Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotacl | Structured version Visualization version GIF version |
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
Ref | Expression |
---|---|
riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4013 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | riotacl2 7249 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
3 | 1, 2 | sselid 3919 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃!wreu 3066 {crab 3068 ℩crio 7231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 df-riota 7232 |
This theorem is referenced by: riotaeqimp 7259 riotaprop 7260 riotass2 7263 riotass 7264 riotaxfrd 7267 riotaclb 7274 supcl 9217 fisupcl 9228 ttrcltr 9474 htalem 9654 dfac8clem 9788 dfac2a 9885 fin23lem22 10083 zorn2lem1 10252 subcl 11220 divcl 11639 lbcl 11926 flcl 13515 cjf 14815 sqrtcl 15073 qnumdencl 16443 qnumdenbi 16448 catidcl 17391 lubcl 18075 glbcl 18088 ismgmid 18349 grpinvfval 18618 grpinvf 18626 pj1f 19303 mirf 27021 midf 27137 ismidb 27139 lmif 27146 islmib 27148 uspgredg2vlem 27590 usgredg2vlem1 27592 frgrncvvdeqlem4 28666 grpoidcl 28876 grpoinvcl 28886 pjpreeq 29760 cnlnadjlem3 30431 adjbdln 30445 xdivcld 31197 cvmlift3lem3 33283 nosupno 33906 nosupbday 33908 nosupbnd1 33917 noinfno 33921 noinfbday 33923 noinfbnd1 33932 scutcut 33995 transportcl 34335 finxpreclem4 35565 poimirlem26 35803 iorlid 36016 riotaclbgBAD 36968 lshpkrlem2 37125 lshpkrcl 37130 cdleme25cl 38371 cdleme29cl 38391 cdlemefrs29clN 38413 cdlemk29-3 38925 cdlemkid5 38949 dihlsscpre 39248 mapdhcl 39741 hdmapcl 39844 hgmapcl 39903 fsuppind 40279 rernegcl 40354 rersubcl 40361 sn-subcl 40409 wessf1ornlem 42722 fourierdlem50 43697 |
Copyright terms: Public domain | W3C validator |