Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubclem2 Structured version   Visualization version   GIF version

Theorem rhmsubclem2 45533
Description: Lemma 2 for rhmsubc 45536. (Contributed by AV, 2-Mar-2020.)
Hypotheses
Ref Expression
rngcrescrhm.u (𝜑𝑈𝑉)
rngcrescrhm.c 𝐶 = (RngCat‘𝑈)
rngcrescrhm.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhm.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubclem2 ((𝜑𝑋𝑅𝑌𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌))

Proof of Theorem rhmsubclem2
StepHypRef Expression
1 opelxpi 5617 . . . 4 ((𝑋𝑅𝑌𝑅) → ⟨𝑋, 𝑌⟩ ∈ (𝑅 × 𝑅))
213adant1 1128 . . 3 ((𝜑𝑋𝑅𝑌𝑅) → ⟨𝑋, 𝑌⟩ ∈ (𝑅 × 𝑅))
32fvresd 6776 . 2 ((𝜑𝑋𝑅𝑌𝑅) → (( RingHom ↾ (𝑅 × 𝑅))‘⟨𝑋, 𝑌⟩) = ( RingHom ‘⟨𝑋, 𝑌⟩))
4 df-ov 7258 . . 3 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
5 rngcrescrhm.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
65fveq1i 6757 . . 3 (𝐻‘⟨𝑋, 𝑌⟩) = (( RingHom ↾ (𝑅 × 𝑅))‘⟨𝑋, 𝑌⟩)
74, 6eqtri 2766 . 2 (𝑋𝐻𝑌) = (( RingHom ↾ (𝑅 × 𝑅))‘⟨𝑋, 𝑌⟩)
8 df-ov 7258 . 2 (𝑋 RingHom 𝑌) = ( RingHom ‘⟨𝑋, 𝑌⟩)
93, 7, 83eqtr4g 2804 1 ((𝜑𝑋𝑅𝑌𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  cin 3882  cop 4564   × cxp 5578  cres 5582  cfv 6418  (class class class)co 7255  Ringcrg 19698   RingHom crh 19871  RngCatcrngc 45403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-res 5592  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  rhmsubclem3  45534  rhmsubclem4  45535
  Copyright terms: Public domain W3C validator