MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota2f Structured version   Visualization version   GIF version

Theorem riota2f 7429
Description: This theorem shows a condition that allows to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riota2f.1 𝑥𝐵
riota2f.2 𝑥𝜓
riota2f.3 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
riota2f ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜓 ↔ (𝑥𝐴 𝜑) = 𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem riota2f
StepHypRef Expression
1 riota2f.1 . . 3 𝑥𝐵
21nfel1 2925 . 2 𝑥 𝐵𝐴
31a1i 11 . 2 (𝐵𝐴𝑥𝐵)
4 riota2f.2 . . 3 𝑥𝜓
54a1i 11 . 2 (𝐵𝐴 → Ⅎ𝑥𝜓)
6 id 22 . 2 (𝐵𝐴𝐵𝐴)
7 riota2f.3 . . 3 (𝑥 = 𝐵 → (𝜑𝜓))
87adantl 481 . 2 ((𝐵𝐴𝑥 = 𝐵) → (𝜑𝜓))
92, 3, 5, 6, 8riota2df 7428 1 ((𝐵𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜓 ↔ (𝑥𝐴 𝜑) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  ∃!wreu 3386  crio 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-reu 3389  df-v 3490  df-un 3981  df-ss 3993  df-sn 4649  df-pr 4651  df-uni 4932  df-iota 6525  df-riota 7404
This theorem is referenced by:  riota2  7430  riotaprop  7432  riotass2  7435  riotass  7436  riotaxfrd  7439  ttrcltr  9785  cdlemksv2  40804  cdlemkuv2  40824  cdlemk36  40870
  Copyright terms: Public domain W3C validator