![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lble | Structured version Visualization version GIF version |
Description: If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
lble | ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbreu 12162 | . . . . 5 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) | |
2 | nfcv 2895 | . . . . . . 7 ⊢ Ⅎ𝑥𝑆 | |
3 | nfriota1 7365 | . . . . . . . 8 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) | |
4 | nfcv 2895 | . . . . . . . 8 ⊢ Ⅎ𝑥 ≤ | |
5 | nfcv 2895 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
6 | 3, 4, 5 | nfbr 5186 | . . . . . . 7 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦 |
7 | 2, 6 | nfralw 3300 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝑆 (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦 |
8 | eqid 2724 | . . . . . 6 ⊢ (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) = (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) | |
9 | nfra1 3273 | . . . . . . . . 9 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 | |
10 | nfcv 2895 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝑆 | |
11 | 9, 10 | nfriota 7371 | . . . . . . . 8 ⊢ Ⅎ𝑦(℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) |
12 | 11 | nfeq2 2912 | . . . . . . 7 ⊢ Ⅎ𝑦 𝑥 = (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) |
13 | breq1 5142 | . . . . . . 7 ⊢ (𝑥 = (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → (𝑥 ≤ 𝑦 ↔ (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦)) | |
14 | 12, 13 | ralbid 3262 | . . . . . 6 ⊢ (𝑥 = (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦)) |
15 | 7, 8, 14 | riotaprop 7386 | . . . . 5 ⊢ (∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → ((℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦)) |
16 | 1, 15 | syl 17 | . . . 4 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ((℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦)) |
17 | 16 | simprd 495 | . . 3 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∀𝑦 ∈ 𝑆 (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦) |
18 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑦 ≤ | |
19 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
20 | 11, 18, 19 | nfbr 5186 | . . . 4 ⊢ Ⅎ𝑦(℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴 |
21 | breq2 5143 | . . . 4 ⊢ (𝑦 = 𝐴 → ((℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦 ↔ (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴)) | |
22 | 20, 21 | rspc 3592 | . . 3 ⊢ (𝐴 ∈ 𝑆 → (∀𝑦 ∈ 𝑆 (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦 → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴)) |
23 | 17, 22 | mpan9 506 | . 2 ⊢ (((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝑆) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴) |
24 | 23 | 3impa 1107 | 1 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 ∃!wreu 3366 ⊆ wss 3941 class class class wbr 5139 ℩crio 7357 ℝcr 11106 ≤ cle 11247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-resscn 11164 ax-pre-lttri 11181 ax-pre-lttrn 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 |
This theorem is referenced by: lbinf 12165 lbinfle 12167 |
Copyright terms: Public domain | W3C validator |