|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rhmsubc | Structured version Visualization version GIF version | ||
| Description: According to df-subc 17857, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17886 and subcss2 17889). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) | 
| Ref | Expression | 
|---|---|
| rngcrescrhm.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) | 
| rngcrescrhm.c | ⊢ 𝐶 = (RngCat‘𝑈) | 
| rngcrescrhm.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | 
| rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | 
| Ref | Expression | 
|---|---|
| rhmsubc | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCat‘𝑈))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rngcrescrhm.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 2 | rngcrescrhm.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
| 3 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (Rng ∩ 𝑈) = (Rng ∩ 𝑈)) | |
| 4 | 1, 2, 3 | rhmsscrnghm 20666 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHom ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) | 
| 5 | rngcrescrhm.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))) | 
| 7 | rngcrescrhm.c | . . . . . . 7 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐶 = (RngCat‘𝑈)) | 
| 9 | 8 | eqcomd 2742 | . . . . 5 ⊢ (𝜑 → (RngCat‘𝑈) = 𝐶) | 
| 10 | 9 | fveq2d 6909 | . . . 4 ⊢ (𝜑 → (Homf ‘(RngCat‘𝑈)) = (Homf ‘𝐶)) | 
| 11 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 12 | 7, 11, 1 | rngchomfeqhom 20626 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) | 
| 13 | eqid 2736 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 14 | 7, 11, 1, 13 | rngchomfval 20623 | . . . . 5 ⊢ (𝜑 → (Hom ‘𝐶) = ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) | 
| 15 | 7, 11, 1 | rngcbas 20622 | . . . . . . . 8 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) | 
| 16 | incom 4208 | . . . . . . . 8 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
| 17 | 15, 16 | eqtrdi 2792 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝐶) = (Rng ∩ 𝑈)) | 
| 18 | 17 | sqxpeqd 5716 | . . . . . 6 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Rng ∩ 𝑈) × (Rng ∩ 𝑈))) | 
| 19 | 18 | reseq2d 5996 | . . . . 5 ⊢ (𝜑 → ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶))) = ( RngHom ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) | 
| 20 | 14, 19 | eqtrd 2776 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = ( RngHom ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) | 
| 21 | 10, 12, 20 | 3eqtrd 2780 | . . 3 ⊢ (𝜑 → (Homf ‘(RngCat‘𝑈)) = ( RngHom ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) | 
| 22 | 4, 6, 21 | 3brtr4d 5174 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘(RngCat‘𝑈))) | 
| 23 | 1, 7, 2, 5 | rhmsubclem3 20688 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) | 
| 24 | 1, 7, 2, 5 | rhmsubclem4 20689 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | 
| 25 | 24 | ralrimivva 3201 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | 
| 26 | 25 | ralrimivva 3201 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) | 
| 27 | 23, 26 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) | 
| 28 | 27 | ralrimiva 3145 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑅 (((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) | 
| 29 | eqid 2736 | . . 3 ⊢ (Homf ‘(RngCat‘𝑈)) = (Homf ‘(RngCat‘𝑈)) | |
| 30 | eqid 2736 | . . 3 ⊢ (Id‘(RngCat‘𝑈)) = (Id‘(RngCat‘𝑈)) | |
| 31 | eqid 2736 | . . 3 ⊢ (comp‘(RngCat‘𝑈)) = (comp‘(RngCat‘𝑈)) | |
| 32 | eqid 2736 | . . . . 5 ⊢ (RngCat‘𝑈) = (RngCat‘𝑈) | |
| 33 | 32 | rngccat 20635 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (RngCat‘𝑈) ∈ Cat) | 
| 34 | 1, 33 | syl 17 | . . 3 ⊢ (𝜑 → (RngCat‘𝑈) ∈ Cat) | 
| 35 | 1, 7, 2, 5 | rhmsubclem1 20686 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) | 
| 36 | 29, 30, 31, 34, 35 | issubc2 17882 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘(RngCat‘𝑈)) ↔ (𝐻 ⊆cat (Homf ‘(RngCat‘𝑈)) ∧ ∀𝑥 ∈ 𝑅 (((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) | 
| 37 | 22, 28, 36 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCat‘𝑈))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∩ cin 3949 〈cop 4631 class class class wbr 5142 × cxp 5682 ↾ cres 5686 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 Hom chom 17309 compcco 17310 Catccat 17708 Idccid 17709 Homf chomf 17710 ⊆cat cssc 17852 Subcatcsubc 17854 Rngcrng 20150 Ringcrg 20231 RngHom crnghm 20435 RingHom crh 20470 RngCatcrngc 20617 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-hom 17322 df-cco 17323 df-0g 17487 df-cat 17712 df-cid 17713 df-homf 17714 df-ssc 17855 df-resc 17856 df-subc 17857 df-estrc 18168 df-mgm 18654 df-mgmhm 18706 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-grp 18955 df-minusg 18956 df-ghm 19232 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-rnghm 20437 df-rhm 20473 df-rngc 20618 | 
| This theorem is referenced by: rhmsubccat 20691 | 
| Copyright terms: Public domain | W3C validator |