![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotacl | Structured version Visualization version GIF version |
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
Ref | Expression |
---|---|
riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4103 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | riotacl2 7421 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
3 | 1, 2 | sselid 4006 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∃!wreu 3386 {crab 3443 ℩crio 7403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 df-riota 7404 |
This theorem is referenced by: riotaeqimp 7431 riotaprop 7432 riotass2 7435 riotass 7436 riotaxfrd 7439 riotaclb 7446 supcl 9527 fisupcl 9538 ttrcltr 9785 htalem 9965 dfac8clem 10101 dfac2a 10199 fin23lem22 10396 zorn2lem1 10565 subcl 11535 divcl 11955 lbcl 12246 flcl 13846 cjf 15153 sqrtcl 15410 qnumdencl 16786 qnumdenbi 16791 catidcl 17740 lubcl 18427 glbcl 18440 ismgmid 18703 grpinvfval 19018 grpinvf 19026 pj1f 19739 nosupno 27766 nosupbday 27768 nosupbnd1 27777 noinfno 27781 noinfbday 27783 noinfbnd1 27792 scutcut 27864 divsclw 28238 mirf 28686 midf 28802 ismidb 28804 lmif 28811 islmib 28813 uspgredg2vlem 29258 usgredg2vlem1 29260 frgrncvvdeqlem4 30334 grpoidcl 30546 grpoinvcl 30556 pjpreeq 31430 cnlnadjlem3 32101 adjbdln 32115 xdivcld 32887 cvmlift3lem3 35289 transportcl 35997 finxpreclem4 37360 poimirlem26 37606 iorlid 37818 riotaclbgBAD 38910 lshpkrlem2 39067 lshpkrcl 39072 cdleme25cl 40314 cdleme29cl 40334 cdlemefrs29clN 40356 cdlemk29-3 40868 cdlemkid5 40892 dihlsscpre 41191 mapdhcl 41684 hdmapcl 41787 hgmapcl 41846 primrootsunit1 42054 rernegcl 42347 rersubcl 42354 sn-subcl 42403 fsuppind 42545 tfsconcatfv 43303 wessf1ornlem 45092 fourierdlem50 46077 |
Copyright terms: Public domain | W3C validator |