Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrniotaval Structured version   Visualization version   GIF version

Theorem ltrniotaval 40575
Description: Value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
ltrniotaval.l = (le‘𝐾)
ltrniotaval.a 𝐴 = (Atoms‘𝐾)
ltrniotaval.h 𝐻 = (LHyp‘𝐾)
ltrniotaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
ltrniotaval.f 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)
Assertion
Ref Expression
ltrniotaval (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑃) = 𝑄)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐻   𝑓,𝐾   ,𝑓   𝑃,𝑓   𝑄,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐹(𝑓)

Proof of Theorem ltrniotaval
StepHypRef Expression
1 ltrniotaval.l . . 3 = (le‘𝐾)
2 ltrniotaval.a . . 3 𝐴 = (Atoms‘𝐾)
3 ltrniotaval.h . . 3 𝐻 = (LHyp‘𝐾)
4 ltrniotaval.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
51, 2, 3, 4cdleme 40554 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∃!𝑓𝑇 (𝑓𝑃) = 𝑄)
6 ltrniotaval.f . . . . . . 7 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)
7 nfriota1 7351 . . . . . . 7 𝑓(𝑓𝑇 (𝑓𝑃) = 𝑄)
86, 7nfcxfr 2889 . . . . . 6 𝑓𝐹
9 nfcv 2891 . . . . . 6 𝑓𝑃
108, 9nffv 6868 . . . . 5 𝑓(𝐹𝑃)
1110nfeq1 2907 . . . 4 𝑓(𝐹𝑃) = 𝑄
12 fveq1 6857 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑃) = (𝐹𝑃))
1312eqeq1d 2731 . . . 4 (𝑓 = 𝐹 → ((𝑓𝑃) = 𝑄 ↔ (𝐹𝑃) = 𝑄))
1411, 6, 13riotaprop 7371 . . 3 (∃!𝑓𝑇 (𝑓𝑃) = 𝑄 → (𝐹𝑇 ∧ (𝐹𝑃) = 𝑄))
1514simprd 495 . 2 (∃!𝑓𝑇 (𝑓𝑃) = 𝑄 → (𝐹𝑃) = 𝑄)
165, 15syl 17 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑃) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ∃!wreu 3352   class class class wbr 5107  cfv 6511  crio 7343  lecple 17227  Atomscatm 39256  HLchlt 39343  LHypclh 39978  LTrncltrn 40095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-undef 8252  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153
This theorem is referenced by:  ltrniotacnvval  40576  ltrniotaidvalN  40577  ltrniotavalbN  40578  cdlemm10N  41112  cdlemn2  41189  cdlemn3  41191  cdlemn9  41199  dihmeetlem13N  41313  dih1dimatlem0  41322  dihjatcclem3  41414
  Copyright terms: Public domain W3C validator