| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngacl | Structured version Visualization version GIF version | ||
| Description: Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngacl.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngacl.p | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| rngacl | ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnggrp 20071 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 2 | rngacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rngacl.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 4 | 2, 3 | grpcl 18849 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 Grpcgrp 18841 Rngcrng 20065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-abl 19690 df-rng 20066 |
| This theorem is referenced by: imasrng 20090 qusrng 20093 cntzsubrng 20477 rngqiprngghmlem2 21220 rngqiprngghm 21231 |
| Copyright terms: Public domain | W3C validator |