MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusrng Structured version   Visualization version   GIF version

Theorem qusrng 20104
Description: The quotient structure of a non-unital ring is a non-unital ring (qusring2 20252 analog). (Contributed by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
qusrng.u (𝜑𝑈 = (𝑅 /s ))
qusrng.v (𝜑𝑉 = (Base‘𝑅))
qusrng.p + = (+g𝑅)
qusrng.t · = (.r𝑅)
qusrng.r (𝜑 Er 𝑉)
qusrng.e1 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
qusrng.e2 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
qusrng.x (𝜑𝑅 ∈ Rng)
Assertion
Ref Expression
qusrng (𝜑𝑈 ∈ Rng)
Distinct variable groups:   𝑅,𝑎,𝑏,𝑝,𝑞   𝑈,𝑎,𝑏,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞   + ,𝑝,𝑞   · ,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   + (𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem qusrng
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrng.u . . 3 (𝜑𝑈 = (𝑅 /s ))
2 qusrng.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2727 . . 3 (𝑢𝑉 ↦ [𝑢] ) = (𝑢𝑉 ↦ [𝑢] )
4 qusrng.r . . . 4 (𝜑 Er 𝑉)
5 fvex 6904 . . . . 5 (Base‘𝑅) ∈ V
62, 5eqeltrdi 2836 . . . 4 (𝜑𝑉 ∈ V)
7 erex 8740 . . . 4 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
84, 6, 7sylc 65 . . 3 (𝜑 ∈ V)
9 qusrng.x . . 3 (𝜑𝑅 ∈ Rng)
101, 2, 3, 8, 9qusval 17509 . 2 (𝜑𝑈 = ((𝑢𝑉 ↦ [𝑢] ) “s 𝑅))
11 qusrng.p . 2 + = (+g𝑅)
12 qusrng.t . 2 · = (.r𝑅)
131, 2, 3, 8, 9quslem 17510 . 2 (𝜑 → (𝑢𝑉 ↦ [𝑢] ):𝑉onto→(𝑉 / ))
149adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑅 ∈ Rng)
15 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
162eleq2d 2814 . . . . . . 7 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
1716adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
1815, 17mpbid 231 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥 ∈ (Base‘𝑅))
19 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
202eleq2d 2814 . . . . . . 7 (𝜑 → (𝑦𝑉𝑦 ∈ (Base‘𝑅)))
2120adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑦𝑉𝑦 ∈ (Base‘𝑅)))
2219, 21mpbid 231 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦 ∈ (Base‘𝑅))
23 eqid 2727 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2423, 11rngacl 20086 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
2514, 18, 22, 24syl3anc 1369 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
262eleq2d 2814 . . . . 5 (𝜑 → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅)))
2726adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅)))
2825, 27mpbird 257 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
29 qusrng.e1 . . 3 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
304, 6, 3, 28, 29ercpbl 17516 . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 + 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 + 𝑞))))
3123, 12rngcl 20088 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
3214, 18, 22, 31syl3anc 1369 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
332eleq2d 2814 . . . . 5 (𝜑 → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅)))
3433adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅)))
3532, 34mpbird 257 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ 𝑉)
36 qusrng.e2 . . 3 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
374, 6, 3, 35, 36ercpbl 17516 . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 · 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 · 𝑞))))
3810, 2, 11, 12, 13, 30, 37, 9imasrng 20101 1 (𝜑𝑈 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  Vcvv 3469   class class class wbr 5142  cmpt 5225  cfv 6542  (class class class)co 7414   Er wer 8713  [cec 8714   / cqs 8715  Basecbs 17165  +gcplusg 17218  .rcmulr 17219   /s cqus 17472  Rngcrng 20076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8716  df-ec 8718  df-qs 8722  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-sup 9451  df-inf 9452  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-9 12298  df-n0 12489  df-z 12575  df-dec 12694  df-uz 12839  df-fz 13503  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-plusg 17231  df-mulr 17232  df-sca 17234  df-vsca 17235  df-ip 17236  df-tset 17237  df-ple 17238  df-ds 17240  df-0g 17408  df-imas 17475  df-qus 17476  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-grp 18878  df-minusg 18879  df-cmn 19721  df-abl 19722  df-mgp 20059  df-rng 20077
This theorem is referenced by:  qus2idrng  21149
  Copyright terms: Public domain W3C validator