MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lble Structured version   Visualization version   GIF version

Theorem lble 11584
Description: If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
lble ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑆   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem lble
StepHypRef Expression
1 lbreu 11582 . . . . 5 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
2 nfcv 2958 . . . . . . 7 𝑥𝑆
3 nfriota1 7104 . . . . . . . 8 𝑥(𝑥𝑆𝑦𝑆 𝑥𝑦)
4 nfcv 2958 . . . . . . . 8 𝑥
5 nfcv 2958 . . . . . . . 8 𝑥𝑦
63, 4, 5nfbr 5080 . . . . . . 7 𝑥(𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦
72, 6nfralw 3192 . . . . . 6 𝑥𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦
8 eqid 2801 . . . . . 6 (𝑥𝑆𝑦𝑆 𝑥𝑦) = (𝑥𝑆𝑦𝑆 𝑥𝑦)
9 nfra1 3186 . . . . . . . . 9 𝑦𝑦𝑆 𝑥𝑦
10 nfcv 2958 . . . . . . . . 9 𝑦𝑆
119, 10nfriota 7109 . . . . . . . 8 𝑦(𝑥𝑆𝑦𝑆 𝑥𝑦)
1211nfeq2 2975 . . . . . . 7 𝑦 𝑥 = (𝑥𝑆𝑦𝑆 𝑥𝑦)
13 breq1 5036 . . . . . . 7 (𝑥 = (𝑥𝑆𝑦𝑆 𝑥𝑦) → (𝑥𝑦 ↔ (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
1412, 13ralbid 3198 . . . . . 6 (𝑥 = (𝑥𝑆𝑦𝑆 𝑥𝑦) → (∀𝑦𝑆 𝑥𝑦 ↔ ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
157, 8, 14riotaprop 7124 . . . . 5 (∃!𝑥𝑆𝑦𝑆 𝑥𝑦 → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 ∧ ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
161, 15syl 17 . . . 4 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 ∧ ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
1716simprd 499 . . 3 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦)
18 nfcv 2958 . . . . 5 𝑦
19 nfcv 2958 . . . . 5 𝑦𝐴
2011, 18, 19nfbr 5080 . . . 4 𝑦(𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴
21 breq2 5037 . . . 4 (𝑦 = 𝐴 → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦 ↔ (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴))
2220, 21rspc 3562 . . 3 (𝐴𝑆 → (∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦 → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴))
2317, 22mpan9 510 . 2 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
24233impa 1107 1 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  wrex 3110  ∃!wreu 3111  wss 3884   class class class wbr 5033  crio 7096  cr 10529  cle 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-pre-lttri 10604  ax-pre-lttrn 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674
This theorem is referenced by:  lbinf  11585  lbinfle  11587
  Copyright terms: Public domain W3C validator