MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd1 Structured version   Visualization version   GIF version

Theorem nosupbnd1 27759
Description: Bounding law from below for the surreal supremum. Proposition 4.2 of [Lipparini] p. 6. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1 ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑈,𝑣,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑔)

Proof of Theorem nosupbnd1
StepHypRef Expression
1 simpr3 1197 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑈𝐴)
2 nfv 1914 . . . . . . . . 9 𝑥(𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)
3 nfcv 2905 . . . . . . . . . 10 𝑥𝐴
4 nfriota1 7395 . . . . . . . . . . . 12 𝑥(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
5 nfcv 2905 . . . . . . . . . . . 12 𝑥 <s
6 nfcv 2905 . . . . . . . . . . . 12 𝑥𝑦
74, 5, 6nfbr 5190 . . . . . . . . . . 11 𝑥(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦
87nfn 1857 . . . . . . . . . 10 𝑥 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦
93, 8nfralw 3311 . . . . . . . . 9 𝑥𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦
102, 9nfim 1896 . . . . . . . 8 𝑥((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)
11 simpl 482 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦))
12 rspe 3249 . . . . . . . . . . . . . 14 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
1312adantr 480 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
14 nomaxmo 27743 . . . . . . . . . . . . . . 15 (𝐴 No → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
15143ad2ant1 1134 . . . . . . . . . . . . . 14 ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
1615adantl 481 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
17 reu5 3382 . . . . . . . . . . . . 13 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
1813, 16, 17sylanbrc 583 . . . . . . . . . . . 12 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
19 riota1 7409 . . . . . . . . . . . 12 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
2018, 19syl 17 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
2111, 20mpbid 232 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)
22 simplr 769 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∀𝑦𝐴 ¬ 𝑥 <s 𝑦)
23 nfra1 3284 . . . . . . . . . . . . . 14 𝑦𝑦𝐴 ¬ 𝑥 <s 𝑦
24 nfcv 2905 . . . . . . . . . . . . . 14 𝑦𝐴
2523, 24nfriota 7400 . . . . . . . . . . . . 13 𝑦(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
26 nfcv 2905 . . . . . . . . . . . . 13 𝑦𝑥
2725, 26nfeq 2919 . . . . . . . . . . . 12 𝑦(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥
28 breq1 5146 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦𝑥 <s 𝑦))
2928notbid 318 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ¬ 𝑥 <s 𝑦))
3027, 29ralbid 3273 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦))
3130biimprd 248 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦))
3221, 22, 31sylc 65 . . . . . . . . 9 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)
3332exp31 419 . . . . . . . 8 (𝑥𝐴 → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)))
3410, 33rexlimi 3259 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦))
3534imp 406 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)
36 nfcv 2905 . . . . . . . . 9 𝑦 <s
37 nfcv 2905 . . . . . . . . 9 𝑦𝑈
3825, 36, 37nfbr 5190 . . . . . . . 8 𝑦(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈
3938nfn 1857 . . . . . . 7 𝑦 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈
40 breq2 5147 . . . . . . . 8 (𝑦 = 𝑈 → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
4140notbid 318 . . . . . . 7 (𝑦 = 𝑈 → (¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
4239, 41rspc 3610 . . . . . 6 (𝑈𝐴 → (∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 → ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
431, 35, 42sylc 65 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈)
44 simpr1 1195 . . . . . . . . . 10 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝐴 No )
45 simpl 482 . . . . . . . . . . . 12 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
4615adantl 481 . . . . . . . . . . . 12 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
4745, 46, 17sylanbrc 583 . . . . . . . . . . 11 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
48 riotacl 7405 . . . . . . . . . . 11 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
4947, 48syl 17 . . . . . . . . . 10 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
5044, 49sseldd 3984 . . . . . . . . 9 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No )
51 nofun 27694 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → Fun (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
52 funrel 6583 . . . . . . . . 9 (Fun (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) → Rel (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5350, 51, 523syl 18 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → Rel (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
54 sssucid 6464 . . . . . . . 8 dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ⊆ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
55 relssres 6040 . . . . . . . 8 ((Rel (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ⊆ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5653, 54, 55sylancl 586 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5756breq1d 5153 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))))
5844, 1sseldd 3984 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑈 No )
59 nodmon 27695 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
6050, 59syl 17 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
61 onsucb 7837 . . . . . . . 8 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On ↔ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
6260, 61sylib 218 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
63 sltres 27707 . . . . . . 7 (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No 𝑈 No ∧ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On) → (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
6450, 58, 62, 63syl3anc 1373 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
6557, 64sylbird 260 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
6643, 65mtod 198 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
67 noextendgt 27715 . . . . 5 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
6850, 67syl 17 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
69 noreson 27705 . . . . . 6 ((𝑈 No ∧ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No )
7058, 62, 69syl2anc 584 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No )
71 2on 8520 . . . . . . . . 9 2o ∈ On
7271elexi 3503 . . . . . . . 8 2o ∈ V
7372prid2 4763 . . . . . . 7 2o ∈ {1o, 2o}
7473noextend 27711 . . . . . 6 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )
7550, 74syl 17 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )
76 sltso 27721 . . . . . 6 <s Or No
77 sotr2 5626 . . . . . 6 (( <s Or No ∧ ((𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No ∧ ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )) → ((¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})))
7876, 77mpan 690 . . . . 5 (((𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No ∧ ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No ) → ((¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})))
7970, 50, 75, 78syl3anc 1373 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})))
8066, 68, 79mp2and 699 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
81 nosupbnd1.1 . . . . . . . 8 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
82 iftrue 4531 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
8381, 82eqtrid 2789 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
8483dmeqd 5916 . . . . . 6 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
8572dmsnop 6236 . . . . . . . 8 dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩} = {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)}
8685uneq2i 4165 . . . . . . 7 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
87 dmun 5921 . . . . . . 7 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})
88 df-suc 6390 . . . . . . 7 suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
8986, 87, 883eqtr4i 2775 . . . . . 6 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
9084, 89eqtrdi 2793 . . . . 5 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
9190adantr 480 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
9291reseq2d 5997 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ dom 𝑆) = (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
9383adantr 480 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
9480, 92, 933brtr4d 5175 . 2 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ dom 𝑆) <s 𝑆)
95 simpl 482 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
96 simpr1 1195 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝐴 No )
97 simpr2 1196 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝐴 ∈ V)
98 simpr3 1197 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑈𝐴)
9981nosupbnd1lem6 27758 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
10095, 96, 97, 98, 99syl121anc 1377 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ dom 𝑆) <s 𝑆)
10194, 100pm2.61ian 812 1 ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  wral 3061  wrex 3070  ∃!wreu 3378  ∃*wrmo 3379  Vcvv 3480  cun 3949  wss 3951  ifcif 4525  {csn 4626  cop 4632   class class class wbr 5143  cmpt 5225   Or wor 5591  dom cdm 5685  cres 5687  Rel wrel 5690  Oncon0 6384  suc csuc 6386  cio 6512  Fun wfun 6555  cfv 6561  crio 7387  1oc1o 8499  2oc2o 8500   No csur 27684   <s cslt 27685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-riota 7388  df-1o 8506  df-2o 8507  df-no 27687  df-slt 27688  df-bday 27689
This theorem is referenced by:  nosupbnd2  27761  noetasuplem3  27780
  Copyright terms: Public domain W3C validator