Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubc | Structured version Visualization version GIF version |
Description: According to df-subc 17441, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17471 and subcss2 17474). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) |
Ref | Expression |
---|---|
rngcrescrhm.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcrescrhm.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcrescrhm.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
Ref | Expression |
---|---|
rhmsubc | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCat‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcrescrhm.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
2 | rngcrescrhm.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
3 | eqidd 2739 | . . . 4 ⊢ (𝜑 → (Rng ∩ 𝑈) = (Rng ∩ 𝑈)) | |
4 | 1, 2, 3 | rhmsscrnghm 45472 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHomo ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
5 | rngcrescrhm.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))) |
7 | rngcrescrhm.c | . . . . . . 7 ⊢ 𝐶 = (RngCat‘𝑈) | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐶 = (RngCat‘𝑈)) |
9 | 8 | eqcomd 2744 | . . . . 5 ⊢ (𝜑 → (RngCat‘𝑈) = 𝐶) |
10 | 9 | fveq2d 6760 | . . . 4 ⊢ (𝜑 → (Homf ‘(RngCat‘𝑈)) = (Homf ‘𝐶)) |
11 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
12 | 7, 11, 1 | rngchomfeqhom 45415 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) |
13 | eqid 2738 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
14 | 7, 11, 1, 13 | rngchomfval 45412 | . . . . 5 ⊢ (𝜑 → (Hom ‘𝐶) = ( RngHomo ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
15 | 7, 11, 1 | rngcbas 45411 | . . . . . . . 8 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
16 | incom 4131 | . . . . . . . 8 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
17 | 15, 16 | eqtrdi 2795 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝐶) = (Rng ∩ 𝑈)) |
18 | 17 | sqxpeqd 5612 | . . . . . 6 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Rng ∩ 𝑈) × (Rng ∩ 𝑈))) |
19 | 18 | reseq2d 5880 | . . . . 5 ⊢ (𝜑 → ( RngHomo ↾ ((Base‘𝐶) × (Base‘𝐶))) = ( RngHomo ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
20 | 14, 19 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = ( RngHomo ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
21 | 10, 12, 20 | 3eqtrd 2782 | . . 3 ⊢ (𝜑 → (Homf ‘(RngCat‘𝑈)) = ( RngHomo ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
22 | 4, 6, 21 | 3brtr4d 5102 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘(RngCat‘𝑈))) |
23 | 1, 7, 2, 5 | rhmsubclem3 45534 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
24 | 1, 7, 2, 5 | rhmsubclem4 45535 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
25 | 24 | ralrimivva 3114 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
26 | 25 | ralrimivva 3114 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
27 | 23, 26 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
28 | 27 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑅 (((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
29 | eqid 2738 | . . 3 ⊢ (Homf ‘(RngCat‘𝑈)) = (Homf ‘(RngCat‘𝑈)) | |
30 | eqid 2738 | . . 3 ⊢ (Id‘(RngCat‘𝑈)) = (Id‘(RngCat‘𝑈)) | |
31 | eqid 2738 | . . 3 ⊢ (comp‘(RngCat‘𝑈)) = (comp‘(RngCat‘𝑈)) | |
32 | eqid 2738 | . . . . 5 ⊢ (RngCat‘𝑈) = (RngCat‘𝑈) | |
33 | 32 | rngccat 45424 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (RngCat‘𝑈) ∈ Cat) |
34 | 1, 33 | syl 17 | . . 3 ⊢ (𝜑 → (RngCat‘𝑈) ∈ Cat) |
35 | 1, 7, 2, 5 | rhmsubclem1 45532 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
36 | 29, 30, 31, 34, 35 | issubc2 17467 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘(RngCat‘𝑈)) ↔ (𝐻 ⊆cat (Homf ‘(RngCat‘𝑈)) ∧ ∀𝑥 ∈ 𝑅 (((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
37 | 22, 28, 36 | mpbir2and 709 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCat‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 〈cop 4564 class class class wbr 5070 × cxp 5578 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Hom chom 16899 compcco 16900 Catccat 17290 Idccid 17291 Homf chomf 17292 ⊆cat cssc 17436 Subcatcsubc 17438 Ringcrg 19698 RingHom crh 19871 Rngcrng 45320 RngHomo crngh 45331 RngCatcrngc 45403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-hom 16912 df-cco 16913 df-0g 17069 df-cat 17294 df-cid 17295 df-homf 17296 df-ssc 17439 df-resc 17440 df-subc 17441 df-estrc 17755 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-minusg 18496 df-ghm 18747 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-rnghom 19874 df-mgmhm 45221 df-rng0 45321 df-rnghomo 45333 df-rngc 45405 |
This theorem is referenced by: rhmsubccat 45537 |
Copyright terms: Public domain | W3C validator |