| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rhmsubc | Structured version Visualization version GIF version | ||
| Description: According to df-subc 17737, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17765 and subcss2 17768). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020.) |
| Ref | Expression |
|---|---|
| rngcrescrhm.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcrescrhm.c | ⊢ 𝐶 = (RngCat‘𝑈) |
| rngcrescrhm.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
| rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
| Ref | Expression |
|---|---|
| rhmsubc | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCat‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhm.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 2 | rngcrescrhm.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
| 3 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (Rng ∩ 𝑈) = (Rng ∩ 𝑈)) | |
| 4 | 1, 2, 3 | rhmsscrnghm 20568 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHom ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
| 5 | rngcrescrhm.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))) |
| 7 | rngcrescrhm.c | . . . . . . 7 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐶 = (RngCat‘𝑈)) |
| 9 | 8 | eqcomd 2735 | . . . . 5 ⊢ (𝜑 → (RngCat‘𝑈) = 𝐶) |
| 10 | 9 | fveq2d 6830 | . . . 4 ⊢ (𝜑 → (Homf ‘(RngCat‘𝑈)) = (Homf ‘𝐶)) |
| 11 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 12 | 7, 11, 1 | rngchomfeqhom 20528 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) |
| 13 | eqid 2729 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 14 | 7, 11, 1, 13 | rngchomfval 20525 | . . . . 5 ⊢ (𝜑 → (Hom ‘𝐶) = ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 15 | 7, 11, 1 | rngcbas 20524 | . . . . . . . 8 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
| 16 | incom 4162 | . . . . . . . 8 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
| 17 | 15, 16 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝐶) = (Rng ∩ 𝑈)) |
| 18 | 17 | sqxpeqd 5655 | . . . . . 6 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Rng ∩ 𝑈) × (Rng ∩ 𝑈))) |
| 19 | 18 | reseq2d 5934 | . . . . 5 ⊢ (𝜑 → ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶))) = ( RngHom ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
| 20 | 14, 19 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = ( RngHom ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
| 21 | 10, 12, 20 | 3eqtrd 2768 | . . 3 ⊢ (𝜑 → (Homf ‘(RngCat‘𝑈)) = ( RngHom ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))) |
| 22 | 4, 6, 21 | 3brtr4d 5127 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘(RngCat‘𝑈))) |
| 23 | 1, 7, 2, 5 | rhmsubclem3 20590 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
| 24 | 1, 7, 2, 5 | rhmsubclem4 20591 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 25 | 24 | ralrimivva 3172 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑅) ∧ (𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 26 | 25 | ralrimivva 3172 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 27 | 23, 26 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
| 28 | 27 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑅 (((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
| 29 | eqid 2729 | . . 3 ⊢ (Homf ‘(RngCat‘𝑈)) = (Homf ‘(RngCat‘𝑈)) | |
| 30 | eqid 2729 | . . 3 ⊢ (Id‘(RngCat‘𝑈)) = (Id‘(RngCat‘𝑈)) | |
| 31 | eqid 2729 | . . 3 ⊢ (comp‘(RngCat‘𝑈)) = (comp‘(RngCat‘𝑈)) | |
| 32 | eqid 2729 | . . . . 5 ⊢ (RngCat‘𝑈) = (RngCat‘𝑈) | |
| 33 | 32 | rngccat 20537 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (RngCat‘𝑈) ∈ Cat) |
| 34 | 1, 33 | syl 17 | . . 3 ⊢ (𝜑 → (RngCat‘𝑈) ∈ Cat) |
| 35 | 1, 7, 2, 5 | rhmsubclem1 20588 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
| 36 | 29, 30, 31, 34, 35 | issubc2 17761 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘(RngCat‘𝑈)) ↔ (𝐻 ⊆cat (Homf ‘(RngCat‘𝑈)) ∧ ∀𝑥 ∈ 𝑅 (((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝑅 ∀𝑧 ∈ 𝑅 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(RngCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
| 37 | 22, 28, 36 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘(RngCat‘𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3904 〈cop 4585 class class class wbr 5095 × cxp 5621 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Hom chom 17190 compcco 17191 Catccat 17588 Idccid 17589 Homf chomf 17590 ⊆cat cssc 17732 Subcatcsubc 17734 Rngcrng 20055 Ringcrg 20136 RngHom crnghm 20337 RingHom crh 20372 RngCatcrngc 20519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-hom 17203 df-cco 17204 df-0g 17363 df-cat 17592 df-cid 17593 df-homf 17594 df-ssc 17735 df-resc 17736 df-subc 17737 df-estrc 18047 df-mgm 18532 df-mgmhm 18584 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-grp 18833 df-minusg 18834 df-ghm 19110 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-rnghm 20339 df-rhm 20375 df-rngc 20520 |
| This theorem is referenced by: rhmsubccat 20593 |
| Copyright terms: Public domain | W3C validator |