MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lble Structured version   Visualization version   GIF version

Theorem lble 12164
Description: If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
lble ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑆   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem lble
StepHypRef Expression
1 lbreu 12162 . . . . 5 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
2 nfcv 2895 . . . . . . 7 𝑥𝑆
3 nfriota1 7365 . . . . . . . 8 𝑥(𝑥𝑆𝑦𝑆 𝑥𝑦)
4 nfcv 2895 . . . . . . . 8 𝑥
5 nfcv 2895 . . . . . . . 8 𝑥𝑦
63, 4, 5nfbr 5186 . . . . . . 7 𝑥(𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦
72, 6nfralw 3300 . . . . . 6 𝑥𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦
8 eqid 2724 . . . . . 6 (𝑥𝑆𝑦𝑆 𝑥𝑦) = (𝑥𝑆𝑦𝑆 𝑥𝑦)
9 nfra1 3273 . . . . . . . . 9 𝑦𝑦𝑆 𝑥𝑦
10 nfcv 2895 . . . . . . . . 9 𝑦𝑆
119, 10nfriota 7371 . . . . . . . 8 𝑦(𝑥𝑆𝑦𝑆 𝑥𝑦)
1211nfeq2 2912 . . . . . . 7 𝑦 𝑥 = (𝑥𝑆𝑦𝑆 𝑥𝑦)
13 breq1 5142 . . . . . . 7 (𝑥 = (𝑥𝑆𝑦𝑆 𝑥𝑦) → (𝑥𝑦 ↔ (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
1412, 13ralbid 3262 . . . . . 6 (𝑥 = (𝑥𝑆𝑦𝑆 𝑥𝑦) → (∀𝑦𝑆 𝑥𝑦 ↔ ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
157, 8, 14riotaprop 7386 . . . . 5 (∃!𝑥𝑆𝑦𝑆 𝑥𝑦 → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 ∧ ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
161, 15syl 17 . . . 4 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 ∧ ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
1716simprd 495 . . 3 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦)
18 nfcv 2895 . . . . 5 𝑦
19 nfcv 2895 . . . . 5 𝑦𝐴
2011, 18, 19nfbr 5186 . . . 4 𝑦(𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴
21 breq2 5143 . . . 4 (𝑦 = 𝐴 → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦 ↔ (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴))
2220, 21rspc 3592 . . 3 (𝐴𝑆 → (∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦 → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴))
2317, 22mpan9 506 . 2 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
24233impa 1107 1 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053  wrex 3062  ∃!wreu 3366  wss 3941   class class class wbr 5139  crio 7357  cr 11106  cle 11247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-resscn 11164  ax-pre-lttri 11181  ax-pre-lttrn 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252
This theorem is referenced by:  lbinf  12165  lbinfle  12167
  Copyright terms: Public domain W3C validator