| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotacl | Structured version Visualization version GIF version | ||
| Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
| Ref | Expression |
|---|---|
| riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4043 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | riotacl2 7360 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 3 | 1, 2 | sselid 3944 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃!wreu 3352 {crab 3405 ℩crio 7343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-un 3919 df-ss 3931 df-sn 4590 df-pr 4592 df-uni 4872 df-iota 6464 df-riota 7344 |
| This theorem is referenced by: riotaeqimp 7370 riotaprop 7371 riotass2 7374 riotass 7375 riotaxfrd 7378 riotaclb 7385 supcl 9409 fisupcl 9421 ttrcltr 9669 htalem 9849 dfac8clem 9985 dfac2a 10083 fin23lem22 10280 zorn2lem1 10449 subcl 11420 divcl 11843 lbcl 12134 flcl 13757 cjf 15070 sqrtcl 15328 qnumdencl 16709 qnumdenbi 16714 catidcl 17643 lubcl 18316 glbcl 18329 ismgmid 18592 grpinvfval 18910 grpinvf 18918 pj1f 19627 nosupno 27615 nosupbday 27617 nosupbnd1 27626 noinfno 27630 noinfbday 27632 noinfbnd1 27641 scutcut 27713 divsclw 28098 mirf 28587 midf 28703 ismidb 28705 lmif 28712 islmib 28714 uspgredg2vlem 29150 usgredg2vlem1 29152 frgrncvvdeqlem4 30231 grpoidcl 30443 grpoinvcl 30453 pjpreeq 31327 cnlnadjlem3 31998 adjbdln 32012 xdivcld 32843 cvmlift3lem3 35308 transportcl 36021 finxpreclem4 37382 poimirlem26 37640 iorlid 37852 riotaclbgBAD 38947 lshpkrlem2 39104 lshpkrcl 39109 cdleme25cl 40351 cdleme29cl 40371 cdlemefrs29clN 40393 cdlemk29-3 40905 cdlemkid5 40929 dihlsscpre 41228 mapdhcl 41721 hdmapcl 41824 hgmapcl 41883 primrootsunit1 42085 rernegcl 42359 rersubcl 42366 sn-subcl 42416 sn-redivcld 42432 fsuppind 42578 tfsconcatfv 43330 wessf1ornlem 45179 fourierdlem50 46154 |
| Copyright terms: Public domain | W3C validator |