Step | Hyp | Ref
| Expression |
1 | | rng2idlring.b |
. 2
β’ π΅ = (Baseβπ
) |
2 | | eqid 2732 |
. 2
β’
(Baseβπ) =
(Baseβπ) |
3 | | eqid 2732 |
. 2
β’
(+gβπ
) = (+gβπ
) |
4 | | eqid 2732 |
. 2
β’
(+gβπ) = (+gβπ) |
5 | | rng2idlring.r |
. . 3
β’ (π β π
β Rng) |
6 | | rnggrp 46640 |
. . 3
β’ (π
β Rng β π
β Grp) |
7 | 5, 6 | syl 17 |
. 2
β’ (π β π
β Grp) |
8 | | rng2idlring.i |
. . . 4
β’ (π β πΌ β (2Idealβπ
)) |
9 | | rng2idlring.j |
. . . 4
β’ π½ = (π
βΎs πΌ) |
10 | | rng2idlring.u |
. . . 4
β’ (π β π½ β Ring) |
11 | | rng2idlring.t |
. . . 4
β’ Β· =
(.rβπ
) |
12 | | rng2idlring.1 |
. . . 4
β’ 1 =
(1rβπ½) |
13 | | rngqiprngim.g |
. . . 4
β’ βΌ =
(π
~QG
πΌ) |
14 | | rngqiprngim.q |
. . . 4
β’ π = (π
/s βΌ ) |
15 | | rngqiprngim.c |
. . . 4
β’ πΆ = (Baseβπ) |
16 | | rngqiprngim.p |
. . . 4
β’ π = (π Γs π½) |
17 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | rngqiprng 46761 |
. . 3
β’ (π β π β Rng) |
18 | | rnggrp 46640 |
. . 3
β’ (π β Rng β π β Grp) |
19 | 17, 18 | syl 17 |
. 2
β’ (π β π β Grp) |
20 | | rngqiprngim.f |
. . . 4
β’ πΉ = (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) |
21 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16, 20 | rngqiprngimf 46762 |
. . 3
β’ (π β πΉ:π΅βΆ(πΆ Γ πΌ)) |
22 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16 | rngqipbas 46760 |
. . . 4
β’ (π β (Baseβπ) = (πΆ Γ πΌ)) |
23 | 22 | feq3d 6701 |
. . 3
β’ (π β (πΉ:π΅βΆ(Baseβπ) β πΉ:π΅βΆ(πΆ Γ πΌ))) |
24 | 21, 23 | mpbird 256 |
. 2
β’ (π β πΉ:π΅βΆ(Baseβπ)) |
25 | | ringrng 46641 |
. . . . . . . . 9
β’ (π½ β Ring β π½ β Rng) |
26 | 10, 25 | syl 17 |
. . . . . . . 8
β’ (π β π½ β Rng) |
27 | 9, 26 | eqeltrrid 2838 |
. . . . . . 7
β’ (π β (π
βΎs πΌ) β Rng) |
28 | 5, 8, 27 | rng2idlnsg 46742 |
. . . . . 6
β’ (π β πΌ β (NrmSGrpβπ
)) |
29 | 28, 1, 13, 14 | ecqusadd 46749 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β [(π(+gβπ
)π)] βΌ = ([π] βΌ
(+gβπ)[π] βΌ )) |
30 | 5, 8, 9, 10, 1, 11, 12 | rngqiprngghmlem3 46754 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β ( 1 Β· (π(+gβπ
)π)) = (( 1 Β· π)(+gβπ½)( 1 Β· π))) |
31 | 29, 30 | opeq12d 4880 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β β¨[(π(+gβπ
)π)] βΌ , ( 1 Β· (π(+gβπ
)π))β© = β¨([π] βΌ
(+gβπ)[π] βΌ ), (( 1 Β· π)(+gβπ½)( 1 Β· π))β©) |
32 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
33 | | eqid 2732 |
. . . . 5
β’
(Baseβπ½) =
(Baseβπ½) |
34 | 14 | ovexi 7439 |
. . . . . 6
β’ π β V |
35 | 34 | a1i 11 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β π β V) |
36 | 10 | adantr 481 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β π½ β Ring) |
37 | | simpl 483 |
. . . . . 6
β’ ((π β π΅ β§ π β π΅) β π β π΅) |
38 | 13, 14, 1, 32 | quseccl0 19058 |
. . . . . 6
β’ ((π
β Rng β§ π β π΅) β [π] βΌ β
(Baseβπ)) |
39 | 5, 37, 38 | syl2an 596 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β [π] βΌ β
(Baseβπ)) |
40 | 5, 8, 9, 10, 1, 11, 12 | rngqiprngghmlem1 46752 |
. . . . . 6
β’ ((π β§ π β π΅) β ( 1 Β· π) β (Baseβπ½)) |
41 | 40 | adantrr 715 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β ( 1 Β· π) β (Baseβπ½)) |
42 | | simpr 485 |
. . . . . 6
β’ ((π β π΅ β§ π β π΅) β π β π΅) |
43 | 13, 14, 1, 32 | quseccl0 19058 |
. . . . . 6
β’ ((π
β Rng β§ π β π΅) β [π] βΌ β
(Baseβπ)) |
44 | 5, 42, 43 | syl2an 596 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β [π] βΌ β
(Baseβπ)) |
45 | 5, 8, 9, 10, 1, 11, 12 | rngqiprngghmlem1 46752 |
. . . . . 6
β’ ((π β§ π β π΅) β ( 1 Β· π) β (Baseβπ½)) |
46 | 45 | adantrl 714 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β ( 1 Β· π) β (Baseβπ½)) |
47 | 28, 1, 13, 14 | ecqusaddcl 46750 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β ([π] βΌ
(+gβπ)[π] βΌ ) β
(Baseβπ)) |
48 | 5, 8, 9, 10, 1, 11, 12 | rngqiprngghmlem2 46753 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β (( 1 Β· π)(+gβπ½)( 1 Β· π)) β (Baseβπ½)) |
49 | | eqid 2732 |
. . . . 5
β’
(+gβπ) = (+gβπ) |
50 | | eqid 2732 |
. . . . 5
β’
(+gβπ½) = (+gβπ½) |
51 | 16, 32, 33, 35, 36, 39, 41, 44, 46, 47, 48, 49, 50, 4 | xpsadd 17516 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (β¨[π] βΌ , ( 1 Β· π)β©(+gβπ)β¨[π] βΌ , ( 1 Β· π)β©) = β¨([π] βΌ
(+gβπ)[π] βΌ ), (( 1 Β· π)(+gβπ½)( 1 Β· π))β©) |
52 | 31, 51 | eqtr4d 2775 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β β¨[(π(+gβπ
)π)] βΌ , ( 1 Β· (π(+gβπ
)π))β© = (β¨[π] βΌ , ( 1 Β· π)β©(+gβπ)β¨[π] βΌ , ( 1 Β· π)β©)) |
53 | 5 | adantr 481 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β π
β Rng) |
54 | 37 | adantl 482 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β π β π΅) |
55 | 42 | adantl 482 |
. . . . 5
β’ ((π β§ (π β π΅ β§ π β π΅)) β π β π΅) |
56 | 1, 3 | rngacl 46647 |
. . . . 5
β’ ((π
β Rng β§ π β π΅ β§ π β π΅) β (π(+gβπ
)π) β π΅) |
57 | 53, 54, 55, 56 | syl3anc 1371 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (π(+gβπ
)π) β π΅) |
58 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16, 20 | rngqiprngimfv 46763 |
. . . 4
β’ ((π β§ (π(+gβπ
)π) β π΅) β (πΉβ(π(+gβπ
)π)) = β¨[(π(+gβπ
)π)] βΌ , ( 1 Β· (π(+gβπ
)π))β©) |
59 | 57, 58 | syldan 591 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π(+gβπ
)π)) = β¨[(π(+gβπ
)π)] βΌ , ( 1 Β· (π(+gβπ
)π))β©) |
60 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16, 20 | rngqiprngimfv 46763 |
. . . . 5
β’ ((π β§ π β π΅) β (πΉβπ) = β¨[π] βΌ , ( 1 Β· π)β©) |
61 | 60 | adantrr 715 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβπ) = β¨[π] βΌ , ( 1 Β· π)β©) |
62 | 5, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16, 20 | rngqiprngimfv 46763 |
. . . . 5
β’ ((π β§ π β π΅) β (πΉβπ) = β¨[π] βΌ , ( 1 Β· π)β©) |
63 | 62 | adantrl 714 |
. . . 4
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβπ) = β¨[π] βΌ , ( 1 Β· π)β©) |
64 | 61, 63 | oveq12d 7423 |
. . 3
β’ ((π β§ (π β π΅ β§ π β π΅)) β ((πΉβπ)(+gβπ)(πΉβπ)) = (β¨[π] βΌ , ( 1 Β· π)β©(+gβπ)β¨[π] βΌ , ( 1 Β· π)β©)) |
65 | 52, 59, 64 | 3eqtr4d 2782 |
. 2
β’ ((π β§ (π β π΅ β§ π β π΅)) β (πΉβ(π(+gβπ
)π)) = ((πΉβπ)(+gβπ)(πΉβπ))) |
66 | 1, 2, 3, 4, 7, 19,
24, 65 | isghmd 19095 |
1
β’ (π β πΉ β (π
GrpHom π)) |