| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rhmsubc | Structured version Visualization version GIF version | ||
| Description: According to df-subc 17716, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17744 and subcss2 17747). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) |
| Ref | Expression |
|---|---|
| rngcrescrhm.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcrescrhm.c | ⊢ 𝐶 = (RngCat‘𝑈) |
| rngcrescrhm.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
| rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
| Ref | Expression |
|---|---|
| rhmsubc | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCat‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhm.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 2 | rngcrescrhm.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
| 3 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (Rng ∩ 𝑈) = (Rng ∩ 𝑈)) | |
| 4 | 1, 2, 3 | rhmsscrnghm 20578 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHom ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
| 5 | rngcrescrhm.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))) |
| 7 | rngcrescrhm.c | . . . . . . 7 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐶 = (RngCat‘𝑈)) |
| 9 | 8 | eqcomd 2737 | . . . . 5 ⊢ (𝜑 → (RngCat‘𝑈) = 𝐶) |
| 10 | 9 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (Homf ‘(RngCat‘𝑈)) = (Homf ‘𝐶)) |
| 11 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 12 | 7, 11, 1 | rngchomfeqhom 20538 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) |
| 13 | eqid 2731 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 14 | 7, 11, 1, 13 | rngchomfval 20535 | . . . . 5 ⊢ (𝜑 → (Hom ‘𝐶) = ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 15 | 7, 11, 1 | rngcbas 20534 | . . . . . . . 8 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
| 16 | incom 4159 | . . . . . . . 8 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
| 17 | 15, 16 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝐶) = (Rng ∩ 𝑈)) |
| 18 | 17 | sqxpeqd 5648 | . . . . . 6 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Rng ∩ 𝑈) × (Rng ∩ 𝑈))) |
| 19 | 18 | reseq2d 5928 | . . . . 5 ⊢ (𝜑 → ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶))) = ( RngHom ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
| 20 | 14, 19 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = ( RngHom ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
| 21 | 10, 12, 20 | 3eqtrd 2770 | . . 3 ⊢ (𝜑 → (Homf ‘(RngCat‘𝑈)) = ( RngHom ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
| 22 | 4, 6, 21 | 3brtr4d 5123 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘(RngCat‘𝑈))) |
| 23 | 1, 7, 2, 5 | rhmsubclem3 20600 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
| 24 | 1, 7, 2, 5 | rhmsubclem4 20601 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 25 | 24 | ralrimivva 3175 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 26 | 25 | ralrimivva 3175 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 27 | 23, 26 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
| 28 | 27 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑅 (((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
| 29 | eqid 2731 | . . 3 ⊢ (Homf ‘(RngCat‘𝑈)) = (Homf ‘(RngCat‘𝑈)) | |
| 30 | eqid 2731 | . . 3 ⊢ (Id‘(RngCat‘𝑈)) = (Id‘(RngCat‘𝑈)) | |
| 31 | eqid 2731 | . . 3 ⊢ (comp‘(RngCat‘𝑈)) = (comp‘(RngCat‘𝑈)) | |
| 32 | eqid 2731 | . . . . 5 ⊢ (RngCat‘𝑈) = (RngCat‘𝑈) | |
| 33 | 32 | rngccat 20547 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (RngCat‘𝑈) ∈ Cat) |
| 34 | 1, 33 | syl 17 | . . 3 ⊢ (𝜑 → (RngCat‘𝑈) ∈ Cat) |
| 35 | 1, 7, 2, 5 | rhmsubclem1 20598 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
| 36 | 29, 30, 31, 34, 35 | issubc2 17740 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘(RngCat‘𝑈)) ↔ (𝐻 ⊆cat (Homf ‘(RngCat‘𝑈)) ∧ ∀𝑥 ∈ 𝑅 (((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
| 37 | 22, 28, 36 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCat‘𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∩ cin 3901 〈cop 4582 class class class wbr 5091 × cxp 5614 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Hom chom 17169 compcco 17170 Catccat 17567 Idccid 17568 Homf chomf 17569 ⊆cat cssc 17711 Subcatcsubc 17713 Rngcrng 20068 Ringcrg 20149 RngHom crnghm 20350 RingHom crh 20385 RngCatcrngc 20529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-hom 17182 df-cco 17183 df-0g 17342 df-cat 17571 df-cid 17572 df-homf 17573 df-ssc 17714 df-resc 17715 df-subc 17716 df-estrc 18026 df-mgm 18545 df-mgmhm 18597 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-grp 18846 df-minusg 18847 df-ghm 19123 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-rnghm 20352 df-rhm 20388 df-rngc 20530 |
| This theorem is referenced by: rhmsubccat 20603 |
| Copyright terms: Public domain | W3C validator |