MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmsubclem3 Structured version   Visualization version   GIF version

Theorem rhmsubclem3 20652
Description: Lemma 3 for rhmsubc 20654. (Contributed by AV, 2-Mar-2020.)
Hypotheses
Ref Expression
rngcrescrhm.u (𝜑𝑈𝑉)
rngcrescrhm.c 𝐶 = (RngCat‘𝑈)
rngcrescrhm.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhm.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubclem3 ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑈(𝑥)   𝐻(𝑥)   𝑉(𝑥)

Proof of Theorem rhmsubclem3
StepHypRef Expression
1 rngcrescrhm.r . . . . . 6 (𝜑𝑅 = (Ring ∩ 𝑈))
21eleq2d 2821 . . . . 5 (𝜑 → (𝑥𝑅𝑥 ∈ (Ring ∩ 𝑈)))
3 elinel1 4181 . . . . 5 (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring)
42, 3biimtrdi 253 . . . 4 (𝜑 → (𝑥𝑅𝑥 ∈ Ring))
54imp 406 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ Ring)
6 eqid 2736 . . . 4 (Base‘𝑥) = (Base‘𝑥)
76idrhm 20455 . . 3 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
85, 7syl 17 . 2 ((𝜑𝑥𝑅) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
9 rngcrescrhm.c . . 3 𝐶 = (RngCat‘𝑈)
10 eqid 2736 . . 3 (Base‘𝐶) = (Base‘𝐶)
119eqcomi 2745 . . . 4 (RngCat‘𝑈) = 𝐶
1211fveq2i 6884 . . 3 (Id‘(RngCat‘𝑈)) = (Id‘𝐶)
13 rngcrescrhm.u . . . 4 (𝜑𝑈𝑉)
1413adantr 480 . . 3 ((𝜑𝑥𝑅) → 𝑈𝑉)
15 incom 4189 . . . . . 6 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
16 ringssrng 20251 . . . . . . 7 Ring ⊆ Rng
17 sslin 4223 . . . . . . 7 (Ring ⊆ Rng → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
1816, 17mp1i 13 . . . . . 6 (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
1915, 18eqsstrid 4002 . . . . 5 (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng))
209, 10, 13rngcbas 20586 . . . . 5 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng))
2119, 1, 203sstr4d 4019 . . . 4 (𝜑𝑅 ⊆ (Base‘𝐶))
2221sselda 3963 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ (Base‘𝐶))
239, 10, 12, 14, 22, 6rngcid 20600 . 2 ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥)))
24 rngcrescrhm.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
2513, 9, 1, 24rhmsubclem2 20651 . . 3 ((𝜑𝑥𝑅𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
26253anidm23 1423 . 2 ((𝜑𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
278, 23, 263eltr4d 2850 1 ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3930  wss 3931   I cid 5552   × cxp 5657  cres 5661  cfv 6536  (class class class)co 7410  Basecbs 17233  Idccid 17682  Rngcrng 20117  Ringcrg 20198   RingHom crh 20434  RngCatcrngc 20581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-hom 17300  df-cco 17301  df-0g 17460  df-cat 17685  df-cid 17686  df-homf 17687  df-ssc 17828  df-resc 17829  df-subc 17830  df-estrc 18140  df-mgm 18623  df-mgmhm 18675  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-rnghm 20401  df-rhm 20437  df-rngc 20582
This theorem is referenced by:  rhmsubc  20654
  Copyright terms: Public domain W3C validator