| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grpcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18872 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mndcl 18669 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Mndcmnd 18661 Grpcgrp 18865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 |
| This theorem is referenced by: grpcld 18879 grprcan 18905 grprinv 18922 grplmulf1o 18945 grpinvadd 18950 grpsubf 18951 grpsubadd 18960 grpaddsubass 18962 grpnpcan 18964 grpsubsub4 18965 grppnpcan2 18966 grplactcnv 18975 imasgrp 18988 mulgcl 19023 mulgaddcomlem 19029 mulgdir 19038 subgcl 19068 nsgacs 19094 nmzsubg 19097 nsgid 19102 eqgcpbl 19114 qusgrp 19118 qusadd 19120 ecqusaddcl 19125 qus0subgadd 19131 ghmrn 19161 idghm 19163 ghmpreima 19170 ghmnsgima 19172 ghmnsgpreima 19173 ghmf1o 19180 conjghm 19181 qusghm 19187 gaid 19231 subgga 19232 gass 19233 gaorber 19240 gastacl 19241 gastacos 19242 cntzsubg 19271 galactghm 19334 lactghmga 19335 symgsssg 19397 symgfisg 19398 symggen 19400 sylow1lem2 19529 sylow2blem1 19550 sylow2blem2 19551 sylow2blem3 19552 sylow3lem1 19557 sylow3lem2 19558 subgdisj1 19621 ablsub4 19740 abladdsub4 19741 mulgdi 19756 mulgghm 19758 invghm 19763 ghmplusg 19776 odadd1 19778 odadd2 19779 odadd 19780 gex2abl 19781 gexexlem 19782 torsubg 19784 oddvdssubg 19785 frgpnabllem2 19804 rngacl 20071 rngpropd 20083 ringacl 20187 ringpropd 20197 dvrdir 20321 drngmclOLD 20660 abvtrivd 20741 idsrngd 20765 lmodacl 20778 lmodvacl 20781 lmodprop2d 20830 rmodislmod 20836 prdslmodd 20875 pwssplit2 20967 evpmodpmf1o 21505 frlmplusgvalb 21678 asclghm 21792 psraddclOLD 21848 mplind 21977 evlslem1 21989 evl1addd 22228 scmataddcl 22403 mdetralt 22495 mdetunilem6 22504 opnsubg 23995 ghmcnp 24002 qustgpopn 24007 ngprcan 24498 ngpocelbl 24592 nmotri 24627 ncvspi 25056 cphipval2 25141 4cphipval2 25142 cphipval 25143 efsubm 26460 abvcxp 27526 ttgcontlem1 28812 abliso 32977 ogrpaddltbi 33032 ogrpaddltrbid 33034 ogrpinvlt 33037 cyc3co2 33097 cyc3genpmlem 33108 cycpmconjs 33113 cyc3conja 33114 archiabllem2a 33148 archiabllem2c 33149 archiabllem2b 33150 imaslmod 33324 quslmod 33329 qusxpid 33334 nsgmgclem 33382 drgextlsp 33589 matunitlindflem1 37610 fldhmf1 42078 primrootsunit1 42085 aks6d1c1p2 42097 aks6d1c1p3 42098 nelsubgcld 42485 evlsaddval 42556 fsuppssind 42581 gicabl 43088 isnumbasgrplem2 43093 mendlmod 43178 |
| Copyright terms: Public domain | W3C validator |