| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotacl | Structured version Visualization version GIF version | ||
| Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
| Ref | Expression |
|---|---|
| riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4039 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 2 | riotacl2 7342 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
| 3 | 1, 2 | sselid 3941 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃!wreu 3349 {crab 3402 ℩crio 7325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-un 3916 df-ss 3928 df-sn 4586 df-pr 4588 df-uni 4868 df-iota 6452 df-riota 7326 |
| This theorem is referenced by: riotaeqimp 7352 riotaprop 7353 riotass2 7356 riotass 7357 riotaxfrd 7360 riotaclb 7367 supcl 9385 fisupcl 9397 ttrcltr 9645 htalem 9825 dfac8clem 9961 dfac2a 10059 fin23lem22 10256 zorn2lem1 10425 subcl 11396 divcl 11819 lbcl 12110 flcl 13733 cjf 15046 sqrtcl 15304 qnumdencl 16685 qnumdenbi 16690 catidcl 17619 lubcl 18292 glbcl 18305 ismgmid 18568 grpinvfval 18886 grpinvf 18894 pj1f 19603 nosupno 27591 nosupbday 27593 nosupbnd1 27602 noinfno 27606 noinfbday 27608 noinfbnd1 27617 scutcut 27689 divsclw 28074 mirf 28563 midf 28679 ismidb 28681 lmif 28688 islmib 28690 uspgredg2vlem 29126 usgredg2vlem1 29128 frgrncvvdeqlem4 30204 grpoidcl 30416 grpoinvcl 30426 pjpreeq 31300 cnlnadjlem3 31971 adjbdln 31985 xdivcld 32816 cvmlift3lem3 35281 transportcl 35994 finxpreclem4 37355 poimirlem26 37613 iorlid 37825 riotaclbgBAD 38920 lshpkrlem2 39077 lshpkrcl 39082 cdleme25cl 40324 cdleme29cl 40344 cdlemefrs29clN 40366 cdlemk29-3 40878 cdlemkid5 40902 dihlsscpre 41201 mapdhcl 41694 hdmapcl 41797 hgmapcl 41856 primrootsunit1 42058 rernegcl 42332 rersubcl 42339 sn-subcl 42389 sn-redivcld 42405 fsuppind 42551 tfsconcatfv 43303 wessf1ornlem 45152 fourierdlem50 46127 |
| Copyright terms: Public domain | W3C validator |