MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmsubclem3 Structured version   Visualization version   GIF version

Theorem rhmsubclem3 20602
Description: Lemma 3 for rhmsubc 20604. (Contributed by AV, 2-Mar-2020.)
Hypotheses
Ref Expression
rngcrescrhm.u (𝜑𝑈𝑉)
rngcrescrhm.c 𝐶 = (RngCat‘𝑈)
rngcrescrhm.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhm.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubclem3 ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑈(𝑥)   𝐻(𝑥)   𝑉(𝑥)

Proof of Theorem rhmsubclem3
StepHypRef Expression
1 rngcrescrhm.r . . . . . 6 (𝜑𝑅 = (Ring ∩ 𝑈))
21eleq2d 2817 . . . . 5 (𝜑 → (𝑥𝑅𝑥 ∈ (Ring ∩ 𝑈)))
3 elinel1 4148 . . . . 5 (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring)
42, 3biimtrdi 253 . . . 4 (𝜑 → (𝑥𝑅𝑥 ∈ Ring))
54imp 406 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ Ring)
6 eqid 2731 . . . 4 (Base‘𝑥) = (Base‘𝑥)
76idrhm 20407 . . 3 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
85, 7syl 17 . 2 ((𝜑𝑥𝑅) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
9 rngcrescrhm.c . . 3 𝐶 = (RngCat‘𝑈)
10 eqid 2731 . . 3 (Base‘𝐶) = (Base‘𝐶)
119eqcomi 2740 . . . 4 (RngCat‘𝑈) = 𝐶
1211fveq2i 6825 . . 3 (Id‘(RngCat‘𝑈)) = (Id‘𝐶)
13 rngcrescrhm.u . . . 4 (𝜑𝑈𝑉)
1413adantr 480 . . 3 ((𝜑𝑥𝑅) → 𝑈𝑉)
15 incom 4156 . . . . . 6 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
16 ringssrng 20204 . . . . . . 7 Ring ⊆ Rng
17 sslin 4190 . . . . . . 7 (Ring ⊆ Rng → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
1816, 17mp1i 13 . . . . . 6 (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
1915, 18eqsstrid 3968 . . . . 5 (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng))
209, 10, 13rngcbas 20536 . . . . 5 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng))
2119, 1, 203sstr4d 3985 . . . 4 (𝜑𝑅 ⊆ (Base‘𝐶))
2221sselda 3929 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ (Base‘𝐶))
239, 10, 12, 14, 22, 6rngcid 20550 . 2 ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥)))
24 rngcrescrhm.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
2513, 9, 1, 24rhmsubclem2 20601 . . 3 ((𝜑𝑥𝑅𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
26253anidm23 1423 . 2 ((𝜑𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
278, 23, 263eltr4d 2846 1 ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cin 3896  wss 3897   I cid 5508   × cxp 5612  cres 5616  cfv 6481  (class class class)co 7346  Basecbs 17120  Idccid 17571  Rngcrng 20070  Ringcrg 20151   RingHom crh 20387  RngCatcrngc 20531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-hom 17185  df-cco 17186  df-0g 17345  df-cat 17574  df-cid 17575  df-homf 17576  df-ssc 17717  df-resc 17718  df-subc 17719  df-estrc 18029  df-mgm 18548  df-mgmhm 18600  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-ghm 19125  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-rnghm 20354  df-rhm 20390  df-rngc 20532
This theorem is referenced by:  rhmsubc  20604
  Copyright terms: Public domain W3C validator