| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngacl | Structured version Visualization version GIF version | ||
| Description: Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngacl.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngacl.p | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| rngacl | ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnggrp 20061 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 2 | rngacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rngacl.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 4 | 2, 3 | grpcl 18838 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Grpcgrp 18830 Rngcrng 20055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-abl 19680 df-rng 20056 |
| This theorem is referenced by: imasrng 20080 qusrng 20083 cntzsubrng 20470 rngqiprngghmlem2 21213 rngqiprngghm 21224 |
| Copyright terms: Public domain | W3C validator |