Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrniotaval Structured version   Visualization version   GIF version

Theorem ltrniotaval 39440
Description: Value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
ltrniotaval.l ≀ = (leβ€˜πΎ)
ltrniotaval.a 𝐴 = (Atomsβ€˜πΎ)
ltrniotaval.h 𝐻 = (LHypβ€˜πΎ)
ltrniotaval.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
ltrniotaval.f 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄)
Assertion
Ref Expression
ltrniotaval (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΉβ€˜π‘ƒ) = 𝑄)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐻   𝑓,𝐾   ≀ ,𝑓   𝑃,𝑓   𝑄,𝑓   𝑇,𝑓   𝑓,π‘Š
Allowed substitution hint:   𝐹(𝑓)

Proof of Theorem ltrniotaval
StepHypRef Expression
1 ltrniotaval.l . . 3 ≀ = (leβ€˜πΎ)
2 ltrniotaval.a . . 3 𝐴 = (Atomsβ€˜πΎ)
3 ltrniotaval.h . . 3 𝐻 = (LHypβ€˜πΎ)
4 ltrniotaval.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
51, 2, 3, 4cdleme 39419 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ βˆƒ!𝑓 ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄)
6 ltrniotaval.f . . . . . . 7 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄)
7 nfriota1 7368 . . . . . . 7 Ⅎ𝑓(℩𝑓 ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄)
86, 7nfcxfr 2901 . . . . . 6 Ⅎ𝑓𝐹
9 nfcv 2903 . . . . . 6 Ⅎ𝑓𝑃
108, 9nffv 6898 . . . . 5 Ⅎ𝑓(πΉβ€˜π‘ƒ)
1110nfeq1 2918 . . . 4 Ⅎ𝑓(πΉβ€˜π‘ƒ) = 𝑄
12 fveq1 6887 . . . . 5 (𝑓 = 𝐹 β†’ (π‘“β€˜π‘ƒ) = (πΉβ€˜π‘ƒ))
1312eqeq1d 2734 . . . 4 (𝑓 = 𝐹 β†’ ((π‘“β€˜π‘ƒ) = 𝑄 ↔ (πΉβ€˜π‘ƒ) = 𝑄))
1411, 6, 13riotaprop 7389 . . 3 (βˆƒ!𝑓 ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄 β†’ (𝐹 ∈ 𝑇 ∧ (πΉβ€˜π‘ƒ) = 𝑄))
1514simprd 496 . 2 (βˆƒ!𝑓 ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄 β†’ (πΉβ€˜π‘ƒ) = 𝑄)
165, 15syl 17 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΉβ€˜π‘ƒ) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆƒ!wreu 3374   class class class wbr 5147  β€˜cfv 6540  β„©crio 7360  lecple 17200  Atomscatm 38121  HLchlt 38208  LHypclh 38843  LTrncltrn 38960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-riotaBAD 37811
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-undef 8254  df-map 8818  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358  df-lvols 38359  df-lines 38360  df-psubsp 38362  df-pmap 38363  df-padd 38655  df-lhyp 38847  df-laut 38848  df-ldil 38963  df-ltrn 38964  df-trl 39018
This theorem is referenced by:  ltrniotacnvval  39441  ltrniotaidvalN  39442  ltrniotavalbN  39443  cdlemm10N  39977  cdlemn2  40054  cdlemn3  40056  cdlemn9  40064  dihmeetlem13N  40178  dih1dimatlem0  40187  dihjatcclem3  40279
  Copyright terms: Public domain W3C validator