Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubc | Structured version Visualization version GIF version |
Description: According to df-subc 17154, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17182 and subcss2 17185). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) |
Ref | Expression |
---|---|
rngcrescrhm.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcrescrhm.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcrescrhm.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
Ref | Expression |
---|---|
rhmsubc | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCat‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcrescrhm.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
2 | rngcrescrhm.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
3 | eqidd 2759 | . . . 4 ⊢ (𝜑 → (Rng ∩ 𝑈) = (Rng ∩ 𝑈)) | |
4 | 1, 2, 3 | rhmsscrnghm 45066 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHomo ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
5 | rngcrescrhm.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))) |
7 | rngcrescrhm.c | . . . . . . 7 ⊢ 𝐶 = (RngCat‘𝑈) | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐶 = (RngCat‘𝑈)) |
9 | 8 | eqcomd 2764 | . . . . 5 ⊢ (𝜑 → (RngCat‘𝑈) = 𝐶) |
10 | 9 | fveq2d 6667 | . . . 4 ⊢ (𝜑 → (Homf ‘(RngCat‘𝑈)) = (Homf ‘𝐶)) |
11 | eqid 2758 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
12 | 7, 11, 1 | rngchomfeqhom 45009 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) |
13 | eqid 2758 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
14 | 7, 11, 1, 13 | rngchomfval 45006 | . . . . 5 ⊢ (𝜑 → (Hom ‘𝐶) = ( RngHomo ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
15 | 7, 11, 1 | rngcbas 45005 | . . . . . . . 8 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
16 | incom 4108 | . . . . . . . 8 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
17 | 15, 16 | eqtrdi 2809 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝐶) = (Rng ∩ 𝑈)) |
18 | 17 | sqxpeqd 5560 | . . . . . 6 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Rng ∩ 𝑈) × (Rng ∩ 𝑈))) |
19 | 18 | reseq2d 5828 | . . . . 5 ⊢ (𝜑 → ( RngHomo ↾ ((Base‘𝐶) × (Base‘𝐶))) = ( RngHomo ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
20 | 14, 19 | eqtrd 2793 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = ( RngHomo ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
21 | 10, 12, 20 | 3eqtrd 2797 | . . 3 ⊢ (𝜑 → (Homf ‘(RngCat‘𝑈)) = ( RngHomo ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
22 | 4, 6, 21 | 3brtr4d 5068 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘(RngCat‘𝑈))) |
23 | 1, 7, 2, 5 | rhmsubclem3 45128 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
24 | 1, 7, 2, 5 | rhmsubclem4 45129 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
25 | 24 | ralrimivva 3120 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
26 | 25 | ralrimivva 3120 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
27 | 23, 26 | jca 515 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
28 | 27 | ralrimiva 3113 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑅 (((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
29 | eqid 2758 | . . 3 ⊢ (Homf ‘(RngCat‘𝑈)) = (Homf ‘(RngCat‘𝑈)) | |
30 | eqid 2758 | . . 3 ⊢ (Id‘(RngCat‘𝑈)) = (Id‘(RngCat‘𝑈)) | |
31 | eqid 2758 | . . 3 ⊢ (comp‘(RngCat‘𝑈)) = (comp‘(RngCat‘𝑈)) | |
32 | eqid 2758 | . . . . 5 ⊢ (RngCat‘𝑈) = (RngCat‘𝑈) | |
33 | 32 | rngccat 45018 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (RngCat‘𝑈) ∈ Cat) |
34 | 1, 33 | syl 17 | . . 3 ⊢ (𝜑 → (RngCat‘𝑈) ∈ Cat) |
35 | 1, 7, 2, 5 | rhmsubclem1 45126 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
36 | 29, 30, 31, 34, 35 | issubc2 17178 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘(RngCat‘𝑈)) ↔ (𝐻 ⊆cat (Homf ‘(RngCat‘𝑈)) ∧ ∀𝑥 ∈ 𝑅 (((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
37 | 22, 28, 36 | mpbir2and 712 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCat‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∩ cin 3859 〈cop 4531 class class class wbr 5036 × cxp 5526 ↾ cres 5530 ‘cfv 6340 (class class class)co 7156 Basecbs 16554 Hom chom 16647 compcco 16648 Catccat 17006 Idccid 17007 Homf chomf 17008 ⊆cat cssc 17149 Subcatcsubc 17151 Ringcrg 19378 RingHom crh 19548 Rngcrng 44914 RngHomo crngh 44925 RngCatcrngc 44997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-pm 8425 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-fz 12953 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-ress 16562 df-plusg 16649 df-hom 16660 df-cco 16661 df-0g 16786 df-cat 17010 df-cid 17011 df-homf 17012 df-ssc 17152 df-resc 17153 df-subc 17154 df-estrc 17452 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-mhm 18035 df-grp 18185 df-minusg 18186 df-ghm 18436 df-cmn 18988 df-abl 18989 df-mgp 19321 df-ur 19333 df-ring 19380 df-rnghom 19551 df-mgmhm 44815 df-rng0 44915 df-rnghomo 44927 df-rngc 44999 |
This theorem is referenced by: rhmsubccat 45131 |
Copyright terms: Public domain | W3C validator |