| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotacl | Structured version Visualization version GIF version | ||
| Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
| Ref | Expression |
|---|---|
| riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4039 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | riotacl2 7342 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 3 | 1, 2 | sselid 3941 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃!wreu 3349 {crab 3402 ℩crio 7325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-un 3916 df-ss 3928 df-sn 4586 df-pr 4588 df-uni 4868 df-iota 6452 df-riota 7326 |
| This theorem is referenced by: riotaeqimp 7352 riotaprop 7353 riotass2 7356 riotass 7357 riotaxfrd 7360 riotaclb 7367 supcl 9385 fisupcl 9397 ttrcltr 9645 htalem 9825 dfac8clem 9961 dfac2a 10059 fin23lem22 10256 zorn2lem1 10425 subcl 11396 divcl 11819 lbcl 12110 flcl 13733 cjf 15046 sqrtcl 15304 qnumdencl 16685 qnumdenbi 16690 catidcl 17623 lubcl 18296 glbcl 18309 ismgmid 18574 grpinvfval 18892 grpinvf 18900 pj1f 19611 nosupno 27648 nosupbday 27650 nosupbnd1 27659 noinfno 27663 noinfbday 27665 noinfbnd1 27674 scutcut 27747 divsclw 28138 mirf 28640 midf 28756 ismidb 28758 lmif 28765 islmib 28767 uspgredg2vlem 29203 usgredg2vlem1 29205 frgrncvvdeqlem4 30281 grpoidcl 30493 grpoinvcl 30503 pjpreeq 31377 cnlnadjlem3 32048 adjbdln 32062 xdivcld 32893 cvmlift3lem3 35301 transportcl 36014 finxpreclem4 37375 poimirlem26 37633 iorlid 37845 riotaclbgBAD 38940 lshpkrlem2 39097 lshpkrcl 39102 cdleme25cl 40344 cdleme29cl 40364 cdlemefrs29clN 40386 cdlemk29-3 40898 cdlemkid5 40922 dihlsscpre 41221 mapdhcl 41714 hdmapcl 41817 hgmapcl 41876 primrootsunit1 42078 rernegcl 42352 rersubcl 42359 sn-subcl 42409 sn-redivcld 42425 fsuppind 42571 tfsconcatfv 43323 wessf1ornlem 45172 fourierdlem50 46147 |
| Copyright terms: Public domain | W3C validator |