MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmsubclem3 Structured version   Visualization version   GIF version

Theorem rhmsubclem3 20572
Description: Lemma 3 for rhmsubc 20574. (Contributed by AV, 2-Mar-2020.)
Hypotheses
Ref Expression
rngcrescrhm.u (𝜑𝑈𝑉)
rngcrescrhm.c 𝐶 = (RngCat‘𝑈)
rngcrescrhm.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhm.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rhmsubclem3 ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑈(𝑥)   𝐻(𝑥)   𝑉(𝑥)

Proof of Theorem rhmsubclem3
StepHypRef Expression
1 rngcrescrhm.r . . . . . 6 (𝜑𝑅 = (Ring ∩ 𝑈))
21eleq2d 2814 . . . . 5 (𝜑 → (𝑥𝑅𝑥 ∈ (Ring ∩ 𝑈)))
3 elinel1 4152 . . . . 5 (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ Ring)
42, 3biimtrdi 253 . . . 4 (𝜑 → (𝑥𝑅𝑥 ∈ Ring))
54imp 406 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ Ring)
6 eqid 2729 . . . 4 (Base‘𝑥) = (Base‘𝑥)
76idrhm 20375 . . 3 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
85, 7syl 17 . 2 ((𝜑𝑥𝑅) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
9 rngcrescrhm.c . . 3 𝐶 = (RngCat‘𝑈)
10 eqid 2729 . . 3 (Base‘𝐶) = (Base‘𝐶)
119eqcomi 2738 . . . 4 (RngCat‘𝑈) = 𝐶
1211fveq2i 6825 . . 3 (Id‘(RngCat‘𝑈)) = (Id‘𝐶)
13 rngcrescrhm.u . . . 4 (𝜑𝑈𝑉)
1413adantr 480 . . 3 ((𝜑𝑥𝑅) → 𝑈𝑉)
15 incom 4160 . . . . . 6 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
16 ringssrng 20171 . . . . . . 7 Ring ⊆ Rng
17 sslin 4194 . . . . . . 7 (Ring ⊆ Rng → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
1816, 17mp1i 13 . . . . . 6 (𝜑 → (𝑈 ∩ Ring) ⊆ (𝑈 ∩ Rng))
1915, 18eqsstrid 3974 . . . . 5 (𝜑 → (Ring ∩ 𝑈) ⊆ (𝑈 ∩ Rng))
209, 10, 13rngcbas 20506 . . . . 5 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng))
2119, 1, 203sstr4d 3991 . . . 4 (𝜑𝑅 ⊆ (Base‘𝐶))
2221sselda 3935 . . 3 ((𝜑𝑥𝑅) → 𝑥 ∈ (Base‘𝐶))
239, 10, 12, 14, 22, 6rngcid 20520 . 2 ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥)))
24 rngcrescrhm.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
2513, 9, 1, 24rhmsubclem2 20571 . . 3 ((𝜑𝑥𝑅𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
26253anidm23 1423 . 2 ((𝜑𝑥𝑅) → (𝑥𝐻𝑥) = (𝑥 RingHom 𝑥))
278, 23, 263eltr4d 2843 1 ((𝜑𝑥𝑅) → ((Id‘(RngCat‘𝑈))‘𝑥) ∈ (𝑥𝐻𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3902  wss 3903   I cid 5513   × cxp 5617  cres 5621  cfv 6482  (class class class)co 7349  Basecbs 17120  Idccid 17571  Rngcrng 20037  Ringcrg 20118   RingHom crh 20354  RngCatcrngc 20501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-hom 17185  df-cco 17186  df-0g 17345  df-cat 17574  df-cid 17575  df-homf 17576  df-ssc 17717  df-resc 17718  df-subc 17719  df-estrc 18029  df-mgm 18514  df-mgmhm 18566  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-minusg 18816  df-ghm 19092  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-rnghm 20321  df-rhm 20357  df-rngc 20502
This theorem is referenced by:  rhmsubc  20574
  Copyright terms: Public domain W3C validator