Proof of Theorem nosupbnd1
Step | Hyp | Ref
| Expression |
1 | | simpr3 1195 |
. . . . . 6
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → 𝑈 ∈ 𝐴) |
2 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑈 ∈ 𝐴) |
3 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝐴 |
4 | | nfriota1 7239 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
5 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥
<s |
6 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑦 |
7 | 4, 5, 6 | nfbr 5121 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 |
8 | 7 | nfn 1860 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 ¬
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 |
9 | 3, 8 | nfralw 3151 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑦 ∈ 𝐴 ¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 |
10 | 2, 9 | nfim 1899 |
. . . . . . . 8
⊢
Ⅎ𝑥((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑈 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 ¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦) |
11 | | simpl 483 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
12 | | rspe 3237 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
13 | 12 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
14 | | nomaxmo 33901 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆
No → ∃*𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
15 | 14 | 3ad2ant1 1132 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑈 ∈ 𝐴) → ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
16 | 15 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
17 | | reu5 3361 |
. . . . . . . . . . . . 13
⊢
(∃!𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
18 | 13, 16, 17 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
19 | | riota1 7254 |
. . . . . . . . . . . 12
⊢
(∃!𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ↔ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ↔ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)) |
21 | 11, 20 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥) |
22 | | simplr 766 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
23 | | nfra1 3144 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 |
24 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦𝐴 |
25 | 23, 24 | nfriota 7245 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
26 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦𝑥 |
27 | 25, 26 | nfeq 2920 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 |
28 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ 𝑥 <s 𝑦)) |
29 | 28 | notbid 318 |
. . . . . . . . . . . 12
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ¬ 𝑥 <s 𝑦)) |
30 | 27, 29 | ralbid 3161 |
. . . . . . . . . . 11
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (∀𝑦 ∈ 𝐴 ¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
31 | 30 | biimprd 247 |
. . . . . . . . . 10
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ∀𝑦 ∈ 𝐴 ¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)) |
32 | 21, 22, 31 | sylc 65 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ∀𝑦 ∈ 𝐴 ¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦) |
33 | 32 | exp31 420 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 ¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦))) |
34 | 10, 33 | rexlimi 3248 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ((𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 ¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)) |
35 | 34 | imp 407 |
. . . . . 6
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ∀𝑦 ∈ 𝐴 ¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦) |
36 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑦
<s |
37 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝑈 |
38 | 25, 36, 37 | nfbr 5121 |
. . . . . . . 8
⊢
Ⅎ𝑦(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈 |
39 | 38 | nfn 1860 |
. . . . . . 7
⊢
Ⅎ𝑦 ¬
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈 |
40 | | breq2 5078 |
. . . . . . . 8
⊢ (𝑦 = 𝑈 → ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈)) |
41 | 40 | notbid 318 |
. . . . . . 7
⊢ (𝑦 = 𝑈 → (¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈)) |
42 | 39, 41 | rspc 3549 |
. . . . . 6
⊢ (𝑈 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 → ¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈)) |
43 | 1, 35, 42 | sylc 65 |
. . . . 5
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈) |
44 | | simpr1 1193 |
. . . . . . . . . 10
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → 𝐴 ⊆ No
) |
45 | | simpl 483 |
. . . . . . . . . . . 12
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
46 | 15 | adantl 482 |
. . . . . . . . . . . 12
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ∃*𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
47 | 45, 46, 17 | sylanbrc 583 |
. . . . . . . . . . 11
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
48 | | riotacl 7250 |
. . . . . . . . . . 11
⊢
(∃!𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴) |
49 | 47, 48 | syl 17 |
. . . . . . . . . 10
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴) |
50 | 44, 49 | sseldd 3922 |
. . . . . . . . 9
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ No
) |
51 | | nofun 33852 |
. . . . . . . . 9
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ No
→ Fun (℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
52 | | funrel 6451 |
. . . . . . . . 9
⊢ (Fun
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) → Rel (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
53 | 50, 51, 52 | 3syl 18 |
. . . . . . . 8
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → Rel (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
54 | | sssucid 6343 |
. . . . . . . 8
⊢ dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ⊆ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
55 | | relssres 5932 |
. . . . . . . 8
⊢ ((Rel
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∧ dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ⊆ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) → ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
56 | 53, 54, 55 | sylancl 586 |
. . . . . . 7
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
57 | 56 | breq1d 5084 |
. . . . . 6
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → (((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) ↔ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)))) |
58 | 44, 1 | sseldd 3922 |
. . . . . . 7
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → 𝑈 ∈ No
) |
59 | | nodmon 33853 |
. . . . . . . . 9
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ No
→ dom (℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ On) |
60 | 50, 59 | syl 17 |
. . . . . . . 8
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ On) |
61 | | sucelon 7664 |
. . . . . . . 8
⊢ (dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ On ↔ suc dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ On) |
62 | 60, 61 | sylib 217 |
. . . . . . 7
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ On) |
63 | | sltres 33865 |
. . . . . . 7
⊢
(((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ No
∧ 𝑈 ∈ No ∧ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ On) → (((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈)) |
64 | 50, 58, 62, 63 | syl3anc 1370 |
. . . . . 6
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → (((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈)) |
65 | 57, 64 | sylbird 259 |
. . . . 5
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈)) |
66 | 43, 65 | mtod 197 |
. . . 4
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦))) |
67 | | noextendgt 33873 |
. . . . 5
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ No
→ (℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
68 | 50, 67 | syl 17 |
. . . 4
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
69 | | noreson 33863 |
. . . . . 6
⊢ ((𝑈 ∈
No ∧ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ On) → (𝑈 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) ∈ No
) |
70 | 58, 62, 69 | syl2anc 584 |
. . . . 5
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → (𝑈 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) ∈ No
) |
71 | | 2on 8311 |
. . . . . . . . 9
⊢
2o ∈ On |
72 | 71 | elexi 3451 |
. . . . . . . 8
⊢
2o ∈ V |
73 | 72 | prid2 4699 |
. . . . . . 7
⊢
2o ∈ {1o, 2o} |
74 | 73 | noextend 33869 |
. . . . . 6
⊢
((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ No
→ ((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) ∈ No ) |
75 | 50, 74 | syl 17 |
. . . . 5
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) ∈ No ) |
76 | | sltso 33879 |
. . . . . 6
⊢ <s Or
No |
77 | | sotr2 5535 |
. . . . . 6
⊢ (( <s
Or No ∧ ((𝑈 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) ∈ No
∧ (℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ No
∧ ((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) ∈ No )) → ((¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) ∧ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) → (𝑈 ↾ suc dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}))) |
78 | 76, 77 | mpan 687 |
. . . . 5
⊢ (((𝑈 ↾ suc dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) ∈ No
∧ (℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∈ No
∧ ((℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) ∈ No ) → ((¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) ∧ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) → (𝑈 ↾ suc dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}))) |
79 | 70, 50, 75, 78 | syl3anc 1370 |
. . . 4
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ((¬ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) ∧ (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) → (𝑈 ↾ suc dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}))) |
80 | 66, 68, 79 | mp2and 696 |
. . 3
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → (𝑈 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) <s ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
81 | | nosupbnd1.1 |
. . . . . . . 8
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
82 | | iftrue 4465 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
83 | 81, 82 | eqtrid 2790 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
84 | 83 | dmeqd 5814 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
85 | 72 | dmsnop 6119 |
. . . . . . . 8
⊢ dom
{〈dom (℩𝑥
∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉} = {dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)} |
86 | 85 | uneq2i 4094 |
. . . . . . 7
⊢ (dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) = (dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)}) |
87 | | dmun 5819 |
. . . . . . 7
⊢ dom
((℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) = (dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) |
88 | | df-suc 6272 |
. . . . . . 7
⊢ suc dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) = (dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)}) |
89 | 86, 87, 88 | 3eqtr4i 2776 |
. . . . . 6
⊢ dom
((℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}) = suc dom
(℩𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
90 | 84, 89 | eqtrdi 2794 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
91 | 90 | adantr 481 |
. . . 4
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → dom 𝑆 = suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
92 | 91 | reseq2d 5891 |
. . 3
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → (𝑈 ↾ dom 𝑆) = (𝑈 ↾ suc dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦))) |
93 | 83 | adantr 481 |
. . 3
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → 𝑆 = ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉})) |
94 | 80, 92, 93 | 3brtr4d 5106 |
. 2
⊢
((∃𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → (𝑈 ↾ dom 𝑆) <s 𝑆) |
95 | | simpl 483 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
96 | | simpr1 1193 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → 𝐴 ⊆ No
) |
97 | | simpr2 1194 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → 𝐴 ∈ V) |
98 | | simpr3 1195 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → 𝑈 ∈ 𝐴) |
99 | 81 | nosupbnd1lem6 33916 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆) |
100 | 95, 96, 97, 98, 99 | syl121anc 1374 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑈 ∈ 𝐴)) → (𝑈 ↾ dom 𝑆) <s 𝑆) |
101 | 94, 100 | pm2.61ian 809 |
1
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈ V
∧ 𝑈 ∈ 𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆) |