| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rng0cl | Structured version Visualization version GIF version | ||
| Description: The zero element of a non-unital ring belongs to its base set. (Contributed by AV, 16-Feb-2025.) |
| Ref | Expression |
|---|---|
| rng0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng0cl.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| rng0cl | ⊢ (𝑅 ∈ Rng → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnggrp 20067 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 2 | rng0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rng0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | grpidcl 18897 | . 2 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ Rng → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Basecbs 17179 0gc0g 17402 Grpcgrp 18865 Rngcrng 20061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-abl 19713 df-rng 20062 |
| This theorem is referenced by: rngrz 20075 cntzsubrng 20476 rnglidl0 21139 rngqiprngimf1lem 21204 |
| Copyright terms: Public domain | W3C validator |