MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rng0cl Structured version   Visualization version   GIF version

Theorem rng0cl 20123
Description: The zero element of a non-unital ring belongs to its base set. (Contributed by AV, 16-Feb-2025.)
Hypotheses
Ref Expression
rng0cl.b 𝐵 = (Base‘𝑅)
rng0cl.z 0 = (0g𝑅)
Assertion
Ref Expression
rng0cl (𝑅 ∈ Rng → 0𝐵)

Proof of Theorem rng0cl
StepHypRef Expression
1 rnggrp 20118 . 2 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
2 rng0cl.b . . 3 𝐵 = (Base‘𝑅)
3 rng0cl.z . . 3 0 = (0g𝑅)
42, 3grpidcl 18948 . 2 (𝑅 ∈ Grp → 0𝐵)
51, 4syl 17 1 (𝑅 ∈ Rng → 0𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6531  Basecbs 17228  0gc0g 17453  Grpcgrp 18916  Rngcrng 20112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-riota 7362  df-ov 7408  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-abl 19764  df-rng 20113
This theorem is referenced by:  rngrz  20126  cntzsubrng  20527  rnglidl0  21190  rngqiprngimf1lem  21255
  Copyright terms: Public domain W3C validator