| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotacl | Structured version Visualization version GIF version | ||
| Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
| Ref | Expression |
|---|---|
| riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4060 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | riotacl2 7383 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 3 | 1, 2 | sselid 3961 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃!wreu 3362 {crab 3420 ℩crio 7366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 df-uni 4889 df-iota 6489 df-riota 7367 |
| This theorem is referenced by: riotaeqimp 7393 riotaprop 7394 riotass2 7397 riotass 7398 riotaxfrd 7401 riotaclb 7408 supcl 9475 fisupcl 9487 ttrcltr 9735 htalem 9915 dfac8clem 10051 dfac2a 10149 fin23lem22 10346 zorn2lem1 10515 subcl 11486 divcl 11907 lbcl 12198 flcl 13817 cjf 15128 sqrtcl 15385 qnumdencl 16763 qnumdenbi 16768 catidcl 17699 lubcl 18372 glbcl 18385 ismgmid 18648 grpinvfval 18966 grpinvf 18974 pj1f 19683 nosupno 27672 nosupbday 27674 nosupbnd1 27683 noinfno 27687 noinfbday 27689 noinfbnd1 27698 scutcut 27770 divsclw 28155 mirf 28644 midf 28760 ismidb 28762 lmif 28769 islmib 28771 uspgredg2vlem 29207 usgredg2vlem1 29209 frgrncvvdeqlem4 30288 grpoidcl 30500 grpoinvcl 30510 pjpreeq 31384 cnlnadjlem3 32055 adjbdln 32069 xdivcld 32902 cvmlift3lem3 35348 transportcl 36056 finxpreclem4 37417 poimirlem26 37675 iorlid 37887 riotaclbgBAD 38977 lshpkrlem2 39134 lshpkrcl 39139 cdleme25cl 40381 cdleme29cl 40401 cdlemefrs29clN 40423 cdlemk29-3 40935 cdlemkid5 40959 dihlsscpre 41258 mapdhcl 41751 hdmapcl 41854 hgmapcl 41913 primrootsunit1 42115 rernegcl 42389 rersubcl 42396 sn-subcl 42445 fsuppind 42588 tfsconcatfv 43340 wessf1ornlem 45189 fourierdlem50 46165 |
| Copyright terms: Public domain | W3C validator |