MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rng0cl Structured version   Visualization version   GIF version

Theorem rng0cl 20190
Description: The zero element of a non-unital ring belongs to its base set. (Contributed by AV, 16-Feb-2025.)
Hypotheses
Ref Expression
rng0cl.b 𝐵 = (Base‘𝑅)
rng0cl.z 0 = (0g𝑅)
Assertion
Ref Expression
rng0cl (𝑅 ∈ Rng → 0𝐵)

Proof of Theorem rng0cl
StepHypRef Expression
1 rnggrp 20185 . 2 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
2 rng0cl.b . . 3 𝐵 = (Base‘𝑅)
3 rng0cl.z . . 3 0 = (0g𝑅)
42, 3grpidcl 19005 . 2 (𝑅 ∈ Grp → 0𝐵)
51, 4syl 17 1 (𝑅 ∈ Rng → 0𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  Basecbs 17258  0gc0g 17499  Grpcgrp 18973  Rngcrng 20179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-riota 7404  df-ov 7451  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-abl 19825  df-rng 20180
This theorem is referenced by:  rngrz  20193  cntzsubrng  20593  rnglidl0  21262  rngqiprngimf1lem  21327
  Copyright terms: Public domain W3C validator