Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotacl | Structured version Visualization version GIF version |
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
Ref | Expression |
---|---|
riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4009 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | riotacl2 7229 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
3 | 1, 2 | sselid 3915 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∃!wreu 3065 {crab 3067 ℩crio 7211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-riota 7212 |
This theorem is referenced by: riotaeqimp 7239 riotaprop 7240 riotass2 7243 riotass 7244 riotaxfrd 7247 riotaclb 7254 supcl 9147 fisupcl 9158 htalem 9585 dfac8clem 9719 dfac2a 9816 fin23lem22 10014 zorn2lem1 10183 subcl 11150 divcl 11569 lbcl 11856 flcl 13443 cjf 14743 sqrtcl 15001 qnumdencl 16371 qnumdenbi 16376 catidcl 17308 lubcl 17990 glbcl 18003 ismgmid 18264 grpinvfval 18533 grpinvf 18541 pj1f 19218 mirf 26925 midf 27041 ismidb 27043 lmif 27050 islmib 27052 uspgredg2vlem 27493 usgredg2vlem1 27495 frgrncvvdeqlem4 28567 grpoidcl 28777 grpoinvcl 28787 pjpreeq 29661 cnlnadjlem3 30332 adjbdln 30346 xdivcld 31099 cvmlift3lem3 33183 ttrcltr 33702 nosupno 33833 nosupbday 33835 nosupbnd1 33844 noinfno 33848 noinfbday 33850 noinfbnd1 33859 scutcut 33922 transportcl 34262 finxpreclem4 35492 poimirlem26 35730 iorlid 35943 riotaclbgBAD 36895 lshpkrlem2 37052 lshpkrcl 37057 cdleme25cl 38298 cdleme29cl 38318 cdlemefrs29clN 38340 cdlemk29-3 38852 cdlemkid5 38876 dihlsscpre 39175 mapdhcl 39668 hdmapcl 39771 hgmapcl 39830 fsuppind 40202 rernegcl 40275 rersubcl 40282 sn-subcl 40330 wessf1ornlem 42611 fourierdlem50 43587 |
Copyright terms: Public domain | W3C validator |