![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrniotaval | Structured version Visualization version GIF version |
Description: Value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014.) |
Ref | Expression |
---|---|
ltrniotaval.l | β’ β€ = (leβπΎ) |
ltrniotaval.a | β’ π΄ = (AtomsβπΎ) |
ltrniotaval.h | β’ π» = (LHypβπΎ) |
ltrniotaval.t | β’ π = ((LTrnβπΎ)βπ) |
ltrniotaval.f | β’ πΉ = (β©π β π (πβπ) = π) |
Ref | Expression |
---|---|
ltrniotaval | β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β (πΉβπ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrniotaval.l | . . 3 β’ β€ = (leβπΎ) | |
2 | ltrniotaval.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
3 | ltrniotaval.h | . . 3 β’ π» = (LHypβπΎ) | |
4 | ltrniotaval.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
5 | 1, 2, 3, 4 | cdleme 39921 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β β!π β π (πβπ) = π) |
6 | ltrniotaval.f | . . . . . . 7 β’ πΉ = (β©π β π (πβπ) = π) | |
7 | nfriota1 7364 | . . . . . . 7 β’ β²π(β©π β π (πβπ) = π) | |
8 | 6, 7 | nfcxfr 2893 | . . . . . 6 β’ β²ππΉ |
9 | nfcv 2895 | . . . . . 6 β’ β²ππ | |
10 | 8, 9 | nffv 6891 | . . . . 5 β’ β²π(πΉβπ) |
11 | 10 | nfeq1 2910 | . . . 4 β’ β²π(πΉβπ) = π |
12 | fveq1 6880 | . . . . 5 β’ (π = πΉ β (πβπ) = (πΉβπ)) | |
13 | 12 | eqeq1d 2726 | . . . 4 β’ (π = πΉ β ((πβπ) = π β (πΉβπ) = π)) |
14 | 11, 6, 13 | riotaprop 7385 | . . 3 β’ (β!π β π (πβπ) = π β (πΉ β π β§ (πΉβπ) = π)) |
15 | 14 | simprd 495 | . 2 β’ (β!π β π (πβπ) = π β (πΉβπ) = π) |
16 | 5, 15 | syl 17 | 1 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β (πΉβπ) = π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β!wreu 3366 class class class wbr 5138 βcfv 6533 β©crio 7356 lecple 17203 Atomscatm 38623 HLchlt 38710 LHypclh 39345 LTrncltrn 39462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-riotaBAD 38313 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-undef 8253 df-map 8818 df-proset 18250 df-poset 18268 df-plt 18285 df-lub 18301 df-glb 18302 df-join 18303 df-meet 18304 df-p0 18380 df-p1 18381 df-lat 18387 df-clat 18454 df-oposet 38536 df-ol 38538 df-oml 38539 df-covers 38626 df-ats 38627 df-atl 38658 df-cvlat 38682 df-hlat 38711 df-llines 38859 df-lplanes 38860 df-lvols 38861 df-lines 38862 df-psubsp 38864 df-pmap 38865 df-padd 39157 df-lhyp 39349 df-laut 39350 df-ldil 39465 df-ltrn 39466 df-trl 39520 |
This theorem is referenced by: ltrniotacnvval 39943 ltrniotaidvalN 39944 ltrniotavalbN 39945 cdlemm10N 40479 cdlemn2 40556 cdlemn3 40558 cdlemn9 40566 dihmeetlem13N 40680 dih1dimatlem0 40689 dihjatcclem3 40781 |
Copyright terms: Public domain | W3C validator |