![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrniotaval | Structured version Visualization version GIF version |
Description: Value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014.) |
Ref | Expression |
---|---|
ltrniotaval.l | ⊢ ≤ = (le‘𝐾) |
ltrniotaval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrniotaval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrniotaval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
ltrniotaval.f | ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
Ref | Expression |
---|---|
ltrniotaval | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐹‘𝑃) = 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrniotaval.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | ltrniotaval.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | ltrniotaval.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | ltrniotaval.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | cdleme 39894 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
6 | ltrniotaval.f | . . . . . . 7 ⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) | |
7 | nfriota1 7375 | . . . . . . 7 ⊢ Ⅎ𝑓(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) | |
8 | 6, 7 | nfcxfr 2900 | . . . . . 6 ⊢ Ⅎ𝑓𝐹 |
9 | nfcv 2902 | . . . . . 6 ⊢ Ⅎ𝑓𝑃 | |
10 | 8, 9 | nffv 6901 | . . . . 5 ⊢ Ⅎ𝑓(𝐹‘𝑃) |
11 | 10 | nfeq1 2917 | . . . 4 ⊢ Ⅎ𝑓(𝐹‘𝑃) = 𝑄 |
12 | fveq1 6890 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑃) = (𝐹‘𝑃)) | |
13 | 12 | eqeq1d 2733 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑃) = 𝑄 ↔ (𝐹‘𝑃) = 𝑄)) |
14 | 11, 6, 13 | riotaprop 7396 | . . 3 ⊢ (∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄 → (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑄)) |
15 | 14 | simprd 495 | . 2 ⊢ (∃!𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄 → (𝐹‘𝑃) = 𝑄) |
16 | 5, 15 | syl 17 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐹‘𝑃) = 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∃!wreu 3373 class class class wbr 5148 ‘cfv 6543 ℩crio 7367 lecple 17211 Atomscatm 38596 HLchlt 38683 LHypclh 39318 LTrncltrn 39435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-riotaBAD 38286 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-undef 8264 df-map 8828 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-p1 18389 df-lat 18395 df-clat 18462 df-oposet 38509 df-ol 38511 df-oml 38512 df-covers 38599 df-ats 38600 df-atl 38631 df-cvlat 38655 df-hlat 38684 df-llines 38832 df-lplanes 38833 df-lvols 38834 df-lines 38835 df-psubsp 38837 df-pmap 38838 df-padd 39130 df-lhyp 39322 df-laut 39323 df-ldil 39438 df-ltrn 39439 df-trl 39493 |
This theorem is referenced by: ltrniotacnvval 39916 ltrniotaidvalN 39917 ltrniotavalbN 39918 cdlemm10N 40452 cdlemn2 40529 cdlemn3 40531 cdlemn9 40539 dihmeetlem13N 40653 dih1dimatlem0 40662 dihjatcclem3 40754 |
Copyright terms: Public domain | W3C validator |