MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusrng Structured version   Visualization version   GIF version

Theorem qusrng 20100
Description: The quotient structure of a non-unital ring is a non-unital ring (qusring2 20254 analog). (Contributed by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
qusrng.u (𝜑𝑈 = (𝑅 /s ))
qusrng.v (𝜑𝑉 = (Base‘𝑅))
qusrng.p + = (+g𝑅)
qusrng.t · = (.r𝑅)
qusrng.r (𝜑 Er 𝑉)
qusrng.e1 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
qusrng.e2 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
qusrng.x (𝜑𝑅 ∈ Rng)
Assertion
Ref Expression
qusrng (𝜑𝑈 ∈ Rng)
Distinct variable groups:   𝑅,𝑎,𝑏,𝑝,𝑞   𝑈,𝑎,𝑏,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞   + ,𝑝,𝑞   · ,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   + (𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem qusrng
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrng.u . . 3 (𝜑𝑈 = (𝑅 /s ))
2 qusrng.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2733 . . 3 (𝑢𝑉 ↦ [𝑢] ) = (𝑢𝑉 ↦ [𝑢] )
4 qusrng.r . . . 4 (𝜑 Er 𝑉)
5 fvex 6841 . . . . 5 (Base‘𝑅) ∈ V
62, 5eqeltrdi 2841 . . . 4 (𝜑𝑉 ∈ V)
7 erex 8652 . . . 4 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
84, 6, 7sylc 65 . . 3 (𝜑 ∈ V)
9 qusrng.x . . 3 (𝜑𝑅 ∈ Rng)
101, 2, 3, 8, 9qusval 17448 . 2 (𝜑𝑈 = ((𝑢𝑉 ↦ [𝑢] ) “s 𝑅))
11 qusrng.p . 2 + = (+g𝑅)
12 qusrng.t . 2 · = (.r𝑅)
131, 2, 3, 8, 9quslem 17449 . 2 (𝜑 → (𝑢𝑉 ↦ [𝑢] ):𝑉onto→(𝑉 / ))
149adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑅 ∈ Rng)
15 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
162eleq2d 2819 . . . . . . 7 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
1716adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
1815, 17mpbid 232 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥 ∈ (Base‘𝑅))
19 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
202eleq2d 2819 . . . . . . 7 (𝜑 → (𝑦𝑉𝑦 ∈ (Base‘𝑅)))
2120adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑦𝑉𝑦 ∈ (Base‘𝑅)))
2219, 21mpbid 232 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦 ∈ (Base‘𝑅))
23 eqid 2733 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2423, 11rngacl 20082 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
2514, 18, 22, 24syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
262eleq2d 2819 . . . . 5 (𝜑 → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅)))
2726adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅)))
2825, 27mpbird 257 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
29 qusrng.e1 . . 3 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
304, 6, 3, 28, 29ercpbl 17455 . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 + 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 + 𝑞))))
3123, 12rngcl 20084 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
3214, 18, 22, 31syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
332eleq2d 2819 . . . . 5 (𝜑 → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅)))
3433adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅)))
3532, 34mpbird 257 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ 𝑉)
36 qusrng.e2 . . 3 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
374, 6, 3, 35, 36ercpbl 17455 . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 · 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 · 𝑞))))
3810, 2, 11, 12, 13, 30, 37, 9imasrng 20097 1 (𝜑𝑈 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  Vcvv 3437   class class class wbr 5093  cmpt 5174  cfv 6486  (class class class)co 7352   Er wer 8625  [cec 8626   / cqs 8627  Basecbs 17122  +gcplusg 17163  .rcmulr 17164   /s cqus 17411  Rngcrng 20072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-ec 8630  df-qs 8634  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-0g 17347  df-imas 17414  df-qus 17415  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073
This theorem is referenced by:  qus2idrng  21212
  Copyright terms: Public domain W3C validator