![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubclem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for rhmsubc 46941. (Contributed by AV, 2-Mar-2020.) |
Ref | Expression |
---|---|
rngcrescrhm.u | β’ (π β π β π) |
rngcrescrhm.c | β’ πΆ = (RngCatβπ) |
rngcrescrhm.r | β’ (π β π = (Ring β© π)) |
rngcrescrhm.h | β’ π» = ( RingHom βΎ (π Γ π )) |
Ref | Expression |
---|---|
rhmsubclem3 | β’ ((π β§ π₯ β π ) β ((Idβ(RngCatβπ))βπ₯) β (π₯π»π₯)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcrescrhm.r | . . . . . 6 β’ (π β π = (Ring β© π)) | |
2 | 1 | eleq2d 2819 | . . . . 5 β’ (π β (π₯ β π β π₯ β (Ring β© π))) |
3 | elinel1 4194 | . . . . 5 β’ (π₯ β (Ring β© π) β π₯ β Ring) | |
4 | 2, 3 | syl6bi 252 | . . . 4 β’ (π β (π₯ β π β π₯ β Ring)) |
5 | 4 | imp 407 | . . 3 β’ ((π β§ π₯ β π ) β π₯ β Ring) |
6 | eqid 2732 | . . . 4 β’ (Baseβπ₯) = (Baseβπ₯) | |
7 | 6 | idrhm 20260 | . . 3 β’ (π₯ β Ring β ( I βΎ (Baseβπ₯)) β (π₯ RingHom π₯)) |
8 | 5, 7 | syl 17 | . 2 β’ ((π β§ π₯ β π ) β ( I βΎ (Baseβπ₯)) β (π₯ RingHom π₯)) |
9 | rngcrescrhm.c | . . 3 β’ πΆ = (RngCatβπ) | |
10 | eqid 2732 | . . 3 β’ (BaseβπΆ) = (BaseβπΆ) | |
11 | 9 | eqcomi 2741 | . . . 4 β’ (RngCatβπ) = πΆ |
12 | 11 | fveq2i 6891 | . . 3 β’ (Idβ(RngCatβπ)) = (IdβπΆ) |
13 | rngcrescrhm.u | . . . 4 β’ (π β π β π) | |
14 | 13 | adantr 481 | . . 3 β’ ((π β§ π₯ β π ) β π β π) |
15 | incom 4200 | . . . . . 6 β’ (Ring β© π) = (π β© Ring) | |
16 | ringssrng 46642 | . . . . . . 7 β’ Ring β Rng | |
17 | sslin 4233 | . . . . . . 7 β’ (Ring β Rng β (π β© Ring) β (π β© Rng)) | |
18 | 16, 17 | mp1i 13 | . . . . . 6 β’ (π β (π β© Ring) β (π β© Rng)) |
19 | 15, 18 | eqsstrid 4029 | . . . . 5 β’ (π β (Ring β© π) β (π β© Rng)) |
20 | 9, 10, 13 | rngcbas 46816 | . . . . 5 β’ (π β (BaseβπΆ) = (π β© Rng)) |
21 | 19, 1, 20 | 3sstr4d 4028 | . . . 4 β’ (π β π β (BaseβπΆ)) |
22 | 21 | sselda 3981 | . . 3 β’ ((π β§ π₯ β π ) β π₯ β (BaseβπΆ)) |
23 | 9, 10, 12, 14, 22, 6 | rngcid 46830 | . 2 β’ ((π β§ π₯ β π ) β ((Idβ(RngCatβπ))βπ₯) = ( I βΎ (Baseβπ₯))) |
24 | rngcrescrhm.h | . . . 4 β’ π» = ( RingHom βΎ (π Γ π )) | |
25 | 13, 9, 1, 24 | rhmsubclem2 46938 | . . 3 β’ ((π β§ π₯ β π β§ π₯ β π ) β (π₯π»π₯) = (π₯ RingHom π₯)) |
26 | 25 | 3anidm23 1421 | . 2 β’ ((π β§ π₯ β π ) β (π₯π»π₯) = (π₯ RingHom π₯)) |
27 | 8, 23, 26 | 3eltr4d 2848 | 1 β’ ((π β§ π₯ β π ) β ((Idβ(RngCatβπ))βπ₯) β (π₯π»π₯)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β© cin 3946 β wss 3947 I cid 5572 Γ cxp 5673 βΎ cres 5677 βcfv 6540 (class class class)co 7405 Basecbs 17140 Idccid 17605 Ringcrg 20049 RingHom crh 20240 Rngcrng 46634 RngCatcrngc 46808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-hom 17217 df-cco 17218 df-0g 17383 df-cat 17608 df-cid 17609 df-homf 17610 df-ssc 17753 df-resc 17754 df-subc 17755 df-estrc 18070 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-grp 18818 df-minusg 18819 df-ghm 19084 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-rnghom 20243 df-mgmhm 46535 df-rng 46635 df-rnghomo 46670 df-rngc 46810 |
This theorem is referenced by: rhmsubc 46941 |
Copyright terms: Public domain | W3C validator |