![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrniotaval | Structured version Visualization version GIF version |
Description: Value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014.) |
Ref | Expression |
---|---|
ltrniotaval.l | β’ β€ = (leβπΎ) |
ltrniotaval.a | β’ π΄ = (AtomsβπΎ) |
ltrniotaval.h | β’ π» = (LHypβπΎ) |
ltrniotaval.t | β’ π = ((LTrnβπΎ)βπ) |
ltrniotaval.f | β’ πΉ = (β©π β π (πβπ) = π) |
Ref | Expression |
---|---|
ltrniotaval | β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β (πΉβπ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrniotaval.l | . . 3 β’ β€ = (leβπΎ) | |
2 | ltrniotaval.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
3 | ltrniotaval.h | . . 3 β’ π» = (LHypβπΎ) | |
4 | ltrniotaval.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
5 | 1, 2, 3, 4 | cdleme 39419 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β β!π β π (πβπ) = π) |
6 | ltrniotaval.f | . . . . . . 7 β’ πΉ = (β©π β π (πβπ) = π) | |
7 | nfriota1 7368 | . . . . . . 7 β’ β²π(β©π β π (πβπ) = π) | |
8 | 6, 7 | nfcxfr 2901 | . . . . . 6 β’ β²ππΉ |
9 | nfcv 2903 | . . . . . 6 β’ β²ππ | |
10 | 8, 9 | nffv 6898 | . . . . 5 β’ β²π(πΉβπ) |
11 | 10 | nfeq1 2918 | . . . 4 β’ β²π(πΉβπ) = π |
12 | fveq1 6887 | . . . . 5 β’ (π = πΉ β (πβπ) = (πΉβπ)) | |
13 | 12 | eqeq1d 2734 | . . . 4 β’ (π = πΉ β ((πβπ) = π β (πΉβπ) = π)) |
14 | 11, 6, 13 | riotaprop 7389 | . . 3 β’ (β!π β π (πβπ) = π β (πΉ β π β§ (πΉβπ) = π)) |
15 | 14 | simprd 496 | . 2 β’ (β!π β π (πβπ) = π β (πΉβπ) = π) |
16 | 5, 15 | syl 17 | 1 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β (πΉβπ) = π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β!wreu 3374 class class class wbr 5147 βcfv 6540 β©crio 7360 lecple 17200 Atomscatm 38121 HLchlt 38208 LHypclh 38843 LTrncltrn 38960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-riotaBAD 37811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-undef 8254 df-map 8818 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-llines 38357 df-lplanes 38358 df-lvols 38359 df-lines 38360 df-psubsp 38362 df-pmap 38363 df-padd 38655 df-lhyp 38847 df-laut 38848 df-ldil 38963 df-ltrn 38964 df-trl 39018 |
This theorem is referenced by: ltrniotacnvval 39441 ltrniotaidvalN 39442 ltrniotavalbN 39443 cdlemm10N 39977 cdlemn2 40054 cdlemn3 40056 cdlemn9 40064 dihmeetlem13N 40178 dih1dimatlem0 40187 dihjatcclem3 40279 |
Copyright terms: Public domain | W3C validator |