MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotaprop Structured version   Visualization version   GIF version

Theorem riotaprop 7415
Description: Properties of a restricted definite description operator. (Contributed by NM, 23-Nov-2013.)
Hypotheses
Ref Expression
riotaprop.0 𝑥𝜓
riotaprop.1 𝐵 = (𝑥𝐴 𝜑)
riotaprop.2 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
riotaprop (∃!𝑥𝐴 𝜑 → (𝐵𝐴𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem riotaprop
StepHypRef Expression
1 riotaprop.1 . . 3 𝐵 = (𝑥𝐴 𝜑)
2 riotacl 7405 . . 3 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
31, 2eqeltrid 2843 . 2 (∃!𝑥𝐴 𝜑𝐵𝐴)
41eqcomi 2744 . . . 4 (𝑥𝐴 𝜑) = 𝐵
5 nfriota1 7395 . . . . . 6 𝑥(𝑥𝐴 𝜑)
61, 5nfcxfr 2901 . . . . 5 𝑥𝐵
7 riotaprop.0 . . . . 5 𝑥𝜓
8 riotaprop.2 . . . . 5 (𝑥 = 𝐵 → (𝜑𝜓))
96, 7, 8riota2f 7412 . . . 4 ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜓 ↔ (𝑥𝐴 𝜑) = 𝐵))
104, 9mpbiri 258 . . 3 ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → 𝜓)
113, 10mpancom 688 . 2 (∃!𝑥𝐴 𝜑𝜓)
123, 11jca 511 1 (∃!𝑥𝐴 𝜑 → (𝐵𝐴𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1780  wcel 2106  ∃!wreu 3376  crio 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-un 3968  df-ss 3980  df-sn 4632  df-pr 4634  df-uni 4913  df-iota 6516  df-riota 7388
This theorem is referenced by:  fin23lem27  10366  lble  12218  ltrniotaval  40564
  Copyright terms: Public domain W3C validator