Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubcALTV | Structured version Visualization version GIF version |
Description: According to df-subc 17524, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17555 and subcss2 17558). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngcrescrhmALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcrescrhmALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngcrescrhmALTV.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
rngcrescrhmALTV.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
Ref | Expression |
---|---|
rhmsubcALTV | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCatALTV‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcrescrhmALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
2 | rngcrescrhmALTV.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
3 | eqidd 2739 | . . . 4 ⊢ (𝜑 → (Rng ∩ 𝑈) = (Rng ∩ 𝑈)) | |
4 | 1, 2, 3 | rhmsscrnghm 45584 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHomo ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
5 | rngcrescrhmALTV.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))) |
7 | eqid 2738 | . . . 4 ⊢ (RngCatALTV‘𝑈) = (RngCatALTV‘𝑈) | |
8 | eqid 2738 | . . . 4 ⊢ (Rng ∩ 𝑈) = (Rng ∩ 𝑈) | |
9 | eqid 2738 | . . . 4 ⊢ (Homf ‘(RngCatALTV‘𝑈)) = (Homf ‘(RngCatALTV‘𝑈)) | |
10 | 7, 8, 1, 9 | rngchomrnghmresALTV 45554 | . . 3 ⊢ (𝜑 → (Homf ‘(RngCatALTV‘𝑈)) = ( RngHomo ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
11 | 4, 6, 10 | 3brtr4d 5106 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘(RngCatALTV‘𝑈))) |
12 | rngcrescrhmALTV.c | . . . . 5 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
13 | 1, 12, 2, 5 | rhmsubcALTVlem3 45664 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
14 | 1, 12, 2, 5 | rhmsubcALTVlem4 45665 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
15 | 14 | ralrimivva 3123 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
16 | 15 | ralrimivva 3123 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
17 | 13, 16 | jca 512 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
18 | 17 | ralrimiva 3103 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑅 (((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
19 | eqid 2738 | . . 3 ⊢ (Id‘(RngCatALTV‘𝑈)) = (Id‘(RngCatALTV‘𝑈)) | |
20 | eqid 2738 | . . 3 ⊢ (comp‘(RngCatALTV‘𝑈)) = (comp‘(RngCatALTV‘𝑈)) | |
21 | 7 | rngccatALTV 45548 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (RngCatALTV‘𝑈) ∈ Cat) |
22 | 1, 21 | syl 17 | . . 3 ⊢ (𝜑 → (RngCatALTV‘𝑈) ∈ Cat) |
23 | 1, 12, 2, 5 | rhmsubcALTVlem1 45662 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
24 | 9, 19, 20, 22, 23 | issubc2 17551 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘(RngCatALTV‘𝑈)) ↔ (𝐻 ⊆cat (Homf ‘(RngCatALTV‘𝑈)) ∧ ∀𝑥 ∈ 𝑅 (((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
25 | 11, 18, 24 | mpbir2and 710 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCatALTV‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 〈cop 4567 class class class wbr 5074 × cxp 5587 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 compcco 16974 Catccat 17373 Idccid 17374 Homf chomf 17375 ⊆cat cssc 17519 Subcatcsubc 17521 Ringcrg 19783 RingHom crh 19956 Rngcrng 45432 RngHomo crngh 45443 RngCatALTVcrngcALTV 45516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-hom 16986 df-cco 16987 df-0g 17152 df-cat 17377 df-cid 17378 df-homf 17379 df-ssc 17522 df-subc 17524 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-grp 18580 df-minusg 18581 df-ghm 18832 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-rnghom 19959 df-mgmhm 45333 df-rng0 45433 df-rnghomo 45445 df-rngcALTV 45518 |
This theorem is referenced by: rhmsubcALTVcat 45667 |
Copyright terms: Public domain | W3C validator |