![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpcl | Structured version Visualization version GIF version |
Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
Ref | Expression |
---|---|
grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
grpcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18980 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | mndcl 18780 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Mndcmnd 18772 Grpcgrp 18973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 |
This theorem is referenced by: grpcld 18987 grprcan 19013 grprinv 19030 grplmulf1o 19053 grpinvadd 19058 grpsubf 19059 grpsubadd 19068 grpaddsubass 19070 grpnpcan 19072 grpsubsub4 19073 grppnpcan2 19074 grplactcnv 19083 imasgrp 19096 mulgcl 19131 mulgaddcomlem 19137 mulgdir 19146 subgcl 19176 nsgacs 19202 nmzsubg 19205 nsgid 19210 eqgcpbl 19222 qusgrp 19226 qusadd 19228 ecqusaddcl 19233 qus0subgadd 19239 ghmrn 19269 idghm 19271 ghmpreima 19278 ghmnsgima 19280 ghmnsgpreima 19281 ghmf1o 19288 conjghm 19289 qusghm 19295 gaid 19339 subgga 19340 gass 19341 gaorber 19348 gastacl 19349 gastacos 19350 cntzsubg 19379 galactghm 19446 lactghmga 19447 symgsssg 19509 symgfisg 19510 symggen 19512 sylow1lem2 19641 sylow2blem1 19662 sylow2blem2 19663 sylow2blem3 19664 sylow3lem1 19669 sylow3lem2 19670 subgdisj1 19733 ablsub4 19852 abladdsub4 19853 mulgdi 19868 mulgghm 19870 invghm 19875 ghmplusg 19888 odadd1 19890 odadd2 19891 odadd 19892 gex2abl 19893 gexexlem 19894 torsubg 19896 oddvdssubg 19897 frgpnabllem2 19916 rngacl 20189 rngpropd 20201 ringacl 20301 ringpropd 20311 dvrdir 20438 drngmclOLD 20773 abvtrivd 20855 idsrngd 20879 lmodacl 20892 lmodvacl 20895 lmodprop2d 20944 rmodislmod 20950 rmodislmodOLD 20951 prdslmodd 20990 pwssplit2 21082 evpmodpmf1o 21637 frlmplusgvalb 21812 asclghm 21926 psraddclOLD 21982 mplind 22117 evlslem1 22129 evl1addd 22366 scmataddcl 22543 mdetralt 22635 mdetunilem6 22644 opnsubg 24137 ghmcnp 24144 qustgpopn 24149 ngprcan 24644 ngpocelbl 24746 nmotri 24781 ncvspi 25209 cphipval2 25294 4cphipval2 25295 cphipval 25296 efsubm 26611 abvcxp 27677 ttgcontlem1 28917 abliso 33022 ogrpaddltbi 33068 ogrpaddltrbid 33070 ogrpinvlt 33073 cyc3co2 33133 cyc3genpmlem 33144 cycpmconjs 33149 cyc3conja 33150 archiabllem2a 33174 archiabllem2c 33175 archiabllem2b 33176 imaslmod 33346 quslmod 33351 qusxpid 33356 nsgmgclem 33404 drgextlsp 33608 matunitlindflem1 37576 fldhmf1 42047 primrootsunit1 42054 aks6d1c1p2 42066 aks6d1c1p3 42067 nelsubgcld 42452 evlsaddval 42523 fsuppssind 42548 gicabl 43056 isnumbasgrplem2 43061 mendlmod 43150 |
Copyright terms: Public domain | W3C validator |