MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmsubclem2 Structured version   Visualization version   GIF version

Theorem rhmsubclem2 20621
Description: Lemma 2 for rhmsubc 20624. (Contributed by AV, 2-Mar-2020.)
Hypotheses
Ref Expression
rngcrescrhm.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
rngcrescrhm.c 𝐢 = (RngCatβ€˜π‘ˆ)
rngcrescrhm.r (πœ‘ β†’ 𝑅 = (Ring ∩ π‘ˆ))
rngcrescrhm.h 𝐻 = ( RingHom β†Ύ (𝑅 Γ— 𝑅))
Assertion
Ref Expression
rhmsubclem2 ((πœ‘ ∧ 𝑋 ∈ 𝑅 ∧ π‘Œ ∈ 𝑅) β†’ (π‘‹π»π‘Œ) = (𝑋 RingHom π‘Œ))

Proof of Theorem rhmsubclem2
StepHypRef Expression
1 opelxpi 5709 . . . 4 ((𝑋 ∈ 𝑅 ∧ π‘Œ ∈ 𝑅) β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ (𝑅 Γ— 𝑅))
213adant1 1127 . . 3 ((πœ‘ ∧ 𝑋 ∈ 𝑅 ∧ π‘Œ ∈ 𝑅) β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ (𝑅 Γ— 𝑅))
32fvresd 6911 . 2 ((πœ‘ ∧ 𝑋 ∈ 𝑅 ∧ π‘Œ ∈ 𝑅) β†’ (( RingHom β†Ύ (𝑅 Γ— 𝑅))β€˜βŸ¨π‘‹, π‘ŒβŸ©) = ( RingHom β€˜βŸ¨π‘‹, π‘ŒβŸ©))
4 df-ov 7418 . . 3 (π‘‹π»π‘Œ) = (π»β€˜βŸ¨π‘‹, π‘ŒβŸ©)
5 rngcrescrhm.h . . . 4 𝐻 = ( RingHom β†Ύ (𝑅 Γ— 𝑅))
65fveq1i 6892 . . 3 (π»β€˜βŸ¨π‘‹, π‘ŒβŸ©) = (( RingHom β†Ύ (𝑅 Γ— 𝑅))β€˜βŸ¨π‘‹, π‘ŒβŸ©)
74, 6eqtri 2753 . 2 (π‘‹π»π‘Œ) = (( RingHom β†Ύ (𝑅 Γ— 𝑅))β€˜βŸ¨π‘‹, π‘ŒβŸ©)
8 df-ov 7418 . 2 (𝑋 RingHom π‘Œ) = ( RingHom β€˜βŸ¨π‘‹, π‘ŒβŸ©)
93, 7, 83eqtr4g 2790 1 ((πœ‘ ∧ 𝑋 ∈ 𝑅 ∧ π‘Œ ∈ 𝑅) β†’ (π‘‹π»π‘Œ) = (𝑋 RingHom π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   ∩ cin 3939  βŸ¨cop 4630   Γ— cxp 5670   β†Ύ cres 5674  β€˜cfv 6542  (class class class)co 7415  Ringcrg 20175   RingHom crh 20410  RngCatcrngc 20551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-xp 5678  df-res 5684  df-iota 6494  df-fv 6550  df-ov 7418
This theorem is referenced by:  rhmsubclem3  20622  rhmsubclem4  20623
  Copyright terms: Public domain W3C validator