MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd1 Structured version   Visualization version   GIF version

Theorem nosupbnd1 27214
Description: Bounding law from below for the surreal supremum. Proposition 4.2 of [Lipparini] p. 6. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypothesis
Ref Expression
nosupbnd1.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
nosupbnd1 ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑈,𝑣,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑔)

Proof of Theorem nosupbnd1
StepHypRef Expression
1 simpr3 1196 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑈𝐴)
2 nfv 1917 . . . . . . . . 9 𝑥(𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)
3 nfcv 2903 . . . . . . . . . 10 𝑥𝐴
4 nfriota1 7371 . . . . . . . . . . . 12 𝑥(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
5 nfcv 2903 . . . . . . . . . . . 12 𝑥 <s
6 nfcv 2903 . . . . . . . . . . . 12 𝑥𝑦
74, 5, 6nfbr 5195 . . . . . . . . . . 11 𝑥(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦
87nfn 1860 . . . . . . . . . 10 𝑥 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦
93, 8nfralw 3308 . . . . . . . . 9 𝑥𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦
102, 9nfim 1899 . . . . . . . 8 𝑥((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)
11 simpl 483 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦))
12 rspe 3246 . . . . . . . . . . . . . 14 ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
1312adantr 481 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
14 nomaxmo 27198 . . . . . . . . . . . . . . 15 (𝐴 No → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
15143ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
1615adantl 482 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
17 reu5 3378 . . . . . . . . . . . . 13 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ↔ (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
1813, 16, 17sylanbrc 583 . . . . . . . . . . . 12 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
19 riota1 7386 . . . . . . . . . . . 12 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
2018, 19syl 17 . . . . . . . . . . 11 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥))
2111, 20mpbid 231 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥)
22 simplr 767 . . . . . . . . . 10 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∀𝑦𝐴 ¬ 𝑥 <s 𝑦)
23 nfra1 3281 . . . . . . . . . . . . . 14 𝑦𝑦𝐴 ¬ 𝑥 <s 𝑦
24 nfcv 2903 . . . . . . . . . . . . . 14 𝑦𝐴
2523, 24nfriota 7377 . . . . . . . . . . . . 13 𝑦(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
26 nfcv 2903 . . . . . . . . . . . . 13 𝑦𝑥
2725, 26nfeq 2916 . . . . . . . . . . . 12 𝑦(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥
28 breq1 5151 . . . . . . . . . . . . 13 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦𝑥 <s 𝑦))
2928notbid 317 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ¬ 𝑥 <s 𝑦))
3027, 29ralbid 3270 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦))
3130biimprd 247 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = 𝑥 → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦))
3221, 22, 31sylc 65 . . . . . . . . 9 (((𝑥𝐴 ∧ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)
3332exp31 420 . . . . . . . 8 (𝑥𝐴 → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)))
3410, 33rexlimi 3256 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦))
3534imp 407 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦)
36 nfcv 2903 . . . . . . . . 9 𝑦 <s
37 nfcv 2903 . . . . . . . . 9 𝑦𝑈
3825, 36, 37nfbr 5195 . . . . . . . 8 𝑦(𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈
3938nfn 1860 . . . . . . 7 𝑦 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈
40 breq2 5152 . . . . . . . 8 (𝑦 = 𝑈 → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
4140notbid 317 . . . . . . 7 (𝑦 = 𝑈 → (¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 ↔ ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
4239, 41rspc 3600 . . . . . 6 (𝑈𝐴 → (∀𝑦𝐴 ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑦 → ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
431, 35, 42sylc 65 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈)
44 simpr1 1194 . . . . . . . . . 10 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝐴 No )
45 simpl 483 . . . . . . . . . . . 12 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
4615adantl 482 . . . . . . . . . . . 12 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃*𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
4745, 46, 17sylanbrc 583 . . . . . . . . . . 11 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
48 riotacl 7382 . . . . . . . . . . 11 (∃!𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
4947, 48syl 17 . . . . . . . . . 10 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ 𝐴)
5044, 49sseldd 3983 . . . . . . . . 9 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No )
51 nofun 27149 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → Fun (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
52 funrel 6565 . . . . . . . . 9 (Fun (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) → Rel (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5350, 51, 523syl 18 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → Rel (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
54 sssucid 6444 . . . . . . . 8 dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ⊆ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
55 relssres 6022 . . . . . . . 8 ((Rel (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∧ dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ⊆ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5653, 54, 55sylancl 586 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) = (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
5756breq1d 5158 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ↔ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))))
5844, 1sseldd 3983 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑈 No )
59 nodmon 27150 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
6050, 59syl 17 . . . . . . . 8 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
61 onsucb 7804 . . . . . . . 8 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On ↔ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
6260, 61sylib 217 . . . . . . 7 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On)
63 sltres 27162 . . . . . . 7 (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No 𝑈 No ∧ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On) → (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
6450, 58, 62, 63syl3anc 1371 . . . . . 6 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
6557, 64sylbird 259 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s 𝑈))
6643, 65mtod 197 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
67 noextendgt 27170 . . . . 5 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
6850, 67syl 17 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
69 noreson 27160 . . . . . 6 ((𝑈 No ∧ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ On) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No )
7058, 62, 69syl2anc 584 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No )
71 2on 8479 . . . . . . . . 9 2o ∈ On
7271elexi 3493 . . . . . . . 8 2o ∈ V
7372prid2 4767 . . . . . . 7 2o ∈ {1o, 2o}
7473noextend 27166 . . . . . 6 ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )
7550, 74syl 17 . . . . 5 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )
76 sltso 27176 . . . . . 6 <s Or No
77 sotr2 5620 . . . . . 6 (( <s Or No ∧ ((𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No ∧ ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No )) → ((¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})))
7876, 77mpan 688 . . . . 5 (((𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∈ No ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∈ No ∧ ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) ∈ No ) → ((¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})))
7970, 50, 75, 78syl3anc 1371 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ((¬ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) ∧ (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})))
8066, 68, 79mp2and 697 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)) <s ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
81 nosupbnd1.1 . . . . . . . 8 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
82 iftrue 4534 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥)))) = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
8381, 82eqtrid 2784 . . . . . . 7 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
8483dmeqd 5905 . . . . . 6 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
8572dmsnop 6215 . . . . . . . 8 dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩} = {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)}
8685uneq2i 4160 . . . . . . 7 (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
87 dmun 5910 . . . . . . 7 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ dom {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩})
88 df-suc 6370 . . . . . . 7 suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) = (dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)})
8986, 87, 883eqtr4i 2770 . . . . . 6 dom ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}) = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
9084, 89eqtrdi 2788 . . . . 5 (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
9190adantr 481 . . . 4 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → dom 𝑆 = suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦))
9291reseq2d 5981 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ dom 𝑆) = (𝑈 ↾ suc dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)))
9383adantr 481 . . 3 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑆 = ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}))
9480, 92, 933brtr4d 5180 . 2 ((∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ dom 𝑆) <s 𝑆)
95 simpl 483 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → ¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
96 simpr1 1194 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝐴 No )
97 simpr2 1195 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝐴 ∈ V)
98 simpr3 1196 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → 𝑈𝐴)
9981nosupbnd1lem6 27213 . . 3 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V) ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
10095, 96, 97, 98, 99syl121anc 1375 . 2 ((¬ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴)) → (𝑈 ↾ dom 𝑆) <s 𝑆)
10194, 100pm2.61ian 810 1 ((𝐴 No 𝐴 ∈ V ∧ 𝑈𝐴) → (𝑈 ↾ dom 𝑆) <s 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cab 2709  wral 3061  wrex 3070  ∃!wreu 3374  ∃*wrmo 3375  Vcvv 3474  cun 3946  wss 3948  ifcif 4528  {csn 4628  cop 4634   class class class wbr 5148  cmpt 5231   Or wor 5587  dom cdm 5676  cres 5678  Rel wrel 5681  Oncon0 6364  suc csuc 6366  cio 6493  Fun wfun 6537  cfv 6543  crio 7363  1oc1o 8458  2oc2o 8459   No csur 27140   <s cslt 27141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-1o 8465  df-2o 8466  df-no 27143  df-slt 27144  df-bday 27145
This theorem is referenced by:  nosupbnd2  27216  noetasuplem3  27235
  Copyright terms: Public domain W3C validator