| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rhmsubclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for rhmsubc 20609. (Contributed by AV, 2-Mar-2020.) |
| Ref | Expression |
|---|---|
| rngcrescrhm.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcrescrhm.c | ⊢ 𝐶 = (RngCat‘𝑈) |
| rngcrescrhm.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
| rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
| Ref | Expression |
|---|---|
| rhmsubclem3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhm.r | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
| 2 | 1 | eleq2d 2814 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑅 ↔ 𝑥 ∈ (Ring ∩ 𝑈))) |
| 3 | elinel1 4160 | . . . . 5 ⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring) | |
| 4 | 2, 3 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑅 → 𝑥 ∈ Ring)) |
| 5 | 4 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ Ring) |
| 6 | eqid 2729 | . . . 4 ⊢ (Base‘𝑥) = (Base‘𝑥) | |
| 7 | 6 | idrhm 20410 | . . 3 ⊢ (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
| 8 | 5, 7 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
| 9 | rngcrescrhm.c | . . 3 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 10 | eqid 2729 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 11 | 9 | eqcomi 2738 | . . . 4 ⊢ (RngCat‘𝑈) = 𝐶 |
| 12 | 11 | fveq2i 6843 | . . 3 ⊢ (Id‘(RngCat‘𝑈)) = (Id‘𝐶) |
| 13 | rngcrescrhm.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑈 ∈ 𝑉) |
| 15 | incom 4168 | . . . . . 6 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
| 16 | ringssrng 20206 | . . . . . . 7 ⊢ Ring ⊆ Rng | |
| 17 | sslin 4202 | . . . . . . 7 ⊢ (Ring ⊆ Rng → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng)) | |
| 18 | 16, 17 | mp1i 13 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng)) |
| 19 | 15, 18 | eqsstrid 3982 | . . . . 5 ⊢ (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng)) |
| 20 | 9, 10, 13 | rngcbas 20541 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
| 21 | 19, 1, 20 | 3sstr4d 3999 | . . . 4 ⊢ (𝜑 → 𝑅 ⊆ (Base‘𝐶)) |
| 22 | 21 | sselda 3943 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ (Base‘𝐶)) |
| 23 | 9, 10, 12, 14, 22, 6 | rngcid 20555 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥))) |
| 24 | rngcrescrhm.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
| 25 | 13, 9, 1, 24 | rhmsubclem2 20606 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑥 ∈ 𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) |
| 26 | 25 | 3anidm23 1423 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) |
| 27 | 8, 23, 26 | 3eltr4d 2843 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 I cid 5525 × cxp 5629 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Idccid 17606 Rngcrng 20072 Ringcrg 20153 RingHom crh 20389 RngCatcrngc 20536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-hom 17220 df-cco 17221 df-0g 17380 df-cat 17609 df-cid 17610 df-homf 17611 df-ssc 17752 df-resc 17753 df-subc 17754 df-estrc 18064 df-mgm 18549 df-mgmhm 18601 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-grp 18850 df-minusg 18851 df-ghm 19127 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-rnghm 20356 df-rhm 20392 df-rngc 20537 |
| This theorem is referenced by: rhmsubc 20609 |
| Copyright terms: Public domain | W3C validator |