![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotaprop | Structured version Visualization version GIF version |
Description: Properties of a restricted definite description operator. (Contributed by NM, 23-Nov-2013.) |
Ref | Expression |
---|---|
riotaprop.0 | ⊢ Ⅎ𝑥𝜓 |
riotaprop.1 | ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 𝜑) |
riotaprop.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riotaprop | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (𝐵 ∈ 𝐴 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaprop.1 | . . 3 ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 𝜑) | |
2 | riotacl 7332 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | |
3 | 1, 2 | eqeltrid 2842 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → 𝐵 ∈ 𝐴) |
4 | 1 | eqcomi 2746 | . . . 4 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵 |
5 | nfriota1 7321 | . . . . . 6 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) | |
6 | 1, 5 | nfcxfr 2906 | . . . . 5 ⊢ Ⅎ𝑥𝐵 |
7 | riotaprop.0 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
8 | riotaprop.2 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
9 | 6, 7, 8 | riota2f 7339 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
10 | 4, 9 | mpbiri 258 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → 𝜓) |
11 | 3, 10 | mpancom 687 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → 𝜓) |
12 | 3, 11 | jca 513 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (𝐵 ∈ 𝐴 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 ∃!wreu 3352 ℩crio 7313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-un 3916 df-in 3918 df-ss 3928 df-sn 4588 df-pr 4590 df-uni 4867 df-iota 6449 df-riota 7314 |
This theorem is referenced by: fin23lem27 10265 lble 12108 ltrniotaval 39047 |
Copyright terms: Public domain | W3C validator |