Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpcl | Structured version Visualization version GIF version |
Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
Ref | Expression |
---|---|
grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
grpcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18238 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | mndcl 18047 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1164 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ‘cfv 6349 (class class class)co 7182 Basecbs 16598 +gcplusg 16680 Mndcmnd 18039 Grpcgrp 18231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-nul 5184 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-iota 6307 df-fv 6357 df-ov 7185 df-mgm 17980 df-sgrp 18029 df-mnd 18040 df-grp 18234 |
This theorem is referenced by: grpcld 18244 grprcan 18267 grprinv 18283 grplmulf1o 18303 grpinvadd 18307 grpsubf 18308 grpsubadd 18317 grpaddsubass 18319 grpnpcan 18321 grpsubsub4 18322 grppnpcan2 18323 dfgrp3 18328 grplactcnv 18332 imasgrp 18345 mulgcl 18375 mulgaddcomlem 18380 mulgdir 18389 subgcl 18419 nsgacs 18444 nmzsubg 18447 nsgid 18452 eqger 18460 eqgcpbl 18464 qusgrp 18465 qusadd 18467 ghmrn 18501 idghm 18503 ghmpreima 18510 ghmnsgima 18512 ghmnsgpreima 18513 ghmf1o 18518 conjghm 18519 conjnmz 18522 qusghm 18525 gaid 18559 subgga 18560 gass 18561 gaorber 18568 gastacl 18569 gastacos 18570 cntzsubg 18597 galactghm 18662 lactghmga 18663 symgsssg 18725 symgfisg 18726 symggen 18728 sylow1lem2 18854 sylow2blem1 18875 sylow2blem2 18876 sylow2blem3 18877 sylow3lem1 18882 sylow3lem2 18883 subgdisj1 18947 ablsub4 19064 abladdsub4 19065 mulgdi 19078 mulgghm 19080 invghm 19085 ghmplusg 19097 odadd1 19099 odadd2 19100 odadd 19101 gex2abl 19102 gexexlem 19103 torsubg 19105 oddvdssubg 19106 frgpnabllem2 19125 ringacl 19462 ringpropd 19466 drngmcl 19646 abvtrivd 19742 idsrngd 19764 lmodacl 19776 lmodvacl 19779 lmodprop2d 19827 rmodislmod 19833 prdslmodd 19872 pwssplit2 19963 evpmodpmf1o 20424 frlmplusgvalb 20597 asclghm 20708 psraddcl 20774 mplind 20894 evlslem1 20908 mhpaddcl 20957 evl1addd 21123 scmataddcl 21279 mdetralt 21371 mdetunilem6 21380 opnsubg 22871 ghmcnp 22878 qustgpopn 22883 ngprcan 23375 ngpocelbl 23469 nmotri 23504 ncvspi 23920 cphipval2 24005 4cphipval2 24006 cphipval 24007 efsubm 25307 abvcxp 26363 ttgcontlem1 26843 abliso 30894 ogrpaddltbi 30933 ogrpaddltrbid 30935 ogrpinvlt 30938 cyc3co2 30996 cyc3genpmlem 31007 cycpmconjs 31012 cyc3conja 31013 archiabllem2a 31037 archiabllem2c 31038 archiabllem2b 31039 dvrdir 31076 imaslmod 31137 quslmod 31138 qusxpid 31143 nsgmgclem 31180 drgextlsp 31265 matunitlindflem1 35428 nelsubgcld 39843 evlsaddval 39896 fsuppssind 39901 gicabl 40536 isnumbasgrplem2 40541 mendlmod 40630 |
Copyright terms: Public domain | W3C validator |