| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grpcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18845 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mndcl 18642 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 +gcplusg 17153 Mndcmnd 18634 Grpcgrp 18838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-ov 7344 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 |
| This theorem is referenced by: grpcld 18852 grprcan 18878 grprinv 18895 grplmulf1o 18918 grpinvadd 18923 grpsubf 18924 grpsubadd 18933 grpaddsubass 18935 grpnpcan 18937 grpsubsub4 18938 grppnpcan2 18939 grplactcnv 18948 imasgrp 18961 mulgcl 18996 mulgaddcomlem 19002 mulgdir 19011 subgcl 19041 nsgacs 19067 nmzsubg 19070 nsgid 19075 eqgcpbl 19087 qusgrp 19091 qusadd 19093 ecqusaddcl 19098 qus0subgadd 19104 ghmrn 19134 idghm 19136 ghmpreima 19143 ghmnsgima 19145 ghmnsgpreima 19146 ghmf1o 19153 conjghm 19154 qusghm 19160 gaid 19204 subgga 19205 gass 19206 gaorber 19213 gastacl 19214 gastacos 19215 cntzsubg 19244 galactghm 19309 lactghmga 19310 symgsssg 19372 symgfisg 19373 symggen 19375 sylow1lem2 19504 sylow2blem1 19525 sylow2blem2 19526 sylow2blem3 19527 sylow3lem1 19532 sylow3lem2 19533 subgdisj1 19596 ablsub4 19715 abladdsub4 19716 mulgdi 19731 mulgghm 19733 invghm 19738 ghmplusg 19751 odadd1 19753 odadd2 19754 odadd 19755 gex2abl 19756 gexexlem 19757 torsubg 19759 oddvdssubg 19760 frgpnabllem2 19779 ogrpaddltbi 20044 ogrpaddltrbid 20046 ogrpinvlt 20049 rngacl 20073 rngpropd 20085 ringacl 20189 ringpropd 20199 dvrdir 20323 drngmclOLD 20659 abvtrivd 20740 idsrngd 20764 lmodacl 20798 lmodvacl 20801 lmodprop2d 20850 rmodislmod 20856 prdslmodd 20895 pwssplit2 20987 evpmodpmf1o 21526 frlmplusgvalb 21699 asclghm 21813 psraddclOLD 21869 mplind 21998 evlslem1 22010 evl1addd 22249 scmataddcl 22424 mdetralt 22516 mdetunilem6 22525 opnsubg 24016 ghmcnp 24023 qustgpopn 24028 ngprcan 24518 ngpocelbl 24612 nmotri 24647 ncvspi 25076 cphipval2 25161 4cphipval2 25162 cphipval 25163 efsubm 26480 abvcxp 27546 ttgcontlem1 28856 abliso 33007 cyc3co2 33099 cyc3genpmlem 33110 cycpmconjs 33115 cyc3conja 33116 archiabllem2a 33153 archiabllem2c 33154 archiabllem2b 33155 imaslmod 33308 quslmod 33313 qusxpid 33318 nsgmgclem 33366 drgextlsp 33596 matunitlindflem1 37635 fldhmf1 42102 primrootsunit1 42109 aks6d1c1p2 42121 aks6d1c1p3 42122 nelsubgcld 42509 evlsaddval 42580 fsuppssind 42605 gicabl 43111 isnumbasgrplem2 43116 mendlmod 43201 |
| Copyright terms: Public domain | W3C validator |