MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngacl Structured version   Visualization version   GIF version

Theorem rngacl 20122
Description: Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.)
Hypotheses
Ref Expression
rngacl.b 𝐵 = (Base‘𝑅)
rngacl.p + = (+g𝑅)
Assertion
Ref Expression
rngacl ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem rngacl
StepHypRef Expression
1 rnggrp 20118 . 2 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
2 rngacl.b . . 3 𝐵 = (Base‘𝑅)
3 rngacl.p . . 3 + = (+g𝑅)
42, 3grpcl 18924 . 2 ((𝑅 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
51, 4syl3an1 1163 1 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Grpcgrp 18916  Rngcrng 20112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-abl 19764  df-rng 20113
This theorem is referenced by:  imasrng  20137  qusrng  20140  cntzsubrng  20527  rngqiprngghmlem2  21249  rngqiprngghm  21260
  Copyright terms: Public domain W3C validator