![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubcALTV | Structured version Visualization version GIF version |
Description: According to df-subc 17695, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17726 and subcss2 17729). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngcrescrhmALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcrescrhmALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngcrescrhmALTV.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
rngcrescrhmALTV.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
Ref | Expression |
---|---|
rhmsubcALTV | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCatALTV‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcrescrhmALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
2 | rngcrescrhmALTV.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
3 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (Rng ∩ 𝑈) = (Rng ∩ 𝑈)) | |
4 | 1, 2, 3 | rhmsscrnghm 46314 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHomo ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
5 | rngcrescrhmALTV.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))) |
7 | eqid 2736 | . . . 4 ⊢ (RngCatALTV‘𝑈) = (RngCatALTV‘𝑈) | |
8 | eqid 2736 | . . . 4 ⊢ (Rng ∩ 𝑈) = (Rng ∩ 𝑈) | |
9 | eqid 2736 | . . . 4 ⊢ (Homf ‘(RngCatALTV‘𝑈)) = (Homf ‘(RngCatALTV‘𝑈)) | |
10 | 7, 8, 1, 9 | rngchomrnghmresALTV 46284 | . . 3 ⊢ (𝜑 → (Homf ‘(RngCatALTV‘𝑈)) = ( RngHomo ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
11 | 4, 6, 10 | 3brtr4d 5137 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘(RngCatALTV‘𝑈))) |
12 | rngcrescrhmALTV.c | . . . . 5 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
13 | 1, 12, 2, 5 | rhmsubcALTVlem3 46394 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
14 | 1, 12, 2, 5 | rhmsubcALTVlem4 46395 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
15 | 14 | ralrimivva 3197 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
16 | 15 | ralrimivva 3197 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
17 | 13, 16 | jca 512 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
18 | 17 | ralrimiva 3143 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑅 (((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
19 | eqid 2736 | . . 3 ⊢ (Id‘(RngCatALTV‘𝑈)) = (Id‘(RngCatALTV‘𝑈)) | |
20 | eqid 2736 | . . 3 ⊢ (comp‘(RngCatALTV‘𝑈)) = (comp‘(RngCatALTV‘𝑈)) | |
21 | 7 | rngccatALTV 46278 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (RngCatALTV‘𝑈) ∈ Cat) |
22 | 1, 21 | syl 17 | . . 3 ⊢ (𝜑 → (RngCatALTV‘𝑈) ∈ Cat) |
23 | 1, 12, 2, 5 | rhmsubcALTVlem1 46392 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
24 | 9, 19, 20, 22, 23 | issubc2 17722 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘(RngCatALTV‘𝑈)) ↔ (𝐻 ⊆cat (Homf ‘(RngCatALTV‘𝑈)) ∧ ∀𝑥 ∈ 𝑅 (((Id‘(RngCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
25 | 11, 18, 24 | mpbir2and 711 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCatALTV‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ∩ cin 3909 〈cop 4592 class class class wbr 5105 × cxp 5631 ↾ cres 5635 ‘cfv 6496 (class class class)co 7357 compcco 17145 Catccat 17544 Idccid 17545 Homf chomf 17546 ⊆cat cssc 17690 Subcatcsubc 17692 Ringcrg 19964 RingHom crh 20143 Rngcrng 46162 RngHomo crngh 46173 RngCatALTVcrngcALTV 46246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-hom 17157 df-cco 17158 df-0g 17323 df-cat 17548 df-cid 17549 df-homf 17550 df-ssc 17693 df-subc 17695 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-grp 18751 df-minusg 18752 df-ghm 19006 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-rnghom 20146 df-mgmhm 46063 df-rng 46163 df-rnghomo 46175 df-rngcALTV 46248 |
This theorem is referenced by: rhmsubcALTVcat 46397 |
Copyright terms: Public domain | W3C validator |