MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd1 Structured version   Visualization version   GIF version

Theorem nosupbnd1 27624
Description: Bounding law from below for the surreal supremum. Proposition 4.2 of [Lipparini] p. 6. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1 ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑈,𝑣,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑔)

Proof of Theorem nosupbnd1
StepHypRef Expression
1 simpr3 1197 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑈𝐴)
2 nfv 1914 . . . . . . . . 9 𝑥(𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)
3 nfcv 2891 . . . . . . . . . 10 𝑥𝐴
4 nfriota1 7313 . . . . . . . . . . . 12 𝑥(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
5 nfcv 2891 . . . . . . . . . . . 12 𝑥 <s
6 nfcv 2891 . . . . . . . . . . . 12 𝑥𝑦
74, 5, 6nfbr 5139 . . . . . . . . . . 11 𝑥(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦
87nfn 1857 . . . . . . . . . 10 𝑥 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦
93, 8nfralw 3276 . . . . . . . . 9 𝑥𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦
102, 9nfim 1896 . . . . . . . 8 𝑥((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)
11 simpl 482 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦))
12 rspe 3219 . . . . . . . . . . . . . 14 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
1312adantr 480 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
14 nomaxmo 27608 . . . . . . . . . . . . . . 15 (𝐴 No → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
15143ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
1615adantl 481 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
17 reu5 3345 . . . . . . . . . . . . 13 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
1813, 16, 17sylanbrc 583 . . . . . . . . . . . 12 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
19 riota1 7327 . . . . . . . . . . . 12 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
2018, 19syl 17 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
2111, 20mpbid 232 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)
22 simplr 768 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∀𝑦𝐴 ¬ 𝑥 <s 𝑦)
23 nfra1 3253 . . . . . . . . . . . . . 14 𝑦𝑦𝐴 ¬ 𝑥 <s 𝑦
24 nfcv 2891 . . . . . . . . . . . . . 14 𝑦𝐴
2523, 24nfriota 7318 . . . . . . . . . . . . 13 𝑦(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
26 nfcv 2891 . . . . . . . . . . . . 13 𝑦𝑥
2725, 26nfeq 2905 . . . . . . . . . . . 12 𝑦(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥
28 breq1 5095 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦𝑥 <s 𝑦))
2928notbid 318 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ¬ 𝑥 <s 𝑦))
3027, 29ralbid 3242 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦))
3130biimprd 248 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦))
3221, 22, 31sylc 65 . . . . . . . . 9 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)
3332exp31 419 . . . . . . . 8 (𝑥𝐴 → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)))
3410, 33rexlimi 3229 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦))
3534imp 406 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)
36 nfcv 2891 . . . . . . . . 9 𝑦 <s
37 nfcv 2891 . . . . . . . . 9 𝑦𝑈
3825, 36, 37nfbr 5139 . . . . . . . 8 𝑦(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈
3938nfn 1857 . . . . . . 7 𝑦 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈
40 breq2 5096 . . . . . . . 8 (𝑦 = 𝑈 → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
4140notbid 318 . . . . . . 7 (𝑦 = 𝑈 → (¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
4239, 41rspc 3565 . . . . . 6 (𝑈𝐴 → (∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 → ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
431, 35, 42sylc 65 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈)
44 simpr1 1195 . . . . . . . . . 10 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝐴 No )
45 simpl 482 . . . . . . . . . . . 12 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
4615adantl 481 . . . . . . . . . . . 12 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
4745, 46, 17sylanbrc 583 . . . . . . . . . . 11 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
48 riotacl 7323 . . . . . . . . . . 11 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
4947, 48syl 17 . . . . . . . . . 10 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
5044, 49sseldd 3936 . . . . . . . . 9 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No )
51 nofun 27559 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → Fun (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
52 funrel 6499 . . . . . . . . 9 (Fun (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) → Rel (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5350, 51, 523syl 18 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → Rel (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
54 sssucid 6389 . . . . . . . 8 dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ⊆ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
55 relssres 5973 . . . . . . . 8 ((Rel (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ⊆ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5653, 54, 55sylancl 586 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5756breq1d 5102 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))))
5844, 1sseldd 3936 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑈 No )
59 nodmon 27560 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
6050, 59syl 17 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
61 onsucb 7750 . . . . . . . 8 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On ↔ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
6260, 61sylib 218 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
63 sltres 27572 . . . . . . 7 (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No 𝑈 No ∧ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On) → (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
6450, 58, 62, 63syl3anc 1373 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
6557, 64sylbird 260 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
6643, 65mtod 198 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
67 noextendgt 27580 . . . . 5 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
6850, 67syl 17 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
69 noreson 27570 . . . . . 6 ((𝑈 No ∧ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No )
7058, 62, 69syl2anc 584 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No )
71 2on 8401 . . . . . . . . 9 2o ∈ On
7271elexi 3459 . . . . . . . 8 2o ∈ V
7372prid2 4715 . . . . . . 7 2o ∈ {1o, 2o}
7473noextend 27576 . . . . . 6 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )
7550, 74syl 17 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )
76 sltso 27586 . . . . . 6 <s Or No
77 sotr2 5561 . . . . . 6 (( <s Or No ∧ ((𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No ∧ ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )) → ((¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})))
7876, 77mpan 690 . . . . 5 (((𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No ∧ ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No ) → ((¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})))
7970, 50, 75, 78syl3anc 1373 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})))
8066, 68, 79mp2and 699 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
81 nosupbnd1.1 . . . . . . . 8 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
82 iftrue 4482 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
8381, 82eqtrid 2776 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
8483dmeqd 5848 . . . . . 6 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
8572dmsnop 6165 . . . . . . . 8 dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩} = {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)}
8685uneq2i 4116 . . . . . . 7 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
87 dmun 5853 . . . . . . 7 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})
88 df-suc 6313 . . . . . . 7 suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
8986, 87, 883eqtr4i 2762 . . . . . 6 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
9084, 89eqtrdi 2780 . . . . 5 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
9190adantr 480 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
9291reseq2d 5930 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ dom 𝑆) = (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
9383adantr 480 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
9480, 92, 933brtr4d 5124 . 2 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ dom 𝑆) <s 𝑆)
95 simpl 482 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
96 simpr1 1195 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝐴 No )
97 simpr2 1196 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝐴 ∈ V)
98 simpr3 1197 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑈𝐴)
9981nosupbnd1lem6 27623 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
10095, 96, 97, 98, 99syl121anc 1377 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ dom 𝑆) <s 𝑆)
10194, 100pm2.61ian 811 1 ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  ∃!wreu 3341  ∃*wrmo 3342  Vcvv 3436  cun 3901  wss 3903  ifcif 4476  {csn 4577  cop 4583   class class class wbr 5092  cmpt 5173   Or wor 5526  dom cdm 5619  cres 5621  Rel wrel 5624  Oncon0 6307  suc csuc 6309  cio 6436  Fun wfun 6476  cfv 6482  crio 7305  1oc1o 8381  2oc2o 8382   No csur 27549   <s cslt 27550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-riota 7306  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554
This theorem is referenced by:  nosupbnd2  27626  noetasuplem3  27645
  Copyright terms: Public domain W3C validator