| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubcALTVlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for rhmsubcALTV 48266. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rngcrescrhmALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcrescrhmALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
| rngcrescrhmALTV.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
| rngcrescrhmALTV.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
| Ref | Expression |
|---|---|
| rhmsubcALTVlem1 | ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) | |
| 2 | ovex 7402 | . . . 4 ⊢ (𝑥 GrpHom 𝑦) ∈ V | |
| 3 | 2 | inex1 5267 | . . 3 ⊢ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦))) ∈ V |
| 4 | 1, 3 | fnmpoi 8028 | . 2 ⊢ (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) Fn (𝑅 × 𝑅) |
| 5 | rngcrescrhmALTV.h | . . . . 5 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))) |
| 7 | dfrhm2 20394 | . . . . . 6 ⊢ RingHom = (𝑥 ∈ Ring, 𝑦 ∈ Ring ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → RingHom = (𝑥 ∈ Ring, 𝑦 ∈ Ring ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦))))) |
| 9 | 8 | reseq1d 5938 | . . . 4 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) = ((𝑥 ∈ Ring, 𝑦 ∈ Ring ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) ↾ (𝑅 × 𝑅))) |
| 10 | rngcrescrhmALTV.r | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
| 11 | inss1 4196 | . . . . . 6 ⊢ (Ring ∩ 𝑈) ⊆ Ring | |
| 12 | 10, 11 | eqsstrdi 3988 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ Ring) |
| 13 | resmpo 7489 | . . . . 5 ⊢ ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → ((𝑥 ∈ Ring, 𝑦 ∈ Ring ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) ↾ (𝑅 × 𝑅)) = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦))))) | |
| 14 | 12, 12, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ Ring, 𝑦 ∈ Ring ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) ↾ (𝑅 × 𝑅)) = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦))))) |
| 15 | 6, 9, 14 | 3eqtrd 2768 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦))))) |
| 16 | 15 | fneq1d 6593 | . 2 ⊢ (𝜑 → (𝐻 Fn (𝑅 × 𝑅) ↔ (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((𝑥 GrpHom 𝑦) ∩ ((mulGrp‘𝑥) MndHom (mulGrp‘𝑦)))) Fn (𝑅 × 𝑅))) |
| 17 | 4, 16 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 × cxp 5629 ↾ cres 5633 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 MndHom cmhm 18690 GrpHom cghm 19126 mulGrpcmgp 20060 Ringcrg 20153 RingHom crh 20389 RngCatALTVcrngcALTV 48244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-mhm 18692 df-ghm 19127 df-mgp 20061 df-ur 20102 df-ring 20155 df-rhm 20392 |
| This theorem is referenced by: rhmsubcALTV 48266 |
| Copyright terms: Public domain | W3C validator |