| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotacl | Structured version Visualization version GIF version | ||
| Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
| Ref | Expression |
|---|---|
| riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4031 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | riotacl2 7322 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 3 | 1, 2 | sselid 3933 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃!wreu 3341 {crab 3394 ℩crio 7305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-un 3908 df-ss 3920 df-sn 4578 df-pr 4580 df-uni 4859 df-iota 6438 df-riota 7306 |
| This theorem is referenced by: riotaeqimp 7332 riotaprop 7333 riotass2 7336 riotass 7337 riotaxfrd 7340 riotaclb 7347 supcl 9348 fisupcl 9360 ttrcltr 9612 htalem 9792 dfac8clem 9926 dfac2a 10024 fin23lem22 10221 zorn2lem1 10390 subcl 11362 divcl 11785 lbcl 12076 flcl 13699 cjf 15011 sqrtcl 15269 qnumdencl 16650 qnumdenbi 16655 catidcl 17588 lubcl 18261 glbcl 18274 ismgmid 18539 grpinvfval 18857 grpinvf 18865 pj1f 19576 nosupno 27613 nosupbday 27615 nosupbnd1 27624 noinfno 27628 noinfbday 27630 noinfbnd1 27639 scutcut 27712 divsclw 28103 mirf 28605 midf 28721 ismidb 28723 lmif 28730 islmib 28732 uspgredg2vlem 29168 usgredg2vlem1 29170 frgrncvvdeqlem4 30246 grpoidcl 30458 grpoinvcl 30468 pjpreeq 31342 cnlnadjlem3 32013 adjbdln 32027 xdivcld 32863 cvmlift3lem3 35298 transportcl 36011 finxpreclem4 37372 poimirlem26 37630 iorlid 37842 riotaclbgBAD 38937 lshpkrlem2 39094 lshpkrcl 39099 cdleme25cl 40340 cdleme29cl 40360 cdlemefrs29clN 40382 cdlemk29-3 40894 cdlemkid5 40918 dihlsscpre 41217 mapdhcl 41710 hdmapcl 41813 hgmapcl 41872 primrootsunit1 42074 rernegcl 42348 rersubcl 42355 sn-subcl 42405 sn-redivcld 42421 fsuppind 42567 tfsconcatfv 43318 wessf1ornlem 45167 fourierdlem50 46141 |
| Copyright terms: Public domain | W3C validator |