| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubcALTV | Structured version Visualization version GIF version | ||
| Description: According to df-subc 17750, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17778 and subcss2 17781). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rngcrescrhmALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcrescrhmALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
| rngcrescrhmALTV.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
| rngcrescrhmALTV.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
| Ref | Expression |
|---|---|
| rhmsubcALTV | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCatALTV‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhmALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 2 | rngcrescrhmALTV.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
| 3 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (Rng ∩ 𝑈) = (Rng ∩ 𝑈)) | |
| 4 | 1, 2, 3 | rhmsscrnghm 20550 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHom ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
| 5 | rngcrescrhmALTV.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))) |
| 7 | eqid 2729 | . . . 4 ⊢ (RngCatALTV‘𝑈) = (RngCatALTV‘𝑈) | |
| 8 | eqid 2729 | . . . 4 ⊢ (Rng ∩ 𝑈) = (Rng ∩ 𝑈) | |
| 9 | eqid 2729 | . . . 4 ⊢ (Homf ‘(RngCatALTV‘𝑈)) = (Homf ‘(RngCatALTV‘𝑈)) | |
| 10 | 7, 8, 1, 9 | rngchomrnghmresALTV 48240 | . . 3 ⊢ (𝜑 → (Homf ‘(RngCatALTV‘𝑈)) = ( RngHom ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
| 11 | 4, 6, 10 | 3brtr4d 5134 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘(RngCatALTV‘𝑈))) |
| 12 | rngcrescrhmALTV.c | . . . . 5 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
| 13 | 1, 12, 2, 5 | rhmsubcALTVlem3 48244 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
| 14 | 1, 12, 2, 5 | rhmsubcALTVlem4 48245 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 15 | 14 | ralrimivva 3178 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 16 | 15 | ralrimivva 3178 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 17 | 13, 16 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
| 18 | 17 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑅 (((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
| 19 | eqid 2729 | . . 3 ⊢ (Id‘(RngCatALTV‘𝑈)) = (Id‘(RngCatALTV‘𝑈)) | |
| 20 | eqid 2729 | . . 3 ⊢ (comp‘(RngCatALTV‘𝑈)) = (comp‘(RngCatALTV‘𝑈)) | |
| 21 | 7 | rngccatALTV 48234 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (RngCatALTV‘𝑈) ∈ Cat) |
| 22 | 1, 21 | syl 17 | . . 3 ⊢ (𝜑 → (RngCatALTV‘𝑈) ∈ Cat) |
| 23 | 1, 12, 2, 5 | rhmsubcALTVlem1 48242 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
| 24 | 9, 19, 20, 22, 23 | issubc2 17774 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘(RngCatALTV‘𝑈)) ↔ (𝐻 ⊆cat (Homf ‘(RngCatALTV‘𝑈)) ∧ ∀𝑥 ∈ 𝑅 (((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
| 25 | 11, 18, 24 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCatALTV‘𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3910 〈cop 4591 class class class wbr 5102 × cxp 5629 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 compcco 17208 Catccat 17601 Idccid 17602 Homf chomf 17603 ⊆cat cssc 17745 Subcatcsubc 17747 Rngcrng 20037 Ringcrg 20118 RngHom crnghm 20319 RingHom crh 20354 RngCatALTVcrngcALTV 48224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-hom 17220 df-cco 17221 df-0g 17380 df-cat 17605 df-cid 17606 df-homf 17607 df-ssc 17748 df-subc 17750 df-mgm 18543 df-mgmhm 18595 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-grp 18844 df-minusg 18845 df-ghm 19121 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-rnghm 20321 df-rhm 20357 df-rngcALTV 48225 |
| This theorem is referenced by: rhmsubcALTVcat 48247 |
| Copyright terms: Public domain | W3C validator |