MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmsubclem4 Structured version   Visualization version   GIF version

Theorem rhmsubclem4 20603
Description: Lemma 4 for rhmsubc 20604. (Contributed by AV, 2-Mar-2020.)
Hypotheses
Ref Expression
rngcrescrhm.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
rngcrescrhm.c 𝐢 = (RngCatβ€˜π‘ˆ)
rngcrescrhm.r (πœ‘ β†’ 𝑅 = (Ring ∩ π‘ˆ))
rngcrescrhm.h 𝐻 = ( RingHom β†Ύ (𝑅 Γ— 𝑅))
Assertion
Ref Expression
rhmsubclem4 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(RngCatβ€˜π‘ˆ))𝑧)𝑓) ∈ (π‘₯𝐻𝑧))
Distinct variable groups:   π‘₯,𝑅,𝑦   𝑦,𝐢   𝑦,π‘ˆ   𝑦,𝑉   πœ‘,𝑦   𝑧,𝑅,π‘₯,𝑦   π‘₯,π‘ˆ   πœ‘,π‘₯
Allowed substitution hints:   πœ‘(𝑧,𝑓,𝑔)   𝐢(π‘₯,𝑧,𝑓,𝑔)   𝑅(𝑓,𝑔)   π‘ˆ(𝑧,𝑓,𝑔)   𝐻(π‘₯,𝑦,𝑧,𝑓,𝑔)   𝑉(π‘₯,𝑧,𝑓,𝑔)

Proof of Theorem rhmsubclem4
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝑅) β†’ πœ‘)
21adantr 480 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ πœ‘)
3 simpr 484 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝑅) β†’ π‘₯ ∈ 𝑅)
43adantr 480 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ π‘₯ ∈ 𝑅)
5 simpl 482 . . . . . . . 8 ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ 𝑦 ∈ 𝑅)
65adantl 481 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑦 ∈ 𝑅)
7 rngcrescrhm.u . . . . . . . 8 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
8 rngcrescrhm.c . . . . . . . 8 𝐢 = (RngCatβ€˜π‘ˆ)
9 rngcrescrhm.r . . . . . . . 8 (πœ‘ β†’ 𝑅 = (Ring ∩ π‘ˆ))
10 rngcrescrhm.h . . . . . . . 8 𝐻 = ( RingHom β†Ύ (𝑅 Γ— 𝑅))
117, 8, 9, 10rhmsubclem2 20601 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) β†’ (π‘₯𝐻𝑦) = (π‘₯ RingHom 𝑦))
122, 4, 6, 11syl3anc 1369 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (π‘₯𝐻𝑦) = (π‘₯ RingHom 𝑦))
1312eleq2d 2814 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑓 ∈ (π‘₯𝐻𝑦) ↔ 𝑓 ∈ (π‘₯ RingHom 𝑦)))
14 simpr 484 . . . . . . . 8 ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ 𝑧 ∈ 𝑅)
1514adantl 481 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑧 ∈ 𝑅)
167, 8, 9, 10rhmsubclem2 20601 . . . . . . 7 ((πœ‘ ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
172, 6, 15, 16syl3anc 1369 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
1817eleq2d 2814 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑦 RingHom 𝑧)))
1913, 18anbi12d 630 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ ((𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ↔ (𝑓 ∈ (π‘₯ RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧))))
20 rhmco 20422 . . . . 5 ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (π‘₯ RingHom 𝑦)) β†’ (𝑔 ∘ 𝑓) ∈ (π‘₯ RingHom 𝑧))
2120ancoms 458 . . . 4 ((𝑓 ∈ (π‘₯ RingHom 𝑦) ∧ 𝑔 ∈ (𝑦 RingHom 𝑧)) β†’ (𝑔 ∘ 𝑓) ∈ (π‘₯ RingHom 𝑧))
2219, 21biimtrdi 252 . . 3 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ ((𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) β†’ (𝑔 ∘ 𝑓) ∈ (π‘₯ RingHom 𝑧)))
2322imp 406 . 2 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (𝑔 ∘ 𝑓) ∈ (π‘₯ RingHom 𝑧))
247ad3antrrr 729 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ π‘ˆ ∈ 𝑉)
258eqcomi 2736 . . . 4 (RngCatβ€˜π‘ˆ) = 𝐢
2625fveq2i 6894 . . 3 (compβ€˜(RngCatβ€˜π‘ˆ)) = (compβ€˜πΆ)
27 inss2 4225 . . . . . . 7 (Ring ∩ π‘ˆ) βŠ† π‘ˆ
289, 27eqsstrdi 4032 . . . . . 6 (πœ‘ β†’ 𝑅 βŠ† π‘ˆ)
2928sselda 3978 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑅) β†’ π‘₯ ∈ π‘ˆ)
3029adantr 480 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ π‘₯ ∈ π‘ˆ)
3130adantr 480 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ π‘₯ ∈ π‘ˆ)
3228sseld 3977 . . . . . . 7 (πœ‘ β†’ (𝑦 ∈ 𝑅 β†’ 𝑦 ∈ π‘ˆ))
3332adantrd 491 . . . . . 6 (πœ‘ β†’ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ 𝑦 ∈ π‘ˆ))
3433adantr 480 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑅) β†’ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ 𝑦 ∈ π‘ˆ))
3534imp 406 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑦 ∈ π‘ˆ)
3635adantr 480 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑦 ∈ π‘ˆ)
3728sseld 3977 . . . . . . 7 (πœ‘ β†’ (𝑧 ∈ 𝑅 β†’ 𝑧 ∈ π‘ˆ))
3837adantld 490 . . . . . 6 (πœ‘ β†’ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ 𝑧 ∈ π‘ˆ))
3938adantr 480 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑅) β†’ ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ 𝑧 ∈ π‘ˆ))
4039imp 406 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑧 ∈ π‘ˆ)
4140adantr 480 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑧 ∈ π‘ˆ)
4210oveqi 7427 . . . . . . . . 9 (π‘₯𝐻𝑦) = (π‘₯( RingHom β†Ύ (𝑅 Γ— 𝑅))𝑦)
434, 6ovresd 7580 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (π‘₯( RingHom β†Ύ (𝑅 Γ— 𝑅))𝑦) = (π‘₯ RingHom 𝑦))
4442, 43eqtrid 2779 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (π‘₯𝐻𝑦) = (π‘₯ RingHom 𝑦))
4544eleq2d 2814 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑓 ∈ (π‘₯𝐻𝑦) ↔ 𝑓 ∈ (π‘₯ RingHom 𝑦)))
46 eqid 2727 . . . . . . . 8 (Baseβ€˜π‘₯) = (Baseβ€˜π‘₯)
47 eqid 2727 . . . . . . . 8 (Baseβ€˜π‘¦) = (Baseβ€˜π‘¦)
4846, 47rhmf 20406 . . . . . . 7 (𝑓 ∈ (π‘₯ RingHom 𝑦) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦))
4945, 48biimtrdi 252 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑓 ∈ (π‘₯𝐻𝑦) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦)))
5049com12 32 . . . . 5 (𝑓 ∈ (π‘₯𝐻𝑦) β†’ (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦)))
5150adantr 480 . . . 4 ((𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) β†’ (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦)))
5251impcom 407 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦))
5310oveqi 7427 . . . . . . . . 9 (𝑦𝐻𝑧) = (𝑦( RingHom β†Ύ (𝑅 Γ— 𝑅))𝑧)
54 ovres 7579 . . . . . . . . . 10 ((𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ (𝑦( RingHom β†Ύ (𝑅 Γ— 𝑅))𝑧) = (𝑦 RingHom 𝑧))
5554adantl 481 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑦( RingHom β†Ύ (𝑅 Γ— 𝑅))𝑧) = (𝑦 RingHom 𝑧))
5653, 55eqtrid 2779 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑦𝐻𝑧) = (𝑦 RingHom 𝑧))
5756eleq2d 2814 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ (𝑦 RingHom 𝑧)))
58 eqid 2727 . . . . . . . 8 (Baseβ€˜π‘§) = (Baseβ€˜π‘§)
5947, 58rhmf 20406 . . . . . . 7 (𝑔 ∈ (𝑦 RingHom 𝑧) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§))
6057, 59biimtrdi 252 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (𝑔 ∈ (𝑦𝐻𝑧) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§)))
6160com12 32 . . . . 5 (𝑔 ∈ (𝑦𝐻𝑧) β†’ (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§)))
6261adantl 481 . . . 4 ((𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) β†’ (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§)))
6362impcom 407 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§))
648, 24, 26, 31, 36, 41, 52, 63rngcco 20542 . 2 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(RngCatβ€˜π‘ˆ))𝑧)𝑓) = (𝑔 ∘ 𝑓))
657, 8, 9, 10rhmsubclem2 20601 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑅 ∧ 𝑧 ∈ 𝑅) β†’ (π‘₯𝐻𝑧) = (π‘₯ RingHom 𝑧))
662, 4, 15, 65syl3anc 1369 . . 3 (((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) β†’ (π‘₯𝐻𝑧) = (π‘₯ RingHom 𝑧))
6766adantr 480 . 2 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (π‘₯𝐻𝑧) = (π‘₯ RingHom 𝑧))
6823, 64, 673eltr4d 2843 1 ((((πœ‘ ∧ π‘₯ ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜(RngCatβ€˜π‘ˆ))𝑧)𝑓) ∈ (π‘₯𝐻𝑧))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099   ∩ cin 3943  βŸ¨cop 4630   Γ— cxp 5670   β†Ύ cres 5674   ∘ ccom 5676  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7414  Basecbs 17165  compcco 17230  Ringcrg 20157   RingHom crh 20390  RngCatcrngc 20531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8716  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-9 12298  df-n0 12489  df-z 12575  df-dec 12694  df-uz 12839  df-fz 13503  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-hom 17242  df-cco 17243  df-0g 17408  df-resc 17779  df-estrc 18098  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-mhm 18725  df-grp 18878  df-ghm 19152  df-mgp 20059  df-ur 20106  df-ring 20159  df-rnghm 20357  df-rhm 20393  df-rngc 20532
This theorem is referenced by:  rhmsubc  20604
  Copyright terms: Public domain W3C validator