| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotacl | Structured version Visualization version GIF version | ||
| Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
| Ref | Expression |
|---|---|
| riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4079 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | riotacl2 7405 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 3 | 1, 2 | sselid 3980 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∃!wreu 3377 {crab 3435 ℩crio 7388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-un 3955 df-ss 3967 df-sn 4626 df-pr 4628 df-uni 4907 df-iota 6513 df-riota 7389 |
| This theorem is referenced by: riotaeqimp 7415 riotaprop 7416 riotass2 7419 riotass 7420 riotaxfrd 7423 riotaclb 7430 supcl 9499 fisupcl 9510 ttrcltr 9757 htalem 9937 dfac8clem 10073 dfac2a 10171 fin23lem22 10368 zorn2lem1 10537 subcl 11508 divcl 11929 lbcl 12220 flcl 13836 cjf 15144 sqrtcl 15401 qnumdencl 16777 qnumdenbi 16782 catidcl 17726 lubcl 18403 glbcl 18416 ismgmid 18679 grpinvfval 18997 grpinvf 19005 pj1f 19716 nosupno 27749 nosupbday 27751 nosupbnd1 27760 noinfno 27764 noinfbday 27766 noinfbnd1 27775 scutcut 27847 divsclw 28221 mirf 28669 midf 28785 ismidb 28787 lmif 28794 islmib 28796 uspgredg2vlem 29241 usgredg2vlem1 29243 frgrncvvdeqlem4 30322 grpoidcl 30534 grpoinvcl 30544 pjpreeq 31418 cnlnadjlem3 32089 adjbdln 32103 xdivcld 32906 cvmlift3lem3 35327 transportcl 36035 finxpreclem4 37396 poimirlem26 37654 iorlid 37866 riotaclbgBAD 38956 lshpkrlem2 39113 lshpkrcl 39118 cdleme25cl 40360 cdleme29cl 40380 cdlemefrs29clN 40402 cdlemk29-3 40914 cdlemkid5 40938 dihlsscpre 41237 mapdhcl 41730 hdmapcl 41833 hgmapcl 41892 primrootsunit1 42099 rernegcl 42406 rersubcl 42413 sn-subcl 42462 fsuppind 42605 tfsconcatfv 43359 wessf1ornlem 45195 fourierdlem50 46176 |
| Copyright terms: Public domain | W3C validator |