Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngacl Structured version   Visualization version   GIF version

Theorem rngacl 46661
Description: Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.)
Hypotheses
Ref Expression
rngacl.b 𝐵 = (Base‘𝑅)
rngacl.p + = (+g𝑅)
Assertion
Ref Expression
rngacl ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem rngacl
StepHypRef Expression
1 rnggrp 46654 . 2 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
2 rngacl.b . . 3 𝐵 = (Base‘𝑅)
3 rngacl.p . . 3 + = (+g𝑅)
42, 3grpcl 18827 . 2 ((𝑅 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
51, 4syl3an1 1164 1 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  cfv 6544  (class class class)co 7409  Basecbs 17144  +gcplusg 17197  Grpcgrp 18819  Rngcrng 46648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-abl 19651  df-rng 46649
This theorem is referenced by:  imasrng  46678  qusrng  46681  cntzsubrng  46746  rngqiprngghmlem2  46773  rngqiprngghm  46784
  Copyright terms: Public domain W3C validator