Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpcl | Structured version Visualization version GIF version |
Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
Ref | Expression |
---|---|
grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
grpcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18629 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | mndcl 18438 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 +gcplusg 17007 Mndcmnd 18430 Grpcgrp 18622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-nul 5239 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 |
This theorem is referenced by: grpcld 18635 grprcan 18658 grprinv 18674 grplmulf1o 18694 grpinvadd 18698 grpsubf 18699 grpsubadd 18708 grpaddsubass 18710 grpnpcan 18712 grpsubsub4 18713 grppnpcan2 18714 grplactcnv 18723 imasgrp 18736 mulgcl 18766 mulgaddcomlem 18771 mulgdir 18780 subgcl 18810 nsgacs 18835 nmzsubg 18838 nsgid 18843 eqger 18851 eqgcpbl 18855 qusgrp 18856 qusadd 18858 ghmrn 18892 idghm 18894 ghmpreima 18901 ghmnsgima 18903 ghmnsgpreima 18904 ghmf1o 18909 conjghm 18910 conjnmz 18913 qusghm 18916 gaid 18950 subgga 18951 gass 18952 gaorber 18959 gastacl 18960 gastacos 18961 cntzsubg 18988 galactghm 19057 lactghmga 19058 symgsssg 19120 symgfisg 19121 symggen 19123 sylow1lem2 19249 sylow2blem1 19270 sylow2blem2 19271 sylow2blem3 19272 sylow3lem1 19277 sylow3lem2 19278 subgdisj1 19342 ablsub4 19459 abladdsub4 19460 mulgdi 19473 mulgghm 19475 invghm 19480 ghmplusg 19492 odadd1 19494 odadd2 19495 odadd 19496 gex2abl 19497 gexexlem 19498 torsubg 19500 oddvdssubg 19501 frgpnabllem2 19520 ringacl 19862 ringpropd 19866 drngmcl 20049 abvtrivd 20145 idsrngd 20167 lmodacl 20179 lmodvacl 20182 lmodprop2d 20230 rmodislmod 20236 rmodislmodOLD 20237 prdslmodd 20276 pwssplit2 20367 evpmodpmf1o 20846 frlmplusgvalb 21021 asclghm 21132 psraddcl 21197 mplind 21323 evlslem1 21337 mhpaddcl 21386 evl1addd 21552 scmataddcl 21710 mdetralt 21802 mdetunilem6 21811 opnsubg 23304 ghmcnp 23311 qustgpopn 23316 ngprcan 23811 ngpocelbl 23913 nmotri 23948 ncvspi 24365 cphipval2 24450 4cphipval2 24451 cphipval 24452 efsubm 25752 abvcxp 26808 ttgcontlem1 27297 abliso 31350 ogrpaddltbi 31389 ogrpaddltrbid 31391 ogrpinvlt 31394 cyc3co2 31452 cyc3genpmlem 31463 cycpmconjs 31468 cyc3conja 31469 archiabllem2a 31493 archiabllem2c 31494 archiabllem2b 31495 dvrdir 31532 imaslmod 31598 quslmod 31599 qusxpid 31604 nsgmgclem 31641 drgextlsp 31726 matunitlindflem1 35817 nelsubgcld 40258 evlsaddval 40314 fsuppssind 40319 gicabl 40962 isnumbasgrplem2 40967 mendlmod 41056 |
Copyright terms: Public domain | W3C validator |