MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmsubclem4 Structured version   Visualization version   GIF version

Theorem rhmsubclem4 20604
Description: Lemma 4 for rhmsubc 20605. (Contributed by AV, 2-Mar-2020.)
Hypotheses
Ref Expression
rngcrescrhm.u (𝜑𝑈𝑉)
rngcrescrhm.c 𝐶 = (RngCat‘𝑈)
rngcrescrhm.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhm.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubclem4 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑦,𝐶   𝑦,𝑈   𝑦,𝑉   𝜑,𝑦   𝑧,𝑅,𝑥,𝑦   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑓,𝑔)   𝐶(𝑥,𝑧,𝑓,𝑔)   𝑅(𝑓,𝑔)   𝑈(𝑧,𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔)   𝑉(𝑥,𝑧,𝑓,𝑔)

Proof of Theorem rhmsubclem4
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((𝜑𝑥𝑅) → 𝜑)
21adantr 480 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝜑)
3 simpr 484 . . . . . . . 8 ((𝜑𝑥𝑅) → 𝑥𝑅)
43adantr 480 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑥𝑅)
5 simpl 482 . . . . . . . 8 ((𝑦𝑅𝑧𝑅) → 𝑦𝑅)
65adantl 481 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑦𝑅)
7 rngcrescrhm.u . . . . . . . 8 (𝜑𝑈𝑉)
8 rngcrescrhm.c . . . . . . . 8 𝐶 = (RngCat‘𝑈)
9 rngcrescrhm.r . . . . . . . 8 (𝜑𝑅 = (Ring ∩ 𝑈))
10 rngcrescrhm.h . . . . . . . 8 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
117, 8, 9, 10rhmsubclem2 20602 . . . . . . 7 ((𝜑𝑥𝑅𝑦𝑅) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦))
122, 4, 6, 11syl3anc 1373 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦))
1312eleq2d 2815 . . . . 5 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥 RingHom 𝑦)))
14 simpr 484 . . . . . . . 8 ((𝑦𝑅𝑧𝑅) → 𝑧𝑅)
1514adantl 481 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑧𝑅)
167, 8, 9, 10rhmsubclem2 20602 . . . . . . 7 ((𝜑𝑦𝑅𝑧𝑅) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
172, 6, 15, 16syl3anc 1373 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
1817eleq2d 2815 . . . . 5 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑦 RingHom 𝑧)))
1913, 18anbi12d 632 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ↔ (𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧))))
20 rhmco 20417 . . . . 5 ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (𝑥 RingHom 𝑦)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
2120ancoms 458 . . . 4 ((𝑓 ∈ (𝑥 RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
2219, 21biimtrdi 253 . . 3 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧)))
2322imp 406 . 2 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
247ad3antrrr 730 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈𝑉)
258eqcomi 2739 . . . 4 (RngCat‘𝑈) = 𝐶
2625fveq2i 6864 . . 3 (comp‘(RngCat‘𝑈)) = (comp‘𝐶)
27 inss2 4204 . . . . . . 7 (Ring ∩ 𝑈) ⊆ 𝑈
289, 27eqsstrdi 3994 . . . . . 6 (𝜑𝑅𝑈)
2928sselda 3949 . . . . 5 ((𝜑𝑥𝑅) → 𝑥𝑈)
3029adantr 480 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑥𝑈)
3130adantr 480 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥𝑈)
3228sseld 3948 . . . . . . 7 (𝜑 → (𝑦𝑅𝑦𝑈))
3332adantrd 491 . . . . . 6 (𝜑 → ((𝑦𝑅𝑧𝑅) → 𝑦𝑈))
3433adantr 480 . . . . 5 ((𝜑𝑥𝑅) → ((𝑦𝑅𝑧𝑅) → 𝑦𝑈))
3534imp 406 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑦𝑈)
3635adantr 480 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦𝑈)
3728sseld 3948 . . . . . . 7 (𝜑 → (𝑧𝑅𝑧𝑈))
3837adantld 490 . . . . . 6 (𝜑 → ((𝑦𝑅𝑧𝑅) → 𝑧𝑈))
3938adantr 480 . . . . 5 ((𝜑𝑥𝑅) → ((𝑦𝑅𝑧𝑅) → 𝑧𝑈))
4039imp 406 . . . 4 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑧𝑈)
4140adantr 480 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧𝑈)
4210oveqi 7403 . . . . . . . . 9 (𝑥𝐻𝑦) = (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦)
434, 6ovresd 7559 . . . . . . . . 9 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) = (𝑥 RingHom 𝑦))
4442, 43eqtrid 2777 . . . . . . . 8 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑥𝐻𝑦) = (𝑥 RingHom 𝑦))
4544eleq2d 2815 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ (𝑥 RingHom 𝑦)))
46 eqid 2730 . . . . . . . 8 (Base‘𝑥) = (Base‘𝑥)
47 eqid 2730 . . . . . . . 8 (Base‘𝑦) = (Base‘𝑦)
4846, 47rhmf 20401 . . . . . . 7 (𝑓 ∈ (𝑥 RingHom 𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
4945, 48biimtrdi 253 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
5049com12 32 . . . . 5 (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
5150adantr 480 . . . 4 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
5251impcom 407 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
5310oveqi 7403 . . . . . . . . 9 (𝑦𝐻𝑧) = (𝑦( RingHom ↾ (𝑅 × 𝑅))𝑧)
54 ovres 7558 . . . . . . . . . 10 ((𝑦𝑅𝑧𝑅) → (𝑦( RingHom ↾ (𝑅 × 𝑅))𝑧) = (𝑦 RingHom 𝑧))
5554adantl 481 . . . . . . . . 9 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑦( RingHom ↾ (𝑅 × 𝑅))𝑧) = (𝑦 RingHom 𝑧))
5653, 55eqtrid 2777 . . . . . . . 8 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
5756eleq2d 2815 . . . . . . 7 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑦 RingHom 𝑧)))
58 eqid 2730 . . . . . . . 8 (Base‘𝑧) = (Base‘𝑧)
5947, 58rhmf 20401 . . . . . . 7 (𝑔 ∈ (𝑦 RingHom 𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
6057, 59biimtrdi 253 . . . . . 6 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
6160com12 32 . . . . 5 (𝑔 ∈ (𝑦𝐻𝑧) → (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
6261adantl 481 . . . 4 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
6362impcom 407 . . 3 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
648, 24, 26, 31, 36, 41, 52, 63rngcco 20543 . 2 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCat‘𝑈))𝑧)𝑓) = (𝑔𝑓))
657, 8, 9, 10rhmsubclem2 20602 . . . 4 ((𝜑𝑥𝑅𝑧𝑅) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
662, 4, 15, 65syl3anc 1373 . . 3 (((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
6766adantr 480 . 2 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
6823, 64, 673eltr4d 2844 1 ((((𝜑𝑥𝑅) ∧ (𝑦𝑅𝑧𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3916  cop 4598   × cxp 5639  cres 5643  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  compcco 17239  Ringcrg 20149   RingHom crh 20385  RngCatcrngc 20532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-hom 17251  df-cco 17252  df-0g 17411  df-resc 17780  df-estrc 18091  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-ghm 19152  df-mgp 20057  df-ur 20098  df-ring 20151  df-rnghm 20352  df-rhm 20388  df-rngc 20533
This theorem is referenced by:  rhmsubc  20605
  Copyright terms: Public domain W3C validator