![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riota2f | Structured version Visualization version GIF version |
Description: This theorem shows a condition that allows to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
riota2f.1 | ⊢ Ⅎ𝑥𝐵 |
riota2f.2 | ⊢ Ⅎ𝑥𝜓 |
riota2f.3 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riota2f | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riota2f.1 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
2 | 1 | nfel1 2919 | . 2 ⊢ Ⅎ𝑥 𝐵 ∈ 𝐴 |
3 | 1 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝐴 → Ⅎ𝑥𝐵) |
4 | riota2f.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
5 | 4 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝐴 → Ⅎ𝑥𝜓) |
6 | id 22 | . 2 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴) | |
7 | riota2f.3 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
8 | 7 | adantl 482 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 = 𝐵) → (𝜑 ↔ 𝜓)) |
9 | 2, 3, 5, 6, 8 | riota2df 7388 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 Ⅎwnfc 2883 ∃!wreu 3374 ℩crio 7363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-reu 3377 df-v 3476 df-un 3953 df-in 3955 df-ss 3965 df-sn 4629 df-pr 4631 df-uni 4909 df-iota 6495 df-riota 7364 |
This theorem is referenced by: riota2 7390 riotaprop 7392 riotass2 7395 riotass 7396 riotaxfrd 7399 ttrcltr 9710 cdlemksv2 39713 cdlemkuv2 39733 cdlemk36 39779 |
Copyright terms: Public domain | W3C validator |