| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grpcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18928 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mndcl 18725 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Mndcmnd 18717 Grpcgrp 18921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 |
| This theorem is referenced by: grpcld 18935 grprcan 18961 grprinv 18978 grplmulf1o 19001 grpinvadd 19006 grpsubf 19007 grpsubadd 19016 grpaddsubass 19018 grpnpcan 19020 grpsubsub4 19021 grppnpcan2 19022 grplactcnv 19031 imasgrp 19044 mulgcl 19079 mulgaddcomlem 19085 mulgdir 19094 subgcl 19124 nsgacs 19150 nmzsubg 19153 nsgid 19158 eqgcpbl 19170 qusgrp 19174 qusadd 19176 ecqusaddcl 19181 qus0subgadd 19187 ghmrn 19217 idghm 19219 ghmpreima 19226 ghmnsgima 19228 ghmnsgpreima 19229 ghmf1o 19236 conjghm 19237 qusghm 19243 gaid 19287 subgga 19288 gass 19289 gaorber 19296 gastacl 19297 gastacos 19298 cntzsubg 19327 galactghm 19390 lactghmga 19391 symgsssg 19453 symgfisg 19454 symggen 19456 sylow1lem2 19585 sylow2blem1 19606 sylow2blem2 19607 sylow2blem3 19608 sylow3lem1 19613 sylow3lem2 19614 subgdisj1 19677 ablsub4 19796 abladdsub4 19797 mulgdi 19812 mulgghm 19814 invghm 19819 ghmplusg 19832 odadd1 19834 odadd2 19835 odadd 19836 gex2abl 19837 gexexlem 19838 torsubg 19840 oddvdssubg 19841 frgpnabllem2 19860 rngacl 20127 rngpropd 20139 ringacl 20243 ringpropd 20253 dvrdir 20377 drngmclOLD 20716 abvtrivd 20797 idsrngd 20821 lmodacl 20834 lmodvacl 20837 lmodprop2d 20886 rmodislmod 20892 prdslmodd 20931 pwssplit2 21023 evpmodpmf1o 21561 frlmplusgvalb 21734 asclghm 21848 psraddclOLD 21904 mplind 22033 evlslem1 22045 evl1addd 22284 scmataddcl 22459 mdetralt 22551 mdetunilem6 22560 opnsubg 24051 ghmcnp 24058 qustgpopn 24063 ngprcan 24554 ngpocelbl 24648 nmotri 24683 ncvspi 25113 cphipval2 25198 4cphipval2 25199 cphipval 25200 efsubm 26517 abvcxp 27583 ttgcontlem1 28869 abliso 33036 ogrpaddltbi 33091 ogrpaddltrbid 33093 ogrpinvlt 33096 cyc3co2 33156 cyc3genpmlem 33167 cycpmconjs 33172 cyc3conja 33173 archiabllem2a 33197 archiabllem2c 33198 archiabllem2b 33199 imaslmod 33373 quslmod 33378 qusxpid 33383 nsgmgclem 33431 drgextlsp 33638 matunitlindflem1 37645 fldhmf1 42108 primrootsunit1 42115 aks6d1c1p2 42127 aks6d1c1p3 42128 nelsubgcld 42495 evlsaddval 42566 fsuppssind 42591 gicabl 43098 isnumbasgrplem2 43103 mendlmod 43188 |
| Copyright terms: Public domain | W3C validator |