| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qusrng | Structured version Visualization version GIF version | ||
| Description: The quotient structure of a non-unital ring is a non-unital ring (qusring2 20250 analog). (Contributed by AV, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| qusrng.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusrng.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusrng.p | ⊢ + = (+g‘𝑅) |
| qusrng.t | ⊢ · = (.r‘𝑅) |
| qusrng.r | ⊢ (𝜑 → ∼ Er 𝑉) |
| qusrng.e1 | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) |
| qusrng.e2 | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
| qusrng.x | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| Ref | Expression |
|---|---|
| qusrng | ⊢ (𝜑 → 𝑈 ∈ Rng) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusrng.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
| 2 | qusrng.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | eqid 2731 | . . 3 ⊢ (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) = (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) | |
| 4 | qusrng.r | . . . 4 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 5 | fvex 6835 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
| 6 | 2, 5 | eqeltrdi 2839 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ V) |
| 7 | erex 8646 | . . . 4 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
| 8 | 4, 6, 7 | sylc 65 | . . 3 ⊢ (𝜑 → ∼ ∈ V) |
| 9 | qusrng.x | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 10 | 1, 2, 3, 8, 9 | qusval 17443 | . 2 ⊢ (𝜑 → 𝑈 = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) “s 𝑅)) |
| 11 | qusrng.p | . 2 ⊢ + = (+g‘𝑅) | |
| 12 | qusrng.t | . 2 ⊢ · = (.r‘𝑅) | |
| 13 | 1, 2, 3, 8, 9 | quslem 17444 | . 2 ⊢ (𝜑 → (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
| 14 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑅 ∈ Rng) |
| 15 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ 𝑉) | |
| 16 | 2 | eleq2d 2817 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↔ 𝑥 ∈ (Base‘𝑅))) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 ∈ 𝑉 ↔ 𝑥 ∈ (Base‘𝑅))) |
| 18 | 15, 17 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ (Base‘𝑅)) |
| 19 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ 𝑉) | |
| 20 | 2 | eleq2d 2817 | . . . . . . 7 ⊢ (𝜑 → (𝑦 ∈ 𝑉 ↔ 𝑦 ∈ (Base‘𝑅))) |
| 21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑦 ∈ 𝑉 ↔ 𝑦 ∈ (Base‘𝑅))) |
| 22 | 19, 21 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ (Base‘𝑅)) |
| 23 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 24 | 23, 11 | rngacl 20078 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
| 25 | 14, 18, 22, 24 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
| 26 | 2 | eleq2d 2817 | . . . . 5 ⊢ (𝜑 → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅))) |
| 27 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅))) |
| 28 | 25, 27 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) |
| 29 | qusrng.e1 | . . 3 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) | |
| 30 | 4, 6, 3, 28, 29 | ercpbl 17450 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 + 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 + 𝑞)))) |
| 31 | 23, 12 | rngcl 20080 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 · 𝑦) ∈ (Base‘𝑅)) |
| 32 | 14, 18, 22, 31 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ (Base‘𝑅)) |
| 33 | 2 | eleq2d 2817 | . . . . 5 ⊢ (𝜑 → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅))) |
| 34 | 33 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅))) |
| 35 | 32, 34 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ 𝑉) |
| 36 | qusrng.e2 | . . 3 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | |
| 37 | 4, 6, 3, 35, 36 | ercpbl 17450 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 · 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 · 𝑞)))) |
| 38 | 10, 2, 11, 12, 13, 30, 37, 9 | imasrng 20093 | 1 ⊢ (𝜑 → 𝑈 ∈ Rng) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 Er wer 8619 [cec 8620 / cqs 8621 Basecbs 17117 +gcplusg 17158 .rcmulr 17159 /s cqus 17406 Rngcrng 20068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-ec 8624 df-qs 8628 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-0g 17342 df-imas 17409 df-qus 17410 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 |
| This theorem is referenced by: qus2idrng 21208 |
| Copyright terms: Public domain | W3C validator |