| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grpcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18959 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mndcl 18756 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 Mndcmnd 18748 Grpcgrp 18952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 |
| This theorem is referenced by: grpcld 18966 grprcan 18992 grprinv 19009 grplmulf1o 19032 grpinvadd 19037 grpsubf 19038 grpsubadd 19047 grpaddsubass 19049 grpnpcan 19051 grpsubsub4 19052 grppnpcan2 19053 grplactcnv 19062 imasgrp 19075 mulgcl 19110 mulgaddcomlem 19116 mulgdir 19125 subgcl 19155 nsgacs 19181 nmzsubg 19184 nsgid 19189 eqgcpbl 19201 qusgrp 19205 qusadd 19207 ecqusaddcl 19212 qus0subgadd 19218 ghmrn 19248 idghm 19250 ghmpreima 19257 ghmnsgima 19259 ghmnsgpreima 19260 ghmf1o 19267 conjghm 19268 qusghm 19274 gaid 19318 subgga 19319 gass 19320 gaorber 19327 gastacl 19328 gastacos 19329 cntzsubg 19358 galactghm 19423 lactghmga 19424 symgsssg 19486 symgfisg 19487 symggen 19489 sylow1lem2 19618 sylow2blem1 19639 sylow2blem2 19640 sylow2blem3 19641 sylow3lem1 19646 sylow3lem2 19647 subgdisj1 19710 ablsub4 19829 abladdsub4 19830 mulgdi 19845 mulgghm 19847 invghm 19852 ghmplusg 19865 odadd1 19867 odadd2 19868 odadd 19869 gex2abl 19870 gexexlem 19871 torsubg 19873 oddvdssubg 19874 frgpnabllem2 19893 rngacl 20160 rngpropd 20172 ringacl 20276 ringpropd 20286 dvrdir 20413 drngmclOLD 20752 abvtrivd 20834 idsrngd 20858 lmodacl 20871 lmodvacl 20874 lmodprop2d 20923 rmodislmod 20929 prdslmodd 20968 pwssplit2 21060 evpmodpmf1o 21615 frlmplusgvalb 21790 asclghm 21904 psraddclOLD 21960 mplind 22095 evlslem1 22107 evl1addd 22346 scmataddcl 22523 mdetralt 22615 mdetunilem6 22624 opnsubg 24117 ghmcnp 24124 qustgpopn 24129 ngprcan 24624 ngpocelbl 24726 nmotri 24761 ncvspi 25191 cphipval2 25276 4cphipval2 25277 cphipval 25278 efsubm 26594 abvcxp 27660 ttgcontlem1 28900 abliso 33042 ogrpaddltbi 33096 ogrpaddltrbid 33098 ogrpinvlt 33101 cyc3co2 33161 cyc3genpmlem 33172 cycpmconjs 33177 cyc3conja 33178 archiabllem2a 33202 archiabllem2c 33203 archiabllem2b 33204 imaslmod 33382 quslmod 33387 qusxpid 33392 nsgmgclem 33440 drgextlsp 33645 matunitlindflem1 37624 fldhmf1 42092 primrootsunit1 42099 aks6d1c1p2 42111 aks6d1c1p3 42112 nelsubgcld 42512 evlsaddval 42583 fsuppssind 42608 gicabl 43116 isnumbasgrplem2 43121 mendlmod 43206 |
| Copyright terms: Public domain | W3C validator |