Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riota2f | Structured version Visualization version GIF version |
Description: This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
riota2f.1 | ⊢ Ⅎ𝑥𝐵 |
riota2f.2 | ⊢ Ⅎ𝑥𝜓 |
riota2f.3 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riota2f | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riota2f.1 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
2 | 1 | nfel1 2923 | . 2 ⊢ Ⅎ𝑥 𝐵 ∈ 𝐴 |
3 | 1 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝐴 → Ⅎ𝑥𝐵) |
4 | riota2f.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
5 | 4 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝐴 → Ⅎ𝑥𝜓) |
6 | id 22 | . 2 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴) | |
7 | riota2f.3 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
8 | 7 | adantl 482 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 = 𝐵) → (𝜑 ↔ 𝜓)) |
9 | 2, 3, 5, 6, 8 | riota2df 7256 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 ∃!wreu 3066 ℩crio 7231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-reu 3072 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 df-riota 7232 |
This theorem is referenced by: riota2 7258 riotaprop 7260 riotass2 7263 riotass 7264 riotaxfrd 7267 ttrcltr 9474 cdlemksv2 38861 cdlemkuv2 38881 cdlemk36 38927 |
Copyright terms: Public domain | W3C validator |