Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubclem4 Structured version   Visualization version   GIF version

Theorem rhmsubclem4 46461
Description: Lemma 4 for rhmsubc 46462. (Contributed by AV, 2-Mar-2020.)
Hypotheses
Ref Expression
rngcrescrhm.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
rngcrescrhm.c 𝐢 = (RngCatβ€˜π‘ˆ)
rngcrescrhm.r (πœ‘ β†’ 𝑅 = (Ring ∩ π‘ˆ))
rngcrescrhm.h 𝐻 = ( RingHom β†Ύ (𝑅 Γ— 𝑅))
Assertion
Ref Expression
rhmsubclem4 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(RngCatβ€˜π‘ˆ))𝑧)𝑓) ∈ (π‘₯𝐻𝑧))
Distinct variable groups:   π‘₯,𝑅,𝑦   𝑦,𝐢   𝑦,π‘ˆ   𝑦,𝑉   πœ‘,𝑦   𝑧,𝑅,π‘₯,𝑦   π‘₯,π‘ˆ   πœ‘,π‘₯
Allowed substitution hints:   πœ‘(𝑧,𝑓,𝑔)   𝐢(π‘₯,𝑧,𝑓,𝑔)   𝑅(𝑓,𝑔)   π‘ˆ(𝑧,𝑓,𝑔)   𝐻(π‘₯,𝑦,𝑧,𝑓,𝑔)   𝑉(π‘₯,𝑧,𝑓,𝑔)

Proof of Theorem rhmsubclem4
StepHypRef Expression
1 simpl 484 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝑅) β†’ πœ‘)
21adantr 482 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ πœ‘)
3 simpr 486 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝑅) β†’ π‘₯ ∈ 𝑅)
43adantr 482 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ π‘₯ ∈ 𝑅)
5 simpl 484 . . . . . . . 8 ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ 𝑦 ∈ 𝑅)
65adantl 483 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑦 ∈ 𝑅)
7 rngcrescrhm.u . . . . . . . 8 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
8 rngcrescrhm.c . . . . . . . 8 𝐢 = (RngCatβ€˜π‘ˆ)
9 rngcrescrhm.r . . . . . . . 8 (πœ‘ β†’ 𝑅 = (Ring ∩ π‘ˆ))
10 rngcrescrhm.h . . . . . . . 8 𝐻 = ( RingHom β†Ύ (𝑅 Γ— 𝑅))
117, 8, 9, 10rhmsubclem2 46459 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) β†’ (π‘₯𝐻𝑦) = (π‘₯ RingHom 𝑦))
122, 4, 6, 11syl3anc 1372 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (π‘₯𝐻𝑦) = (π‘₯ RingHom 𝑦))
1312eleq2d 2824 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑓 ∈ (π‘₯𝐻𝑦) ↔ 𝑓 ∈ (π‘₯ RingHom 𝑦)))
14 simpr 486 . . . . . . . 8 ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ 𝑧 ∈ 𝑅)
1514adantl 483 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑧 ∈ 𝑅)
167, 8, 9, 10rhmsubclem2 46459 . . . . . . 7 ((πœ‘ ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
172, 6, 15, 16syl3anc 1372 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
1817eleq2d 2824 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑦 RingHom 𝑧)))
1913, 18anbi12d 632 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ ((𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ↔ (𝑓 ∈ (π‘₯ RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧))))
20 rhmco 20180 . . . . 5 ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (π‘₯ RingHom 𝑦)) β†’ (𝑔 ∘ 𝑓) ∈ (π‘₯ RingHom 𝑧))
2120ancoms 460 . . . 4 ((𝑓 ∈ (π‘₯ RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧)) β†’ (𝑔 ∘ 𝑓) ∈ (π‘₯ RingHom 𝑧))
2219, 21syl6bi 253 . . 3 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ ((𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) β†’ (𝑔 ∘ 𝑓) ∈ (π‘₯ RingHom 𝑧)))
2322imp 408 . 2 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (𝑔 ∘ 𝑓) ∈ (π‘₯ RingHom 𝑧))
247ad3antrrr 729 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ π‘ˆ ∈ 𝑉)
258eqcomi 2746 . . . 4 (RngCatβ€˜π‘ˆ) = 𝐢
2625fveq2i 6850 . . 3 (compβ€˜(RngCatβ€˜π‘ˆ)) = (compβ€˜πΆ)
27 inss2 4194 . . . . . . 7 (Ring ∩ π‘ˆ) βŠ† π‘ˆ
289, 27eqsstrdi 4003 . . . . . 6 (πœ‘ β†’ 𝑅 βŠ† π‘ˆ)
2928sselda 3949 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑅) β†’ π‘₯ ∈ π‘ˆ)
3029adantr 482 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ π‘₯ ∈ π‘ˆ)
3130adantr 482 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ π‘₯ ∈ π‘ˆ)
3228sseld 3948 . . . . . . 7 (πœ‘ β†’ (𝑦 ∈ 𝑅 β†’ 𝑦 ∈ π‘ˆ))
3332adantrd 493 . . . . . 6 (πœ‘ β†’ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ 𝑦 ∈ π‘ˆ))
3433adantr 482 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑅) β†’ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ 𝑦 ∈ π‘ˆ))
3534imp 408 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑦 ∈ π‘ˆ)
3635adantr 482 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑦 ∈ π‘ˆ)
3728sseld 3948 . . . . . . 7 (πœ‘ β†’ (𝑧 ∈ 𝑅 β†’ 𝑧 ∈ π‘ˆ))
3837adantld 492 . . . . . 6 (πœ‘ β†’ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ 𝑧 ∈ π‘ˆ))
3938adantr 482 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑅) β†’ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ 𝑧 ∈ π‘ˆ))
4039imp 408 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑧 ∈ π‘ˆ)
4140adantr 482 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑧 ∈ π‘ˆ)
4210oveqi 7375 . . . . . . . . 9 (π‘₯𝐻𝑦) = (π‘₯( RingHom β†Ύ (𝑅 Γ— 𝑅))𝑦)
434, 6ovresd 7526 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (π‘₯( RingHom β†Ύ (𝑅 Γ— 𝑅))𝑦) = (π‘₯ RingHom 𝑦))
4442, 43eqtrid 2789 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (π‘₯𝐻𝑦) = (π‘₯ RingHom 𝑦))
4544eleq2d 2824 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑓 ∈ (π‘₯𝐻𝑦) ↔ 𝑓 ∈ (π‘₯ RingHom 𝑦)))
46 eqid 2737 . . . . . . . 8 (Baseβ€˜π‘₯) = (Baseβ€˜π‘₯)
47 eqid 2737 . . . . . . . 8 (Baseβ€˜π‘¦) = (Baseβ€˜π‘¦)
4846, 47rhmf 20167 . . . . . . 7 (𝑓 ∈ (π‘₯ RingHom 𝑦) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦))
4945, 48syl6bi 253 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑓 ∈ (π‘₯𝐻𝑦) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦)))
5049com12 32 . . . . 5 (𝑓 ∈ (π‘₯𝐻𝑦) β†’ (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦)))
5150adantr 482 . . . 4 ((𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) β†’ (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦)))
5251impcom 409 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦))
5310oveqi 7375 . . . . . . . . 9 (𝑦𝐻𝑧) = (𝑦( RingHom β†Ύ (𝑅 Γ— 𝑅))𝑧)
54 ovres 7525 . . . . . . . . . 10 ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ (𝑦( RingHom β†Ύ (𝑅 Γ— 𝑅))𝑧) = (𝑦 RingHom 𝑧))
5554adantl 483 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑦( RingHom β†Ύ (𝑅 Γ— 𝑅))𝑧) = (𝑦 RingHom 𝑧))
5653, 55eqtrid 2789 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
5756eleq2d 2824 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑦 RingHom 𝑧)))
58 eqid 2737 . . . . . . . 8 (Baseβ€˜π‘§) = (Baseβ€˜π‘§)
5947, 58rhmf 20167 . . . . . . 7 (𝑔 ∈ (𝑦 RingHom 𝑧) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§))
6057, 59syl6bi 253 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑔 ∈ (𝑦𝐻𝑧) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§)))
6160com12 32 . . . . 5 (𝑔 ∈ (𝑦𝐻𝑧) β†’ (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§)))
6261adantl 483 . . . 4 ((𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) β†’ (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§)))
6362impcom 409 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§))
648, 24, 26, 31, 36, 41, 52, 63rngcco 46343 . 2 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(RngCatβ€˜π‘ˆ))𝑧)𝑓) = (𝑔 ∘ 𝑓))
657, 8, 9, 10rhmsubclem2 46459 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ (π‘₯𝐻𝑧) = (π‘₯ RingHom 𝑧))
662, 4, 15, 65syl3anc 1372 . . 3 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (π‘₯𝐻𝑧) = (π‘₯ RingHom 𝑧))
6766adantr 482 . 2 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (π‘₯𝐻𝑧) = (π‘₯ RingHom 𝑧))
6823, 64, 673eltr4d 2853 1 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(RngCatβ€˜π‘ˆ))𝑧)𝑓) ∈ (π‘₯𝐻𝑧))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   ∩ cin 3914  βŸ¨cop 4597   Γ— cxp 5636   β†Ύ cres 5640   ∘ ccom 5642  βŸΆwf 6497  β€˜cfv 6501  (class class class)co 7362  Basecbs 17090  compcco 17152  Ringcrg 19971   RingHom crh 20152  RngCatcrngc 46329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-z 12507  df-dec 12626  df-uz 12771  df-fz 13432  df-struct 17026  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-hom 17164  df-cco 17165  df-0g 17330  df-resc 17701  df-estrc 18017  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-mhm 18608  df-grp 18758  df-ghm 19013  df-mgp 19904  df-ur 19921  df-ring 19973  df-rnghom 20155  df-rnghomo 46259  df-rngc 46331
This theorem is referenced by:  rhmsubc  46462
  Copyright terms: Public domain W3C validator