Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpcl | Structured version Visualization version GIF version |
Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
Ref | Expression |
---|---|
grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
grpcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18565 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | mndcl 18374 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1161 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 +gcplusg 16943 Mndcmnd 18366 Grpcgrp 18558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 |
This theorem is referenced by: grpcld 18571 grprcan 18594 grprinv 18610 grplmulf1o 18630 grpinvadd 18634 grpsubf 18635 grpsubadd 18644 grpaddsubass 18646 grpnpcan 18648 grpsubsub4 18649 grppnpcan2 18650 dfgrp3 18655 grplactcnv 18659 imasgrp 18672 mulgcl 18702 mulgaddcomlem 18707 mulgdir 18716 subgcl 18746 nsgacs 18771 nmzsubg 18774 nsgid 18779 eqger 18787 eqgcpbl 18791 qusgrp 18792 qusadd 18794 ghmrn 18828 idghm 18830 ghmpreima 18837 ghmnsgima 18839 ghmnsgpreima 18840 ghmf1o 18845 conjghm 18846 conjnmz 18849 qusghm 18852 gaid 18886 subgga 18887 gass 18888 gaorber 18895 gastacl 18896 gastacos 18897 cntzsubg 18924 galactghm 18993 lactghmga 18994 symgsssg 19056 symgfisg 19057 symggen 19059 sylow1lem2 19185 sylow2blem1 19206 sylow2blem2 19207 sylow2blem3 19208 sylow3lem1 19213 sylow3lem2 19214 subgdisj1 19278 ablsub4 19395 abladdsub4 19396 mulgdi 19409 mulgghm 19411 invghm 19416 ghmplusg 19428 odadd1 19430 odadd2 19431 odadd 19432 gex2abl 19433 gexexlem 19434 torsubg 19436 oddvdssubg 19437 frgpnabllem2 19456 ringacl 19798 ringpropd 19802 drngmcl 19985 abvtrivd 20081 idsrngd 20103 lmodacl 20115 lmodvacl 20118 lmodprop2d 20166 rmodislmod 20172 rmodislmodOLD 20173 prdslmodd 20212 pwssplit2 20303 evpmodpmf1o 20782 frlmplusgvalb 20957 asclghm 21068 psraddcl 21133 mplind 21259 evlslem1 21273 mhpaddcl 21322 evl1addd 21488 scmataddcl 21646 mdetralt 21738 mdetunilem6 21747 opnsubg 23240 ghmcnp 23247 qustgpopn 23252 ngprcan 23747 ngpocelbl 23849 nmotri 23884 ncvspi 24301 cphipval2 24386 4cphipval2 24387 cphipval 24388 efsubm 25688 abvcxp 26744 ttgcontlem1 27233 abliso 31284 ogrpaddltbi 31323 ogrpaddltrbid 31325 ogrpinvlt 31328 cyc3co2 31386 cyc3genpmlem 31397 cycpmconjs 31402 cyc3conja 31403 archiabllem2a 31427 archiabllem2c 31428 archiabllem2b 31429 dvrdir 31466 imaslmod 31532 quslmod 31533 qusxpid 31538 nsgmgclem 31575 drgextlsp 31660 matunitlindflem1 35752 nelsubgcld 40201 evlsaddval 40257 fsuppssind 40262 gicabl 40904 isnumbasgrplem2 40909 mendlmod 40998 |
Copyright terms: Public domain | W3C validator |