Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubclem3 Structured version   Visualization version   GIF version

Theorem rhmsubclem3 44755
 Description: Lemma 3 for rhmsubc 44757. (Contributed by AV, 2-Mar-2020.)
Hypotheses
Ref Expression
rngcrescrhm.u (𝜑𝑈𝑉)
rngcrescrhm.c 𝐶 = (RngCat‘𝑈)
rngcrescrhm.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhm.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubclem3 ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑈(𝑥)   𝐻(𝑥)   𝑉(𝑥)

Proof of Theorem rhmsubclem3
StepHypRef Expression
1 rngcrescrhm.r . . . . . 6 (𝜑𝑅 = (Ring ∩ 𝑈))
21eleq2d 2875 . . . . 5 (𝜑 → (𝑥𝑅𝑥 ∈ (Ring ∩ 𝑈)))
3 elinel1 4122 . . . . 5 (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring)
42, 3syl6bi 256 . . . 4 (𝜑 → (𝑥𝑅𝑥 ∈ Ring))
54imp 410 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ Ring)
6 eqid 2798 . . . 4 (Base‘𝑥) = (Base‘𝑥)
76idrhm 19483 . . 3 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
85, 7syl 17 . 2 ((𝜑𝑥𝑅) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
9 rngcrescrhm.c . . 3 𝐶 = (RngCat‘𝑈)
10 eqid 2798 . . 3 (Base‘𝐶) = (Base‘𝐶)
119eqcomi 2807 . . . 4 (RngCat‘𝑈) = 𝐶
1211fveq2i 6649 . . 3 (Id‘(RngCat‘𝑈)) = (Id‘𝐶)
13 rngcrescrhm.u . . . 4 (𝜑𝑈𝑉)
1413adantr 484 . . 3 ((𝜑𝑥𝑅) → 𝑈𝑉)
15 incom 4128 . . . . . 6 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
16 ringssrng 44547 . . . . . . 7 Ring ⊆ Rng
17 sslin 4161 . . . . . . 7 (Ring ⊆ Rng → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
1816, 17mp1i 13 . . . . . 6 (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
1915, 18eqsstrid 3963 . . . . 5 (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng))
209, 10, 13rngcbas 44632 . . . . 5 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng))
2119, 1, 203sstr4d 3962 . . . 4 (𝜑𝑅 ⊆ (Base‘𝐶))
2221sselda 3915 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ (Base‘𝐶))
239, 10, 12, 14, 22, 6rngcid 44646 . 2 ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥)))
24 rngcrescrhm.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
2513, 9, 1, 24rhmsubclem2 44754 . . 3 ((𝜑𝑥𝑅𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
26253anidm23 1418 . 2 ((𝜑𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
278, 23, 263eltr4d 2905 1 ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ∩ cin 3880   ⊆ wss 3881   I cid 5425   × cxp 5518   ↾ cres 5522  ‘cfv 6325  (class class class)co 7136  Basecbs 16478  Idccid 16931  Ringcrg 19294   RingHom crh 19464  Rngcrng 44541  RngCatcrngc 44624 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-9 11698  df-n0 11889  df-z 11973  df-dec 12090  df-uz 12235  df-fz 12889  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-hom 16584  df-cco 16585  df-0g 16710  df-cat 16934  df-cid 16935  df-homf 16936  df-ssc 17075  df-resc 17076  df-subc 17077  df-estrc 17368  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-grp 18101  df-minusg 18102  df-ghm 18352  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-rnghom 19467  df-mgmhm 44442  df-rng0 44542  df-rnghomo 44554  df-rngc 44626 This theorem is referenced by:  rhmsubc  44757
 Copyright terms: Public domain W3C validator