Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riota2f | Structured version Visualization version GIF version |
Description: This theorem shows a condition that allows us to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
riota2f.1 | ⊢ Ⅎ𝑥𝐵 |
riota2f.2 | ⊢ Ⅎ𝑥𝜓 |
riota2f.3 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riota2f | ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riota2f.1 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
2 | 1 | nfel1 2922 | . 2 ⊢ Ⅎ𝑥 𝐵 ∈ 𝐴 |
3 | 1 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝐴 → Ⅎ𝑥𝐵) |
4 | riota2f.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
5 | 4 | a1i 11 | . 2 ⊢ (𝐵 ∈ 𝐴 → Ⅎ𝑥𝜓) |
6 | id 22 | . 2 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐴) | |
7 | riota2f.3 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
8 | 7 | adantl 481 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 = 𝐵) → (𝜑 ↔ 𝜓)) |
9 | 2, 3, 5, 6, 8 | riota2df 7236 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 ∃!wreu 3065 ℩crio 7211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-reu 3070 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-riota 7212 |
This theorem is referenced by: riota2 7238 riotaprop 7240 riotass2 7243 riotass 7244 riotaxfrd 7247 ttrcltr 33702 cdlemksv2 38788 cdlemkuv2 38808 cdlemk36 38854 |
Copyright terms: Public domain | W3C validator |