MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmsubclem2 Structured version   Visualization version   GIF version

Theorem rhmsubclem2 20602
Description: Lemma 2 for rhmsubc 20605. (Contributed by AV, 2-Mar-2020.)
Hypotheses
Ref Expression
rngcrescrhm.u (𝜑𝑈𝑉)
rngcrescrhm.c 𝐶 = (RngCat‘𝑈)
rngcrescrhm.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhm.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubclem2 ((𝜑𝑋𝑅𝑌𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌))

Proof of Theorem rhmsubclem2
StepHypRef Expression
1 opelxpi 5678 . . . 4 ((𝑋𝑅𝑌𝑅) → ⟨𝑋, 𝑌⟩ ∈ (𝑅 × 𝑅))
213adant1 1130 . . 3 ((𝜑𝑋𝑅𝑌𝑅) → ⟨𝑋, 𝑌⟩ ∈ (𝑅 × 𝑅))
32fvresd 6881 . 2 ((𝜑𝑋𝑅𝑌𝑅) → (( RingHom ↾ (𝑅 × 𝑅))‘⟨𝑋, 𝑌⟩) = ( RingHom ‘⟨𝑋, 𝑌⟩))
4 df-ov 7393 . . 3 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
5 rngcrescrhm.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
65fveq1i 6862 . . 3 (𝐻‘⟨𝑋, 𝑌⟩) = (( RingHom ↾ (𝑅 × 𝑅))‘⟨𝑋, 𝑌⟩)
74, 6eqtri 2753 . 2 (𝑋𝐻𝑌) = (( RingHom ↾ (𝑅 × 𝑅))‘⟨𝑋, 𝑌⟩)
8 df-ov 7393 . 2 (𝑋 RingHom 𝑌) = ( RingHom ‘⟨𝑋, 𝑌⟩)
93, 7, 83eqtr4g 2790 1 ((𝜑𝑋𝑅𝑌𝑅) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cin 3916  cop 4598   × cxp 5639  cres 5643  cfv 6514  (class class class)co 7390  Ringcrg 20149   RingHom crh 20385  RngCatcrngc 20532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-res 5653  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  rhmsubclem3  20603  rhmsubclem4  20604
  Copyright terms: Public domain W3C validator