . 8 𝐶 = (RngCatALTV‘𝑈)
9 rngcrescrhmALTV.r . . . . . . . 8 (𝜑𝑅 = (Ring ∩ 𝑈))
10 rngcrescrhmALTV.h . . . . . . . 8 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
117, 8, 9, 10rhmsubcALTVlem2 43874 . . . . . . 7 ((𝜑𝑥𝑅𝑦𝑅) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦))
122, 4, 6, 11syl3anc 1364 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦))
1312eleq2d 2868 . . . . 5 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥 RingHom 𝑦)))
14 simpr 485 . . . . . . . 8 ((𝑦𝑅𝑧𝑅) → 𝑧𝑅)
1514adantl 482 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑧𝑅)
167, 8, 9, 10rhmsubcALTVlem2 43874 . . . . . . 7 ((𝜑𝑦𝑅𝑧𝑅) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
172, 6, 15, 16syl3anc 1364 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
1817eleq2d 2868 . . . . 5 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑦 RingHom 𝑧)))
1913, 18anbi12d 630 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ↔ (𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧))))
20 rhmco 19179 . . . . 5 ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (𝑥 RingHom 𝑦)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
2120ancoms 459 . . . 4 ((𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
2219, 21syl6bi 254 . . 3 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧)))
2322imp 407 . 2 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
24 eqid 2795 . . 3 (RngCatALTV‘𝑈) = (RngCatALTV‘𝑈)
25 eqid 2795 . . 3 (Base‘(RngCatALTV‘𝑈)) = (Base‘(RngCatALTV‘𝑈))
267ad3antrrr 726 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈𝑉)
27 eqid 2795 . . 3 (comp‘(RngCatALTV‘𝑈)) = (comp‘(RngCatALTV‘𝑈))
28 incom 4099 . . . . . . . 8 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
29 ringrng 43648 . . . . . . . . . . 11 (𝑥 ∈ Ring → 𝑥 ∈ Rng)
3029a1i 11 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ Ring → 𝑥 ∈ Rng))
3130ssrdv 3895 . . . . . . . . 9 (𝜑 → Ring ⊆ Rng)
32 sslin 4131 . . . . . . . . 9 (Ring ⊆ Rng → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
3331, 32syl 17 . . . . . . . 8 (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
3428, 33eqsstrid 3936 . . . . . . 7 (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng))
3524, 25, 7rngcbasALTV 43752 . . . . . . 7 (𝜑 → (Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng))
3634, 9, 353sstr4d 3935 . . . . . 6 (𝜑𝑅 ⊆ (Base‘(RngCatALTV‘𝑈)))
3736sselda 3889 . . . . 5 ((𝜑𝑥𝑅) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈)))
3837adantr 481 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈)))
3938adantr 481 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈)))
4036sseld 3888 . . . . . . . 8 (𝜑 → (𝑦𝑅𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4140adantr 481 . . . . . . 7 ((𝜑𝑥𝑅) → (𝑦𝑅𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4241com12 32 . . . . . 6 (𝑦𝑅 → ((𝜑𝑥𝑅) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4342adantr 481 . . . . 5 ((𝑦𝑅𝑧𝑅) → ((𝜑𝑥𝑅) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4443impcom 408 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))
4544adantr 481 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))
4636sseld 3888 . . . . . . 7 (𝜑 → (𝑧𝑅𝑧 ∈ (Base‘(RngCatALTV‘𝑈))))
4746adantr 481 . . . . . 6 ((𝜑𝑥𝑅) → (𝑧𝑅𝑧 ∈ (Base‘(RngCatALTV‘𝑈))))
4847adantld 491 . . . . 5 ((𝜑𝑥𝑅) → ((𝑦𝑅𝑧𝑅) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈))))
4948imp 407 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))
5049adantr 481 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))
51 rhmisrnghm 43689 . . . . . . 7 (𝑓 ∈ (𝑥 RingHom 𝑦) → 𝑓 ∈ (𝑥 RngHomo 𝑦))
5213, 51syl6bi 254 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓 ∈ (𝑥 RngHomo 𝑦)))
5352com12 32 . . . . 5 (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑓 ∈ (𝑥 RngHomo 𝑦)))
5453adantr 481 . . . 4 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑓 ∈ (𝑥 RngHomo 𝑦)))
5554impcom 408 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RngHomo 𝑦))
56 rhmisrnghm 43689 . . . . . 6 (𝑔 ∈ (𝑦 RingHom 𝑧) → 𝑔 ∈ (𝑦 RngHomo 𝑧))
5718, 56syl6bi 254 . . . . 5 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔 ∈ (𝑦 RngHomo 𝑧)))
5857adantld 491 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RngHomo 𝑧)))
5958imp 407 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RngHomo 𝑧))
6024, 25, 26, 27, 39, 45, 50, 55, 59rngccoALTV 43757 . 2 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) = (𝑔𝑓))
617, 8, 9, 10rhmsubcALTVlem2 43874 . . . 4 ((𝜑𝑥𝑅𝑧𝑅) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
622, 4, 15, 61syl3anc 1364 . . 3 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
6362adantr 481 . 2 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
6423, 60, 633eltr4d 2898 1 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  cin 3858  wss 3859  cop 4478   × cxp 5441  cres 5445  ccom 5447  cfv 6225  (class class class)co 7016  Basecbs 16312  compcco 16406  Ringcrg 18987   RingHom crh 19154  Rngcrng 43643   RngHomo crngh 43654  RngCatALTVcrngcALTV 43727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-fz 12743  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-plusg 16407  df-hom 16418  df-cco 16419  df-0g 16544  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-grp 17864  df-minusg 17865  df-ghm 18097  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-rnghom 19157  df-mgmhm 43548  df-rng0 43644  df-rnghomo 43656  df-rngcALTV 43729
This theorem is referenced by:  rhmsubcALTV  43877
  Copyright terms: Public domain W3C validator