![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngacl | Structured version Visualization version GIF version |
Description: Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.) |
Ref | Expression |
---|---|
rngacl.b | ⊢ 𝐵 = (Base‘𝑅) |
rngacl.p | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
rngacl | ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnggrp 20176 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
2 | rngacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | rngacl.p | . . 3 ⊢ + = (+g‘𝑅) | |
4 | 2, 3 | grpcl 18972 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1162 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Grpcgrp 18964 Rngcrng 20170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-abl 19816 df-rng 20171 |
This theorem is referenced by: imasrng 20195 qusrng 20198 cntzsubrng 20584 rngqiprngghmlem2 21316 rngqiprngghm 21327 |
Copyright terms: Public domain | W3C validator |