![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotacl | Structured version Visualization version GIF version |
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
Ref | Expression |
---|---|
riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4090 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | riotacl2 7404 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
3 | 1, 2 | sselid 3993 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃!wreu 3376 {crab 3433 ℩crio 7387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-un 3968 df-ss 3980 df-sn 4632 df-pr 4634 df-uni 4913 df-iota 6516 df-riota 7388 |
This theorem is referenced by: riotaeqimp 7414 riotaprop 7415 riotass2 7418 riotass 7419 riotaxfrd 7422 riotaclb 7429 supcl 9496 fisupcl 9507 ttrcltr 9754 htalem 9934 dfac8clem 10070 dfac2a 10168 fin23lem22 10365 zorn2lem1 10534 subcl 11505 divcl 11926 lbcl 12217 flcl 13832 cjf 15140 sqrtcl 15397 qnumdencl 16773 qnumdenbi 16778 catidcl 17727 lubcl 18415 glbcl 18428 ismgmid 18691 grpinvfval 19009 grpinvf 19017 pj1f 19730 nosupno 27763 nosupbday 27765 nosupbnd1 27774 noinfno 27778 noinfbday 27780 noinfbnd1 27789 scutcut 27861 divsclw 28235 mirf 28683 midf 28799 ismidb 28801 lmif 28808 islmib 28810 uspgredg2vlem 29255 usgredg2vlem1 29257 frgrncvvdeqlem4 30331 grpoidcl 30543 grpoinvcl 30553 pjpreeq 31427 cnlnadjlem3 32098 adjbdln 32112 xdivcld 32890 cvmlift3lem3 35306 transportcl 36015 finxpreclem4 37377 poimirlem26 37633 iorlid 37845 riotaclbgBAD 38936 lshpkrlem2 39093 lshpkrcl 39098 cdleme25cl 40340 cdleme29cl 40360 cdlemefrs29clN 40382 cdlemk29-3 40894 cdlemkid5 40918 dihlsscpre 41217 mapdhcl 41710 hdmapcl 41813 hgmapcl 41872 primrootsunit1 42079 rernegcl 42378 rersubcl 42385 sn-subcl 42434 fsuppind 42577 tfsconcatfv 43331 wessf1ornlem 45128 fourierdlem50 46112 |
Copyright terms: Public domain | W3C validator |