MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusrng Structured version   Visualization version   GIF version

Theorem qusrng 20140
Description: The quotient structure of a non-unital ring is a non-unital ring (qusring2 20294 analog). (Contributed by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
qusrng.u (𝜑𝑈 = (𝑅 /s ))
qusrng.v (𝜑𝑉 = (Base‘𝑅))
qusrng.p + = (+g𝑅)
qusrng.t · = (.r𝑅)
qusrng.r (𝜑 Er 𝑉)
qusrng.e1 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
qusrng.e2 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
qusrng.x (𝜑𝑅 ∈ Rng)
Assertion
Ref Expression
qusrng (𝜑𝑈 ∈ Rng)
Distinct variable groups:   𝑅,𝑎,𝑏,𝑝,𝑞   𝑈,𝑎,𝑏,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞   + ,𝑝,𝑞   · ,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   + (𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem qusrng
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrng.u . . 3 (𝜑𝑈 = (𝑅 /s ))
2 qusrng.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2735 . . 3 (𝑢𝑉 ↦ [𝑢] ) = (𝑢𝑉 ↦ [𝑢] )
4 qusrng.r . . . 4 (𝜑 Er 𝑉)
5 fvex 6889 . . . . 5 (Base‘𝑅) ∈ V
62, 5eqeltrdi 2842 . . . 4 (𝜑𝑉 ∈ V)
7 erex 8743 . . . 4 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
84, 6, 7sylc 65 . . 3 (𝜑 ∈ V)
9 qusrng.x . . 3 (𝜑𝑅 ∈ Rng)
101, 2, 3, 8, 9qusval 17556 . 2 (𝜑𝑈 = ((𝑢𝑉 ↦ [𝑢] ) “s 𝑅))
11 qusrng.p . 2 + = (+g𝑅)
12 qusrng.t . 2 · = (.r𝑅)
131, 2, 3, 8, 9quslem 17557 . 2 (𝜑 → (𝑢𝑉 ↦ [𝑢] ):𝑉onto→(𝑉 / ))
149adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑅 ∈ Rng)
15 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
162eleq2d 2820 . . . . . . 7 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
1716adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
1815, 17mpbid 232 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥 ∈ (Base‘𝑅))
19 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
202eleq2d 2820 . . . . . . 7 (𝜑 → (𝑦𝑉𝑦 ∈ (Base‘𝑅)))
2120adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑦𝑉𝑦 ∈ (Base‘𝑅)))
2219, 21mpbid 232 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦 ∈ (Base‘𝑅))
23 eqid 2735 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2423, 11rngacl 20122 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
2514, 18, 22, 24syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
262eleq2d 2820 . . . . 5 (𝜑 → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅)))
2726adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅)))
2825, 27mpbird 257 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
29 qusrng.e1 . . 3 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
304, 6, 3, 28, 29ercpbl 17563 . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 + 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 + 𝑞))))
3123, 12rngcl 20124 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
3214, 18, 22, 31syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
332eleq2d 2820 . . . . 5 (𝜑 → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅)))
3433adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅)))
3532, 34mpbird 257 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ 𝑉)
36 qusrng.e2 . . 3 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
374, 6, 3, 35, 36ercpbl 17563 . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 · 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 · 𝑞))))
3810, 2, 11, 12, 13, 30, 37, 9imasrng 20137 1 (𝜑𝑈 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405   Er wer 8716  [cec 8717   / cqs 8718  Basecbs 17228  +gcplusg 17271  .rcmulr 17272   /s cqus 17519  Rngcrng 20112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-ec 8721  df-qs 8725  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-0g 17455  df-imas 17522  df-qus 17523  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113
This theorem is referenced by:  qus2idrng  21234
  Copyright terms: Public domain W3C validator