Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubcALTVlem4 Structured version   Visualization version   GIF version

Theorem rhmsubcALTVlem4 48265
Description: Lemma 4 for rhmsubcALTV 48266. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcrescrhmALTV.u (𝜑𝑈𝑉)
rngcrescrhmALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcrescrhmALTV.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhmALTV.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubcALTVlem4 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑦,𝑈   𝑦,𝑉   𝜑,𝑦   𝑧,𝑅,𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑅(𝑓,𝑔)   𝑈(𝑥,𝑧,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑉(𝑥,𝑧,𝑓,𝑔)

Proof of Theorem rhmsubcALTVlem4
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((𝜑𝑥𝑅) → 𝜑)
21adantr 480 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝜑)
3 simpr 484 . . . . . . . 8 ((𝜑𝑥𝑅) → 𝑥𝑅)
43adantr 480 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑥𝑅)
5 simpl 482 . . . . . . . 8 ((𝑦𝑅𝑧𝑅) → 𝑦𝑅)
65adantl 481 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑦𝑅)
7 rngcrescrhmALTV.u . . . . . . . 8 (𝜑𝑈𝑉)
8 rngcrescrhmALTV.c . . . . . . . 8 𝐶 = (RngCatALTV‘𝑈)
9 rngcrescrhmALTV.r . . . . . . . 8 (𝜑𝑅 = (Ring ∩ 𝑈))
10 rngcrescrhmALTV.h . . . . . . . 8 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
117, 8, 9, 10rhmsubcALTVlem2 48263 . . . . . . 7 ((𝜑𝑥𝑅𝑦𝑅) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦))
122, 4, 6, 11syl3anc 1373 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦))
1312eleq2d 2814 . . . . 5 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥 RingHom 𝑦)))
14 simpr 484 . . . . . . . 8 ((𝑦𝑅𝑧𝑅) → 𝑧𝑅)
1514adantl 481 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑧𝑅)
167, 8, 9, 10rhmsubcALTVlem2 48263 . . . . . . 7 ((𝜑𝑦𝑅𝑧𝑅) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
172, 6, 15, 16syl3anc 1373 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
1817eleq2d 2814 . . . . 5 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑦 RingHom 𝑧)))
1913, 18anbi12d 632 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ↔ (𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧))))
20 rhmco 20421 . . . . 5 ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (𝑥 RingHom 𝑦)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
2120ancoms 458 . . . 4 ((𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
2219, 21biimtrdi 253 . . 3 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧)))
2322imp 406 . 2 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
24 eqid 2729 . . 3 (RngCatALTV‘𝑈) = (RngCatALTV‘𝑈)
25 eqid 2729 . . 3 (Base‘(RngCatALTV‘𝑈)) = (Base‘(RngCatALTV‘𝑈))
267ad3antrrr 730 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈𝑉)
27 eqid 2729 . . 3 (comp‘(RngCatALTV‘𝑈)) = (comp‘(RngCatALTV‘𝑈))
28 incom 4168 . . . . . . . 8 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
29 ringrng 20205 . . . . . . . . . . 11 (𝑥 ∈ Ring → 𝑥 ∈ Rng)
3029a1i 11 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ Ring → 𝑥 ∈ Rng))
3130ssrdv 3949 . . . . . . . . 9 (𝜑 → Ring ⊆ Rng)
32 sslin 4202 . . . . . . . . 9 (Ring ⊆ Rng → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
3331, 32syl 17 . . . . . . . 8 (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
3428, 33eqsstrid 3982 . . . . . . 7 (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng))
3524, 25, 7rngcbasALTV 48247 . . . . . . 7 (𝜑 → (Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng))
3634, 9, 353sstr4d 3999 . . . . . 6 (𝜑𝑅 ⊆ (Base‘(RngCatALTV‘𝑈)))
3736sselda 3943 . . . . 5 ((𝜑𝑥𝑅) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈)))
3837adantr 480 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈)))
3938adantr 480 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈)))
4036sseld 3942 . . . . . . . 8 (𝜑 → (𝑦𝑅𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4140adantr 480 . . . . . . 7 ((𝜑𝑥𝑅) → (𝑦𝑅𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4241com12 32 . . . . . 6 (𝑦𝑅 → ((𝜑𝑥𝑅) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4342adantr 480 . . . . 5 ((𝑦𝑅𝑧𝑅) → ((𝜑𝑥𝑅) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4443impcom 407 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))
4544adantr 480 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))
4636sseld 3942 . . . . . . 7 (𝜑 → (𝑧𝑅𝑧 ∈ (Base‘(RngCatALTV‘𝑈))))
4746adantr 480 . . . . . 6 ((𝜑𝑥𝑅) → (𝑧𝑅𝑧 ∈ (Base‘(RngCatALTV‘𝑈))))
4847adantld 490 . . . . 5 ((𝜑𝑥𝑅) → ((𝑦𝑅𝑧𝑅) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈))))
4948imp 406 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))
5049adantr 480 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))
51 rhmisrnghm 20400 . . . . . . 7 (𝑓 ∈ (𝑥 RingHom 𝑦) → 𝑓 ∈ (𝑥 RngHom 𝑦))
5213, 51biimtrdi 253 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓 ∈ (𝑥 RngHom 𝑦)))
5352com12 32 . . . . 5 (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑓 ∈ (𝑥 RngHom 𝑦)))
5453adantr 480 . . . 4 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑓 ∈ (𝑥 RngHom 𝑦)))
5554impcom 407 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RngHom 𝑦))
56 rhmisrnghm 20400 . . . . . 6 (𝑔 ∈ (𝑦 RingHom 𝑧) → 𝑔 ∈ (𝑦 RngHom 𝑧))
5718, 56biimtrdi 253 . . . . 5 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔 ∈ (𝑦 RngHom 𝑧)))
5857adantld 490 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RngHom 𝑧)))
5958imp 406 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RngHom 𝑧))
6024, 25, 26, 27, 39, 45, 50, 55, 59rngccoALTV 48252 . 2 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) = (𝑔𝑓))
617, 8, 9, 10rhmsubcALTVlem2 48263 . . . 4 ((𝜑𝑥𝑅𝑧𝑅) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
622, 4, 15, 61syl3anc 1373 . . 3 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
6362adantr 480 . 2 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
6423, 60, 633eltr4d 2843 1 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3910  wss 3911  cop 4591   × cxp 5629  cres 5633  ccom 5635  cfv 6499  (class class class)co 7369  Basecbs 17155  compcco 17208  Rngcrng 20072  Ringcrg 20153   RngHom crnghm 20354   RingHom crh 20389  RngCatALTVcrngcALTV 48244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-hom 17220  df-cco 17221  df-0g 17380  df-mgm 18549  df-mgmhm 18601  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-grp 18850  df-minusg 18851  df-ghm 19127  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-rnghm 20356  df-rhm 20392  df-rngcALTV 48245
This theorem is referenced by:  rhmsubcALTV  48266
  Copyright terms: Public domain W3C validator