Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubcALTVlem4 Structured version   Visualization version   GIF version

Theorem rhmsubcALTVlem4 47120
Description: Lemma 4 for rhmsubcALTV 47121. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcrescrhmALTV.u (𝜑𝑈𝑉)
rngcrescrhmALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcrescrhmALTV.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhmALTV.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubcALTVlem4 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑦,𝑈   𝑦,𝑉   𝜑,𝑦   𝑧,𝑅,𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑅(𝑓,𝑔)   𝑈(𝑥,𝑧,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑉(𝑥,𝑧,𝑓,𝑔)

Proof of Theorem rhmsubcALTVlem4
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((𝜑𝑥𝑅) → 𝜑)
21adantr 480 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝜑)
3 simpr 484 . . . . . . . 8 ((𝜑𝑥𝑅) → 𝑥𝑅)
43adantr 480 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑥𝑅)
5 simpl 482 . . . . . . . 8 ((𝑦𝑅𝑧𝑅) → 𝑦𝑅)
65adantl 481 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑦𝑅)
7 rngcrescrhmALTV.u . . . . . . . 8 (𝜑𝑈𝑉)
8 rngcrescrhmALTV.c . . . . . . . 8 𝐶 = (RngCatALTV‘𝑈)
9 rngcrescrhmALTV.r . . . . . . . 8 (𝜑𝑅 = (Ring ∩ 𝑈))
10 rngcrescrhmALTV.h . . . . . . . 8 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
117, 8, 9, 10rhmsubcALTVlem2 47118 . . . . . . 7 ((𝜑𝑥𝑅𝑦𝑅) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦))
122, 4, 6, 11syl3anc 1370 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦))
1312eleq2d 2818 . . . . 5 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥 RingHom 𝑦)))
14 simpr 484 . . . . . . . 8 ((𝑦𝑅𝑧𝑅) → 𝑧𝑅)
1514adantl 481 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑧𝑅)
167, 8, 9, 10rhmsubcALTVlem2 47118 . . . . . . 7 ((𝜑𝑦𝑅𝑧𝑅) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
172, 6, 15, 16syl3anc 1370 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
1817eleq2d 2818 . . . . 5 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑦 RingHom 𝑧)))
1913, 18anbi12d 630 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ↔ (𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧))))
20 rhmco 20399 . . . . 5 ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (𝑥 RingHom 𝑦)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
2120ancoms 458 . . . 4 ((𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
2219, 21syl6bi 253 . . 3 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧)))
2322imp 406 . 2 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
24 eqid 2731 . . 3 (RngCatALTV‘𝑈) = (RngCatALTV‘𝑈)
25 eqid 2731 . . 3 (Base‘(RngCatALTV‘𝑈)) = (Base‘(RngCatALTV‘𝑈))
267ad3antrrr 727 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈𝑉)
27 eqid 2731 . . 3 (comp‘(RngCatALTV‘𝑈)) = (comp‘(RngCatALTV‘𝑈))
28 incom 4201 . . . . . . . 8 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
29 ringrng 20180 . . . . . . . . . . 11 (𝑥 ∈ Ring → 𝑥 ∈ Rng)
3029a1i 11 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ Ring → 𝑥 ∈ Rng))
3130ssrdv 3988 . . . . . . . . 9 (𝜑 → Ring ⊆ Rng)
32 sslin 4234 . . . . . . . . 9 (Ring ⊆ Rng → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
3331, 32syl 17 . . . . . . . 8 (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
3428, 33eqsstrid 4030 . . . . . . 7 (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng))
3524, 25, 7rngcbasALTV 47102 . . . . . . 7 (𝜑 → (Base‘(RngCatALTV‘𝑈)) = (𝑈 ∩ Rng))
3634, 9, 353sstr4d 4029 . . . . . 6 (𝜑𝑅 ⊆ (Base‘(RngCatALTV‘𝑈)))
3736sselda 3982 . . . . 5 ((𝜑𝑥𝑅) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈)))
3837adantr 480 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈)))
3938adantr 480 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 ∈ (Base‘(RngCatALTV‘𝑈)))
4036sseld 3981 . . . . . . . 8 (𝜑 → (𝑦𝑅𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4140adantr 480 . . . . . . 7 ((𝜑𝑥𝑅) → (𝑦𝑅𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4241com12 32 . . . . . 6 (𝑦𝑅 → ((𝜑𝑥𝑅) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4342adantr 480 . . . . 5 ((𝑦𝑅𝑧𝑅) → ((𝜑𝑥𝑅) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈))))
4443impcom 407 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))
4544adantr 480 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦 ∈ (Base‘(RngCatALTV‘𝑈)))
4636sseld 3981 . . . . . . 7 (𝜑 → (𝑧𝑅𝑧 ∈ (Base‘(RngCatALTV‘𝑈))))
4746adantr 480 . . . . . 6 ((𝜑𝑥𝑅) → (𝑧𝑅𝑧 ∈ (Base‘(RngCatALTV‘𝑈))))
4847adantld 490 . . . . 5 ((𝜑𝑥𝑅) → ((𝑦𝑅𝑧𝑅) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈))))
4948imp 406 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))
5049adantr 480 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧 ∈ (Base‘(RngCatALTV‘𝑈)))
51 rhmisrnghm 20378 . . . . . . 7 (𝑓 ∈ (𝑥 RingHom 𝑦) → 𝑓 ∈ (𝑥 RngHom 𝑦))
5213, 51syl6bi 253 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓 ∈ (𝑥 RngHom 𝑦)))
5352com12 32 . . . . 5 (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑓 ∈ (𝑥 RngHom 𝑦)))
5453adantr 480 . . . 4 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑓 ∈ (𝑥 RngHom 𝑦)))
5554impcom 407 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RngHom 𝑦))
56 rhmisrnghm 20378 . . . . . 6 (𝑔 ∈ (𝑦 RingHom 𝑧) → 𝑔 ∈ (𝑦 RngHom 𝑧))
5718, 56syl6bi 253 . . . . 5 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔 ∈ (𝑦 RngHom 𝑧)))
5857adantld 490 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RngHom 𝑧)))
5958imp 406 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RngHom 𝑧))
6024, 25, 26, 27, 39, 45, 50, 55, 59rngccoALTV 47107 . 2 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) = (𝑔𝑓))
617, 8, 9, 10rhmsubcALTVlem2 47118 . . . 4 ((𝜑𝑥𝑅𝑧𝑅) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
622, 4, 15, 61syl3anc 1370 . . 3 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
6362adantr 480 . 2 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
6423, 60, 633eltr4d 2847 1 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  cin 3947  wss 3948  cop 4634   × cxp 5674  cres 5678  ccom 5680  cfv 6543  (class class class)co 7412  Basecbs 17151  compcco 17216  Rngcrng 20053  Ringcrg 20134   RngHom crnghm 20332   RingHom crh 20367  RngCatALTVcrngcALTV 47099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-hom 17228  df-cco 17229  df-0g 17394  df-mgm 18571  df-mgmhm 18623  df-sgrp 18650  df-mnd 18666  df-mhm 18711  df-grp 18864  df-minusg 18865  df-ghm 19135  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-ring 20136  df-rnghm 20334  df-rhm 20370  df-rngcALTV 47100
This theorem is referenced by:  rhmsubcALTV  47121
  Copyright terms: Public domain W3C validator