| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grpcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18863 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mndcl 18660 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 +gcplusg 17171 Mndcmnd 18652 Grpcgrp 18856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 |
| This theorem is referenced by: grpcld 18870 grprcan 18896 grprinv 18913 grplmulf1o 18936 grpinvadd 18941 grpsubf 18942 grpsubadd 18951 grpaddsubass 18953 grpnpcan 18955 grpsubsub4 18956 grppnpcan2 18957 grplactcnv 18966 imasgrp 18979 mulgcl 19014 mulgaddcomlem 19020 mulgdir 19029 subgcl 19059 nsgacs 19084 nmzsubg 19087 nsgid 19092 eqgcpbl 19104 qusgrp 19108 qusadd 19110 ecqusaddcl 19115 qus0subgadd 19121 ghmrn 19151 idghm 19153 ghmpreima 19160 ghmnsgima 19162 ghmnsgpreima 19163 ghmf1o 19170 conjghm 19171 qusghm 19177 gaid 19221 subgga 19222 gass 19223 gaorber 19230 gastacl 19231 gastacos 19232 cntzsubg 19261 galactghm 19326 lactghmga 19327 symgsssg 19389 symgfisg 19390 symggen 19392 sylow1lem2 19521 sylow2blem1 19542 sylow2blem2 19543 sylow2blem3 19544 sylow3lem1 19549 sylow3lem2 19550 subgdisj1 19613 ablsub4 19732 abladdsub4 19733 mulgdi 19748 mulgghm 19750 invghm 19755 ghmplusg 19768 odadd1 19770 odadd2 19771 odadd 19772 gex2abl 19773 gexexlem 19774 torsubg 19776 oddvdssubg 19777 frgpnabllem2 19796 ogrpaddltbi 20061 ogrpaddltrbid 20063 ogrpinvlt 20066 rngacl 20090 rngpropd 20102 ringacl 20206 ringpropd 20216 dvrdir 20340 drngmclOLD 20676 abvtrivd 20757 idsrngd 20781 lmodacl 20815 lmodvacl 20818 lmodprop2d 20867 rmodislmod 20873 prdslmodd 20912 pwssplit2 21004 evpmodpmf1o 21543 frlmplusgvalb 21716 asclghm 21830 psraddclOLD 21886 mplind 22015 evlslem1 22027 evl1addd 22266 scmataddcl 22441 mdetralt 22533 mdetunilem6 22542 opnsubg 24033 ghmcnp 24040 qustgpopn 24045 ngprcan 24535 ngpocelbl 24629 nmotri 24664 ncvspi 25093 cphipval2 25178 4cphipval2 25179 cphipval 25180 efsubm 26497 abvcxp 27563 ttgcontlem1 28873 abliso 33028 cyc3co2 33120 cyc3genpmlem 33131 cycpmconjs 33136 cyc3conja 33137 archiabllem2a 33174 archiabllem2c 33175 archiabllem2b 33176 imaslmod 33329 quslmod 33334 qusxpid 33339 nsgmgclem 33387 drgextlsp 33617 matunitlindflem1 37666 fldhmf1 42193 primrootsunit1 42200 aks6d1c1p2 42212 aks6d1c1p3 42213 nelsubgcld 42605 evlsaddval 42676 fsuppssind 42701 gicabl 43206 isnumbasgrplem2 43211 mendlmod 43296 |
| Copyright terms: Public domain | W3C validator |