| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotacl | Structured version Visualization version GIF version | ||
| Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
| Ref | Expression |
|---|---|
| riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4027 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | riotacl2 7319 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 3 | 1, 2 | sselid 3927 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∃!wreu 3344 {crab 3395 ℩crio 7302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-un 3902 df-ss 3914 df-sn 4574 df-pr 4576 df-uni 4857 df-iota 6437 df-riota 7303 |
| This theorem is referenced by: riotaeqimp 7329 riotaprop 7330 riotass2 7333 riotass 7334 riotaxfrd 7337 riotaclb 7344 supcl 9342 fisupcl 9354 ttrcltr 9606 htalem 9789 dfac8clem 9923 dfac2a 10021 fin23lem22 10218 zorn2lem1 10387 subcl 11359 divcl 11782 lbcl 12073 flcl 13699 cjf 15011 sqrtcl 15269 qnumdencl 16650 qnumdenbi 16655 catidcl 17588 lubcl 18261 glbcl 18274 ismgmid 18573 grpinvfval 18891 grpinvf 18899 pj1f 19609 nosupno 27642 nosupbday 27644 nosupbnd1 27653 noinfno 27657 noinfbday 27659 noinfbnd1 27668 scutcut 27742 divsclw 28134 mirf 28638 midf 28754 ismidb 28756 lmif 28763 islmib 28765 uspgredg2vlem 29201 usgredg2vlem1 29203 frgrncvvdeqlem4 30282 grpoidcl 30494 grpoinvcl 30504 pjpreeq 31378 cnlnadjlem3 32049 adjbdln 32063 xdivcld 32903 cvmlift3lem3 35365 transportcl 36077 finxpreclem4 37438 poimirlem26 37696 iorlid 37908 riotaclbgBAD 39063 lshpkrlem2 39220 lshpkrcl 39225 cdleme25cl 40466 cdleme29cl 40486 cdlemefrs29clN 40508 cdlemk29-3 41020 cdlemkid5 41044 dihlsscpre 41343 mapdhcl 41836 hdmapcl 41939 hgmapcl 41998 primrootsunit1 42200 rernegcl 42474 rersubcl 42481 sn-subcl 42531 sn-redivcld 42547 fsuppind 42693 tfsconcatfv 43444 wessf1ornlem 45292 fourierdlem50 46264 |
| Copyright terms: Public domain | W3C validator |