![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpcl | Structured version Visualization version GIF version |
Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
Ref | Expression |
---|---|
grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
grpcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18971 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | mndcl 18768 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1162 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Mndcmnd 18760 Grpcgrp 18964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 |
This theorem is referenced by: grpcld 18978 grprcan 19004 grprinv 19021 grplmulf1o 19044 grpinvadd 19049 grpsubf 19050 grpsubadd 19059 grpaddsubass 19061 grpnpcan 19063 grpsubsub4 19064 grppnpcan2 19065 grplactcnv 19074 imasgrp 19087 mulgcl 19122 mulgaddcomlem 19128 mulgdir 19137 subgcl 19167 nsgacs 19193 nmzsubg 19196 nsgid 19201 eqgcpbl 19213 qusgrp 19217 qusadd 19219 ecqusaddcl 19224 qus0subgadd 19230 ghmrn 19260 idghm 19262 ghmpreima 19269 ghmnsgima 19271 ghmnsgpreima 19272 ghmf1o 19279 conjghm 19280 qusghm 19286 gaid 19330 subgga 19331 gass 19332 gaorber 19339 gastacl 19340 gastacos 19341 cntzsubg 19370 galactghm 19437 lactghmga 19438 symgsssg 19500 symgfisg 19501 symggen 19503 sylow1lem2 19632 sylow2blem1 19653 sylow2blem2 19654 sylow2blem3 19655 sylow3lem1 19660 sylow3lem2 19661 subgdisj1 19724 ablsub4 19843 abladdsub4 19844 mulgdi 19859 mulgghm 19861 invghm 19866 ghmplusg 19879 odadd1 19881 odadd2 19882 odadd 19883 gex2abl 19884 gexexlem 19885 torsubg 19887 oddvdssubg 19888 frgpnabllem2 19907 rngacl 20180 rngpropd 20192 ringacl 20292 ringpropd 20302 dvrdir 20429 drngmclOLD 20768 abvtrivd 20850 idsrngd 20874 lmodacl 20887 lmodvacl 20890 lmodprop2d 20939 rmodislmod 20945 rmodislmodOLD 20946 prdslmodd 20985 pwssplit2 21077 evpmodpmf1o 21632 frlmplusgvalb 21807 asclghm 21921 psraddclOLD 21977 mplind 22112 evlslem1 22124 evl1addd 22361 scmataddcl 22538 mdetralt 22630 mdetunilem6 22639 opnsubg 24132 ghmcnp 24139 qustgpopn 24144 ngprcan 24639 ngpocelbl 24741 nmotri 24776 ncvspi 25204 cphipval2 25289 4cphipval2 25290 cphipval 25291 efsubm 26608 abvcxp 27674 ttgcontlem1 28914 abliso 33024 ogrpaddltbi 33078 ogrpaddltrbid 33080 ogrpinvlt 33083 cyc3co2 33143 cyc3genpmlem 33154 cycpmconjs 33159 cyc3conja 33160 archiabllem2a 33184 archiabllem2c 33185 archiabllem2b 33186 imaslmod 33361 quslmod 33366 qusxpid 33371 nsgmgclem 33419 drgextlsp 33623 matunitlindflem1 37603 fldhmf1 42072 primrootsunit1 42079 aks6d1c1p2 42091 aks6d1c1p3 42092 nelsubgcld 42484 evlsaddval 42555 fsuppssind 42580 gicabl 43088 isnumbasgrplem2 43093 mendlmod 43178 |
Copyright terms: Public domain | W3C validator |