| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngacl | Structured version Visualization version GIF version | ||
| Description: Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngacl.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngacl.p | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| rngacl | ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnggrp 20084 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 2 | rngacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rngacl.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 4 | 2, 3 | grpcl 18862 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 +gcplusg 17168 Grpcgrp 18854 Rngcrng 20078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-abl 19703 df-rng 20079 |
| This theorem is referenced by: imasrng 20103 qusrng 20106 cntzsubrng 20491 rngqiprngghmlem2 21234 rngqiprngghm 21245 |
| Copyright terms: Public domain | W3C validator |