Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotacl | Structured version Visualization version GIF version |
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
Ref | Expression |
---|---|
riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3969 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | riotacl2 7144 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
3 | 1, 2 | sseldi 3875 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 ∃!wreu 3055 {crab 3057 ℩crio 7126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-un 3848 df-in 3850 df-ss 3860 df-sn 4517 df-pr 4519 df-uni 4797 df-iota 6297 df-riota 7127 |
This theorem is referenced by: riotaeqimp 7154 riotaprop 7155 riotass2 7158 riotass 7159 riotaxfrd 7162 riotaclb 7169 supcl 8995 fisupcl 9006 htalem 9398 dfac8clem 9532 dfac2a 9629 fin23lem22 9827 zorn2lem1 9996 subcl 10963 divcl 11382 lbcl 11669 flcl 13256 cjf 14553 sqrtcl 14811 qnumdencl 16179 qnumdenbi 16184 catidcl 17056 lubcl 17711 glbcl 17724 ismgmid 17991 grpinvfval 18260 grpinvf 18268 pj1f 18941 mirf 26606 midf 26722 ismidb 26724 lmif 26731 islmib 26733 uspgredg2vlem 27165 usgredg2vlem1 27167 frgrncvvdeqlem4 28239 grpoidcl 28449 grpoinvcl 28459 pjpreeq 29333 cnlnadjlem3 30004 adjbdln 30018 xdivcld 30772 cvmlift3lem3 32854 nosupno 33549 nosupbday 33551 nosupbnd1 33560 noinfno 33564 noinfbday 33566 noinfbnd1 33575 scutcut 33638 transportcl 33978 finxpreclem4 35208 poimirlem26 35446 iorlid 35659 riotaclbgBAD 36611 lshpkrlem2 36768 lshpkrcl 36773 cdleme25cl 38014 cdleme29cl 38034 cdlemefrs29clN 38056 cdlemk29-3 38568 cdlemkid5 38592 dihlsscpre 38891 mapdhcl 39384 hdmapcl 39487 hgmapcl 39546 fsuppind 39878 rernegcl 39951 rersubcl 39958 sn-subcl 40006 wessf1ornlem 42280 fourierdlem50 43259 |
Copyright terms: Public domain | W3C validator |