| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grpcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18879 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mndcl 18676 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Mndcmnd 18668 Grpcgrp 18872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 |
| This theorem is referenced by: grpcld 18886 grprcan 18912 grprinv 18929 grplmulf1o 18952 grpinvadd 18957 grpsubf 18958 grpsubadd 18967 grpaddsubass 18969 grpnpcan 18971 grpsubsub4 18972 grppnpcan2 18973 grplactcnv 18982 imasgrp 18995 mulgcl 19030 mulgaddcomlem 19036 mulgdir 19045 subgcl 19075 nsgacs 19101 nmzsubg 19104 nsgid 19109 eqgcpbl 19121 qusgrp 19125 qusadd 19127 ecqusaddcl 19132 qus0subgadd 19138 ghmrn 19168 idghm 19170 ghmpreima 19177 ghmnsgima 19179 ghmnsgpreima 19180 ghmf1o 19187 conjghm 19188 qusghm 19194 gaid 19238 subgga 19239 gass 19240 gaorber 19247 gastacl 19248 gastacos 19249 cntzsubg 19278 galactghm 19341 lactghmga 19342 symgsssg 19404 symgfisg 19405 symggen 19407 sylow1lem2 19536 sylow2blem1 19557 sylow2blem2 19558 sylow2blem3 19559 sylow3lem1 19564 sylow3lem2 19565 subgdisj1 19628 ablsub4 19747 abladdsub4 19748 mulgdi 19763 mulgghm 19765 invghm 19770 ghmplusg 19783 odadd1 19785 odadd2 19786 odadd 19787 gex2abl 19788 gexexlem 19789 torsubg 19791 oddvdssubg 19792 frgpnabllem2 19811 rngacl 20078 rngpropd 20090 ringacl 20194 ringpropd 20204 dvrdir 20328 drngmclOLD 20667 abvtrivd 20748 idsrngd 20772 lmodacl 20785 lmodvacl 20788 lmodprop2d 20837 rmodislmod 20843 prdslmodd 20882 pwssplit2 20974 evpmodpmf1o 21512 frlmplusgvalb 21685 asclghm 21799 psraddclOLD 21855 mplind 21984 evlslem1 21996 evl1addd 22235 scmataddcl 22410 mdetralt 22502 mdetunilem6 22511 opnsubg 24002 ghmcnp 24009 qustgpopn 24014 ngprcan 24505 ngpocelbl 24599 nmotri 24634 ncvspi 25063 cphipval2 25148 4cphipval2 25149 cphipval 25150 efsubm 26467 abvcxp 27533 ttgcontlem1 28819 abliso 32984 ogrpaddltbi 33039 ogrpaddltrbid 33041 ogrpinvlt 33044 cyc3co2 33104 cyc3genpmlem 33115 cycpmconjs 33120 cyc3conja 33121 archiabllem2a 33155 archiabllem2c 33156 archiabllem2b 33157 imaslmod 33331 quslmod 33336 qusxpid 33341 nsgmgclem 33389 drgextlsp 33596 matunitlindflem1 37617 fldhmf1 42085 primrootsunit1 42092 aks6d1c1p2 42104 aks6d1c1p3 42105 nelsubgcld 42492 evlsaddval 42563 fsuppssind 42588 gicabl 43095 isnumbasgrplem2 43100 mendlmod 43185 |
| Copyright terms: Public domain | W3C validator |