| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rng0cl | Structured version Visualization version GIF version | ||
| Description: The zero element of a non-unital ring belongs to its base set. (Contributed by AV, 16-Feb-2025.) |
| Ref | Expression |
|---|---|
| rng0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
| rng0cl.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| rng0cl | ⊢ (𝑅 ∈ Rng → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnggrp 20118 | . 2 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 2 | rng0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rng0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | grpidcl 18948 | . 2 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ Rng → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 Basecbs 17228 0gc0g 17453 Grpcgrp 18916 Rngcrng 20112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-riota 7362 df-ov 7408 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-abl 19764 df-rng 20113 |
| This theorem is referenced by: rngrz 20126 cntzsubrng 20527 rnglidl0 21190 rngqiprngimf1lem 21255 |
| Copyright terms: Public domain | W3C validator |