Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubclem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for rhmsubc 45688. (Contributed by AV, 2-Mar-2020.) |
Ref | Expression |
---|---|
rngcrescrhm.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcrescrhm.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcrescrhm.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
Ref | Expression |
---|---|
rhmsubclem3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcrescrhm.r | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
2 | 1 | eleq2d 2819 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑅 ↔ 𝑥 ∈ (Ring ∩ 𝑈))) |
3 | elinel1 4132 | . . . . 5 ⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring) | |
4 | 2, 3 | syl6bi 252 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑅 → 𝑥 ∈ Ring)) |
5 | 4 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ Ring) |
6 | eqid 2733 | . . . 4 ⊢ (Base‘𝑥) = (Base‘𝑥) | |
7 | 6 | idrhm 20003 | . . 3 ⊢ (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
8 | 5, 7 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥)) |
9 | rngcrescrhm.c | . . 3 ⊢ 𝐶 = (RngCat‘𝑈) | |
10 | eqid 2733 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
11 | 9 | eqcomi 2742 | . . . 4 ⊢ (RngCat‘𝑈) = 𝐶 |
12 | 11 | fveq2i 6795 | . . 3 ⊢ (Id‘(RngCat‘𝑈)) = (Id‘𝐶) |
13 | rngcrescrhm.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑈 ∈ 𝑉) |
15 | incom 4138 | . . . . . 6 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
16 | ringssrng 45478 | . . . . . . 7 ⊢ Ring ⊆ Rng | |
17 | sslin 4171 | . . . . . . 7 ⊢ (Ring ⊆ Rng → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng)) | |
18 | 16, 17 | mp1i 13 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng)) |
19 | 15, 18 | eqsstrid 3971 | . . . . 5 ⊢ (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng)) |
20 | 9, 10, 13 | rngcbas 45563 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
21 | 19, 1, 20 | 3sstr4d 3970 | . . . 4 ⊢ (𝜑 → 𝑅 ⊆ (Base‘𝐶)) |
22 | 21 | sselda 3923 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → 𝑥 ∈ (Base‘𝐶)) |
23 | 9, 10, 12, 14, 22, 6 | rngcid 45577 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥))) |
24 | rngcrescrhm.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
25 | 13, 9, 1, 24 | rhmsubclem2 45685 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑥 ∈ 𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) |
26 | 25 | 3anidm23 1419 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥)) |
27 | 8, 23, 26 | 3eltr4d 2849 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ∩ cin 3888 ⊆ wss 3889 I cid 5490 × cxp 5589 ↾ cres 5593 ‘cfv 6447 (class class class)co 7295 Basecbs 16940 Idccid 17402 Ringcrg 19811 RingHom crh 19984 Rngcrng 45472 RngCatcrngc 45555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-pm 8638 df-ixp 8706 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-fz 13268 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-hom 17014 df-cco 17015 df-0g 17180 df-cat 17405 df-cid 17406 df-homf 17407 df-ssc 17550 df-resc 17551 df-subc 17552 df-estrc 17867 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-mhm 18458 df-grp 18608 df-minusg 18609 df-ghm 18860 df-cmn 19416 df-abl 19417 df-mgp 19749 df-ur 19766 df-ring 19813 df-rnghom 19987 df-mgmhm 45373 df-rng0 45473 df-rnghomo 45485 df-rngc 45557 |
This theorem is referenced by: rhmsubc 45688 |
Copyright terms: Public domain | W3C validator |