|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rhmsubclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for rhmsubc 20689. (Contributed by AV, 2-Mar-2020.) | 
| Ref | Expression | 
|---|---|
| rngcrescrhm.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) | 
| rngcrescrhm.c | ⊢ 𝐶 = (RngCat‘𝑈) | 
| rngcrescrhm.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | 
| rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | 
| Ref | Expression | 
|---|---|
| rhmsubclem3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rngcrescrhm.r | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
| 2 | 1 | eleq2d 2827 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑅 ↔ 𝑥 ∈ (Ring ∩ 𝑈))) | 
| 3 | elinel1 4201 | . . . . 5 ⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring) | |
| 4 | 2, 3 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑅 → 𝑥 ∈ Ring)) | 
| 5 | 4 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ Ring) | 
| 6 | eqid 2737 | . . . 4 ⊢ (Base‘𝑥) = (Base‘𝑥) | |
| 7 | 6 | idrhm 20490 | . . 3 ⊢ (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) | 
| 8 | 5, 7 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) | 
| 9 | rngcrescrhm.c | . . 3 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 10 | eqid 2737 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 11 | 9 | eqcomi 2746 | . . . 4 ⊢ (RngCat‘𝑈) = 𝐶 | 
| 12 | 11 | fveq2i 6909 | . . 3 ⊢ (Id‘(RngCat‘𝑈)) = (Id‘𝐶) | 
| 13 | rngcrescrhm.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑈 ∈ 𝑉) | 
| 15 | incom 4209 | . . . . . 6 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
| 16 | ringssrng 20283 | . . . . . . 7 ⊢ Ring ⊆ Rng | |
| 17 | sslin 4243 | . . . . . . 7 ⊢ (Ring ⊆ Rng → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng)) | |
| 18 | 16, 17 | mp1i 13 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng)) | 
| 19 | 15, 18 | eqsstrid 4022 | . . . . 5 ⊢ (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng)) | 
| 20 | 9, 10, 13 | rngcbas 20621 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) | 
| 21 | 19, 1, 20 | 3sstr4d 4039 | . . . 4 ⊢ (𝜑 → 𝑅 ⊆ (Base‘𝐶)) | 
| 22 | 21 | sselda 3983 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ (Base‘𝐶)) | 
| 23 | 9, 10, 12, 14, 22, 6 | rngcid 20635 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥))) | 
| 24 | rngcrescrhm.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
| 25 | 13, 9, 1, 24 | rhmsubclem2 20686 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑥 ∈ 𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) | 
| 26 | 25 | 3anidm23 1423 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) | 
| 27 | 8, 23, 26 | 3eltr4d 2856 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3950 ⊆ wss 3951 I cid 5577 × cxp 5683 ↾ cres 5687 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 Idccid 17708 Rngcrng 20149 Ringcrg 20230 RingHom crh 20469 RngCatcrngc 20616 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-hom 17321 df-cco 17322 df-0g 17486 df-cat 17711 df-cid 17712 df-homf 17713 df-ssc 17854 df-resc 17855 df-subc 17856 df-estrc 18167 df-mgm 18653 df-mgmhm 18705 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-grp 18954 df-minusg 18955 df-ghm 19231 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-rnghm 20436 df-rhm 20472 df-rngc 20617 | 
| This theorem is referenced by: rhmsubc 20689 | 
| Copyright terms: Public domain | W3C validator |