![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubcALTVlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for rhmsubcALTV 47459. (Contributed by AV, 2-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngcrescrhmALTV.u | β’ (π β π β π) |
rngcrescrhmALTV.c | β’ πΆ = (RngCatALTVβπ) |
rngcrescrhmALTV.r | β’ (π β π = (Ring β© π)) |
rngcrescrhmALTV.h | β’ π» = ( RingHom βΎ (π Γ π )) |
Ref | Expression |
---|---|
rhmsubcALTVlem1 | β’ (π β π» Fn (π Γ π )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 β’ (π₯ β π , π¦ β π β¦ ((π₯ GrpHom π¦) β© ((mulGrpβπ₯) MndHom (mulGrpβπ¦)))) = (π₯ β π , π¦ β π β¦ ((π₯ GrpHom π¦) β© ((mulGrpβπ₯) MndHom (mulGrpβπ¦)))) | |
2 | ovex 7450 | . . . 4 β’ (π₯ GrpHom π¦) β V | |
3 | 2 | inex1 5317 | . . 3 β’ ((π₯ GrpHom π¦) β© ((mulGrpβπ₯) MndHom (mulGrpβπ¦))) β V |
4 | 1, 3 | fnmpoi 8073 | . 2 β’ (π₯ β π , π¦ β π β¦ ((π₯ GrpHom π¦) β© ((mulGrpβπ₯) MndHom (mulGrpβπ¦)))) Fn (π Γ π ) |
5 | rngcrescrhmALTV.h | . . . . 5 β’ π» = ( RingHom βΎ (π Γ π )) | |
6 | 5 | a1i 11 | . . . 4 β’ (π β π» = ( RingHom βΎ (π Γ π ))) |
7 | dfrhm2 20417 | . . . . . 6 β’ RingHom = (π₯ β Ring, π¦ β Ring β¦ ((π₯ GrpHom π¦) β© ((mulGrpβπ₯) MndHom (mulGrpβπ¦)))) | |
8 | 7 | a1i 11 | . . . . 5 β’ (π β RingHom = (π₯ β Ring, π¦ β Ring β¦ ((π₯ GrpHom π¦) β© ((mulGrpβπ₯) MndHom (mulGrpβπ¦))))) |
9 | 8 | reseq1d 5983 | . . . 4 β’ (π β ( RingHom βΎ (π Γ π )) = ((π₯ β Ring, π¦ β Ring β¦ ((π₯ GrpHom π¦) β© ((mulGrpβπ₯) MndHom (mulGrpβπ¦)))) βΎ (π Γ π ))) |
10 | rngcrescrhmALTV.r | . . . . . 6 β’ (π β π = (Ring β© π)) | |
11 | inss1 4228 | . . . . . 6 β’ (Ring β© π) β Ring | |
12 | 10, 11 | eqsstrdi 4032 | . . . . 5 β’ (π β π β Ring) |
13 | resmpo 7538 | . . . . 5 β’ ((π β Ring β§ π β Ring) β ((π₯ β Ring, π¦ β Ring β¦ ((π₯ GrpHom π¦) β© ((mulGrpβπ₯) MndHom (mulGrpβπ¦)))) βΎ (π Γ π )) = (π₯ β π , π¦ β π β¦ ((π₯ GrpHom π¦) β© ((mulGrpβπ₯) MndHom (mulGrpβπ¦))))) | |
14 | 12, 12, 13 | syl2anc 582 | . . . 4 β’ (π β ((π₯ β Ring, π¦ β Ring β¦ ((π₯ GrpHom π¦) β© ((mulGrpβπ₯) MndHom (mulGrpβπ¦)))) βΎ (π Γ π )) = (π₯ β π , π¦ β π β¦ ((π₯ GrpHom π¦) β© ((mulGrpβπ₯) MndHom (mulGrpβπ¦))))) |
15 | 6, 9, 14 | 3eqtrd 2769 | . . 3 β’ (π β π» = (π₯ β π , π¦ β π β¦ ((π₯ GrpHom π¦) β© ((mulGrpβπ₯) MndHom (mulGrpβπ¦))))) |
16 | 15 | fneq1d 6646 | . 2 β’ (π β (π» Fn (π Γ π ) β (π₯ β π , π¦ β π β¦ ((π₯ GrpHom π¦) β© ((mulGrpβπ₯) MndHom (mulGrpβπ¦)))) Fn (π Γ π ))) |
17 | 4, 16 | mpbiri 257 | 1 β’ (π β π» Fn (π Γ π )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β© cin 3944 β wss 3945 Γ cxp 5675 βΎ cres 5679 Fn wfn 6542 βcfv 6547 (class class class)co 7417 β cmpo 7419 MndHom cmhm 18737 GrpHom cghm 19171 mulGrpcmgp 20078 Ringcrg 20177 RingHom crh 20412 RngCatALTVcrngcALTV 47437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-0g 17422 df-mhm 18739 df-ghm 19172 df-mgp 20079 df-ur 20126 df-ring 20179 df-rhm 20415 |
This theorem is referenced by: rhmsubcALTV 47459 |
Copyright terms: Public domain | W3C validator |