| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grpcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18837 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mndcl 18634 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Mndcmnd 18626 Grpcgrp 18830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 |
| This theorem is referenced by: grpcld 18844 grprcan 18870 grprinv 18887 grplmulf1o 18910 grpinvadd 18915 grpsubf 18916 grpsubadd 18925 grpaddsubass 18927 grpnpcan 18929 grpsubsub4 18930 grppnpcan2 18931 grplactcnv 18940 imasgrp 18953 mulgcl 18988 mulgaddcomlem 18994 mulgdir 19003 subgcl 19033 nsgacs 19059 nmzsubg 19062 nsgid 19067 eqgcpbl 19079 qusgrp 19083 qusadd 19085 ecqusaddcl 19090 qus0subgadd 19096 ghmrn 19126 idghm 19128 ghmpreima 19135 ghmnsgima 19137 ghmnsgpreima 19138 ghmf1o 19145 conjghm 19146 qusghm 19152 gaid 19196 subgga 19197 gass 19198 gaorber 19205 gastacl 19206 gastacos 19207 cntzsubg 19236 galactghm 19301 lactghmga 19302 symgsssg 19364 symgfisg 19365 symggen 19367 sylow1lem2 19496 sylow2blem1 19517 sylow2blem2 19518 sylow2blem3 19519 sylow3lem1 19524 sylow3lem2 19525 subgdisj1 19588 ablsub4 19707 abladdsub4 19708 mulgdi 19723 mulgghm 19725 invghm 19730 ghmplusg 19743 odadd1 19745 odadd2 19746 odadd 19747 gex2abl 19748 gexexlem 19749 torsubg 19751 oddvdssubg 19752 frgpnabllem2 19771 ogrpaddltbi 20036 ogrpaddltrbid 20038 ogrpinvlt 20041 rngacl 20065 rngpropd 20077 ringacl 20181 ringpropd 20191 dvrdir 20315 drngmclOLD 20654 abvtrivd 20735 idsrngd 20759 lmodacl 20793 lmodvacl 20796 lmodprop2d 20845 rmodislmod 20851 prdslmodd 20890 pwssplit2 20982 evpmodpmf1o 21521 frlmplusgvalb 21694 asclghm 21808 psraddclOLD 21864 mplind 21993 evlslem1 22005 evl1addd 22244 scmataddcl 22419 mdetralt 22511 mdetunilem6 22520 opnsubg 24011 ghmcnp 24018 qustgpopn 24023 ngprcan 24514 ngpocelbl 24608 nmotri 24643 ncvspi 25072 cphipval2 25157 4cphipval2 25158 cphipval 25159 efsubm 26476 abvcxp 27542 ttgcontlem1 28848 abliso 33003 cyc3co2 33095 cyc3genpmlem 33106 cycpmconjs 33111 cyc3conja 33112 archiabllem2a 33146 archiabllem2c 33147 archiabllem2b 33148 imaslmod 33300 quslmod 33305 qusxpid 33310 nsgmgclem 33358 drgextlsp 33565 matunitlindflem1 37595 fldhmf1 42063 primrootsunit1 42070 aks6d1c1p2 42082 aks6d1c1p3 42083 nelsubgcld 42470 evlsaddval 42541 fsuppssind 42566 gicabl 43072 isnumbasgrplem2 43077 mendlmod 43162 |
| Copyright terms: Public domain | W3C validator |