![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngacl | Structured version Visualization version GIF version |
Description: Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.) |
Ref | Expression |
---|---|
rngacl.b | ⊢ 𝐵 = (Base‘𝑅) |
rngacl.p | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
rngacl | ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnggrp 20185 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
2 | rngacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | rngacl.p | . . 3 ⊢ + = (+g‘𝑅) | |
4 | 2, 3 | grpcl 18981 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Grpcgrp 18973 Rngcrng 20179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-abl 19825 df-rng 20180 |
This theorem is referenced by: imasrng 20204 qusrng 20207 cntzsubrng 20593 rngqiprngghmlem2 21321 rngqiprngghm 21332 |
Copyright terms: Public domain | W3C validator |