MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngghm Structured version   Visualization version   GIF version

Theorem rngqiprngghm 21236
Description: 𝐹 is a homomorphism of the additive groups of non-unital rings. (Contributed by AV, 24-Feb-2025.)
Hypotheses
Ref Expression
rng2idlring.r (𝜑𝑅 ∈ Rng)
rng2idlring.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlring.j 𝐽 = (𝑅s 𝐼)
rng2idlring.u (𝜑𝐽 ∈ Ring)
rng2idlring.b 𝐵 = (Base‘𝑅)
rng2idlring.t · = (.r𝑅)
rng2idlring.1 1 = (1r𝐽)
rngqiprngim.g = (𝑅 ~QG 𝐼)
rngqiprngim.q 𝑄 = (𝑅 /s )
rngqiprngim.c 𝐶 = (Base‘𝑄)
rngqiprngim.p 𝑃 = (𝑄 ×s 𝐽)
rngqiprngim.f 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
Assertion
Ref Expression
rngqiprngghm (𝜑𝐹 ∈ (𝑅 GrpHom 𝑃))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐼   𝑥,𝐵   𝜑,𝑥   𝑥,   𝑥, 1   𝑥, ·   𝑥,𝑅
Allowed substitution hints:   𝑃(𝑥)   𝑄(𝑥)   𝐹(𝑥)   𝐽(𝑥)

Proof of Theorem rngqiprngghm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rng2idlring.b . 2 𝐵 = (Base‘𝑅)
2 eqid 2731 . 2 (Base‘𝑃) = (Base‘𝑃)
3 eqid 2731 . 2 (+g𝑅) = (+g𝑅)
4 eqid 2731 . 2 (+g𝑃) = (+g𝑃)
5 rng2idlring.r . . 3 (𝜑𝑅 ∈ Rng)
6 rnggrp 20076 . . 3 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
75, 6syl 17 . 2 (𝜑𝑅 ∈ Grp)
8 rng2idlring.i . . . 4 (𝜑𝐼 ∈ (2Ideal‘𝑅))
9 rng2idlring.j . . . 4 𝐽 = (𝑅s 𝐼)
10 rng2idlring.u . . . 4 (𝜑𝐽 ∈ Ring)
11 rng2idlring.t . . . 4 · = (.r𝑅)
12 rng2idlring.1 . . . 4 1 = (1r𝐽)
13 rngqiprngim.g . . . 4 = (𝑅 ~QG 𝐼)
14 rngqiprngim.q . . . 4 𝑄 = (𝑅 /s )
15 rngqiprngim.c . . . 4 𝐶 = (Base‘𝑄)
16 rngqiprngim.p . . . 4 𝑃 = (𝑄 ×s 𝐽)
175, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16rngqiprng 21233 . . 3 (𝜑𝑃 ∈ Rng)
18 rnggrp 20076 . . 3 (𝑃 ∈ Rng → 𝑃 ∈ Grp)
1917, 18syl 17 . 2 (𝜑𝑃 ∈ Grp)
20 rngqiprngim.f . . . 4 𝐹 = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
215, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16, 20rngqiprngimf 21234 . . 3 (𝜑𝐹:𝐵⟶(𝐶 × 𝐼))
225, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16rngqipbas 21232 . . . 4 (𝜑 → (Base‘𝑃) = (𝐶 × 𝐼))
2322feq3d 6636 . . 3 (𝜑 → (𝐹:𝐵⟶(Base‘𝑃) ↔ 𝐹:𝐵⟶(𝐶 × 𝐼)))
2421, 23mpbird 257 . 2 (𝜑𝐹:𝐵⟶(Base‘𝑃))
25 ringrng 20203 . . . . . . . . 9 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
2610, 25syl 17 . . . . . . . 8 (𝜑𝐽 ∈ Rng)
279, 26eqeltrrid 2836 . . . . . . 7 (𝜑 → (𝑅s 𝐼) ∈ Rng)
285, 8, 27rng2idlnsg 21203 . . . . . 6 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
2928, 1, 13, 14ecqusaddd 19104 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → [(𝑎(+g𝑅)𝑏)] = ([𝑎] (+g𝑄)[𝑏] ))
305, 8, 9, 10, 1, 11, 12rngqiprngghmlem3 21226 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( 1 · (𝑎(+g𝑅)𝑏)) = (( 1 · 𝑎)(+g𝐽)( 1 · 𝑏)))
3129, 30opeq12d 4830 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ⟨[(𝑎(+g𝑅)𝑏)] , ( 1 · (𝑎(+g𝑅)𝑏))⟩ = ⟨([𝑎] (+g𝑄)[𝑏] ), (( 1 · 𝑎)(+g𝐽)( 1 · 𝑏))⟩)
32 eqid 2731 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
33 eqid 2731 . . . . 5 (Base‘𝐽) = (Base‘𝐽)
3414ovexi 7380 . . . . . 6 𝑄 ∈ V
3534a1i 11 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑄 ∈ V)
3610adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝐽 ∈ Ring)
37 simpl 482 . . . . . 6 ((𝑎𝐵𝑏𝐵) → 𝑎𝐵)
3813, 14, 1, 32quseccl0 19097 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑎𝐵) → [𝑎] ∈ (Base‘𝑄))
395, 37, 38syl2an 596 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → [𝑎] ∈ (Base‘𝑄))
405, 8, 9, 10, 1, 11, 12rngqiprngghmlem1 21224 . . . . . 6 ((𝜑𝑎𝐵) → ( 1 · 𝑎) ∈ (Base‘𝐽))
4140adantrr 717 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( 1 · 𝑎) ∈ (Base‘𝐽))
42 simpr 484 . . . . . 6 ((𝑎𝐵𝑏𝐵) → 𝑏𝐵)
4313, 14, 1, 32quseccl0 19097 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑏𝐵) → [𝑏] ∈ (Base‘𝑄))
445, 42, 43syl2an 596 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → [𝑏] ∈ (Base‘𝑄))
455, 8, 9, 10, 1, 11, 12rngqiprngghmlem1 21224 . . . . . 6 ((𝜑𝑏𝐵) → ( 1 · 𝑏) ∈ (Base‘𝐽))
4645adantrl 716 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ( 1 · 𝑏) ∈ (Base‘𝐽))
4728, 1, 13, 14ecqusaddcl 19105 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ([𝑎] (+g𝑄)[𝑏] ) ∈ (Base‘𝑄))
485, 8, 9, 10, 1, 11, 12rngqiprngghmlem2 21225 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (( 1 · 𝑎)(+g𝐽)( 1 · 𝑏)) ∈ (Base‘𝐽))
49 eqid 2731 . . . . 5 (+g𝑄) = (+g𝑄)
50 eqid 2731 . . . . 5 (+g𝐽) = (+g𝐽)
5116, 32, 33, 35, 36, 39, 41, 44, 46, 47, 48, 49, 50, 4xpsadd 17478 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (⟨[𝑎] , ( 1 · 𝑎)⟩(+g𝑃)⟨[𝑏] , ( 1 · 𝑏)⟩) = ⟨([𝑎] (+g𝑄)[𝑏] ), (( 1 · 𝑎)(+g𝐽)( 1 · 𝑏))⟩)
5231, 51eqtr4d 2769 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ⟨[(𝑎(+g𝑅)𝑏)] , ( 1 · (𝑎(+g𝑅)𝑏))⟩ = (⟨[𝑎] , ( 1 · 𝑎)⟩(+g𝑃)⟨[𝑏] , ( 1 · 𝑏)⟩))
535adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Rng)
5437adantl 481 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
5542adantl 481 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
561, 3rngacl 20080 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
5753, 54, 55, 56syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
585, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16, 20rngqiprngimfv 21235 . . . 4 ((𝜑 ∧ (𝑎(+g𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ⟨[(𝑎(+g𝑅)𝑏)] , ( 1 · (𝑎(+g𝑅)𝑏))⟩)
5957, 58syldan 591 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ⟨[(𝑎(+g𝑅)𝑏)] , ( 1 · (𝑎(+g𝑅)𝑏))⟩)
605, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16, 20rngqiprngimfv 21235 . . . . 5 ((𝜑𝑎𝐵) → (𝐹𝑎) = ⟨[𝑎] , ( 1 · 𝑎)⟩)
6160adantrr 717 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑎) = ⟨[𝑎] , ( 1 · 𝑎)⟩)
625, 8, 9, 10, 1, 11, 12, 13, 14, 15, 16, 20rngqiprngimfv 21235 . . . . 5 ((𝜑𝑏𝐵) → (𝐹𝑏) = ⟨[𝑏] , ( 1 · 𝑏)⟩)
6362adantrl 716 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹𝑏) = ⟨[𝑏] , ( 1 · 𝑏)⟩)
6461, 63oveq12d 7364 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑃)(𝐹𝑏)) = (⟨[𝑎] , ( 1 · 𝑎)⟩(+g𝑃)⟨[𝑏] , ( 1 · 𝑏)⟩))
6552, 59, 643eqtr4d 2776 . 2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑃)(𝐹𝑏)))
661, 2, 3, 4, 7, 19, 24, 65isghmd 19137 1 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4579  cmpt 5170   × cxp 5612  wf 6477  cfv 6481  (class class class)co 7346  [cec 8620  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162   /s cqus 17409   ×s cxps 17410  Grpcgrp 18846   ~QG cqg 19035   GrpHom cghm 19124  Rngcrng 20070  1rcur 20099  Ringcrg 20151  2Idealc2idl 21186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-imas 17412  df-qus 17413  df-xps 17414  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19125  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-subrng 20461  df-lss 20865  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-2idl 21187
This theorem is referenced by:  rngqiprngimf1  21237  rngqiprngho  21240
  Copyright terms: Public domain W3C validator