![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngacl | Structured version Visualization version GIF version |
Description: Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.) |
Ref | Expression |
---|---|
rngacl.b | ⊢ 𝐵 = (Base‘𝑅) |
rngacl.p | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
rngacl | ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnggrp 20110 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
2 | rngacl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | rngacl.p | . . 3 ⊢ + = (+g‘𝑅) | |
4 | 2, 3 | grpcl 18906 | . 2 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1160 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 +gcplusg 17236 Grpcgrp 18898 Rngcrng 20104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-ov 7422 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-abl 19750 df-rng 20105 |
This theorem is referenced by: imasrng 20129 qusrng 20132 cntzsubrng 20516 rngqiprngghmlem2 21195 rngqiprngghm 21206 |
Copyright terms: Public domain | W3C validator |