MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngacl Structured version   Visualization version   GIF version

Theorem rngacl 20075
Description: Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.)
Hypotheses
Ref Expression
rngacl.b 𝐵 = (Base‘𝑅)
rngacl.p + = (+g𝑅)
Assertion
Ref Expression
rngacl ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem rngacl
StepHypRef Expression
1 rnggrp 20071 . 2 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
2 rngacl.b . . 3 𝐵 = (Base‘𝑅)
3 rngacl.p . . 3 + = (+g𝑅)
42, 3grpcl 18849 . 2 ((𝑅 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
51, 4syl3an1 1163 1 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  Grpcgrp 18841  Rngcrng 20065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-abl 19690  df-rng 20066
This theorem is referenced by:  imasrng  20090  qusrng  20093  cntzsubrng  20477  rngqiprngghmlem2  21220  rngqiprngghm  21231
  Copyright terms: Public domain W3C validator