| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qusrng | Structured version Visualization version GIF version | ||
| Description: The quotient structure of a non-unital ring is a non-unital ring (qusring2 20300 analog). (Contributed by AV, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| qusrng.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusrng.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusrng.p | ⊢ + = (+g‘𝑅) |
| qusrng.t | ⊢ · = (.r‘𝑅) |
| qusrng.r | ⊢ (𝜑 → ∼ Er 𝑉) |
| qusrng.e1 | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) |
| qusrng.e2 | ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) |
| qusrng.x | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| Ref | Expression |
|---|---|
| qusrng | ⊢ (𝜑 → 𝑈 ∈ Rng) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusrng.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
| 2 | qusrng.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | eqid 2734 | . . 3 ⊢ (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) = (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) | |
| 4 | qusrng.r | . . . 4 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 5 | fvex 6899 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
| 6 | 2, 5 | eqeltrdi 2841 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ V) |
| 7 | erex 8751 | . . . 4 ⊢ ( ∼ Er 𝑉 → (𝑉 ∈ V → ∼ ∈ V)) | |
| 8 | 4, 6, 7 | sylc 65 | . . 3 ⊢ (𝜑 → ∼ ∈ V) |
| 9 | qusrng.x | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 10 | 1, 2, 3, 8, 9 | qusval 17559 | . 2 ⊢ (𝜑 → 𝑈 = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ) “s 𝑅)) |
| 11 | qusrng.p | . 2 ⊢ + = (+g‘𝑅) | |
| 12 | qusrng.t | . 2 ⊢ · = (.r‘𝑅) | |
| 13 | 1, 2, 3, 8, 9 | quslem 17560 | . 2 ⊢ (𝜑 → (𝑢 ∈ 𝑉 ↦ [𝑢] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
| 14 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑅 ∈ Rng) |
| 15 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ 𝑉) | |
| 16 | 2 | eleq2d 2819 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↔ 𝑥 ∈ (Base‘𝑅))) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 ∈ 𝑉 ↔ 𝑥 ∈ (Base‘𝑅))) |
| 18 | 15, 17 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ (Base‘𝑅)) |
| 19 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ 𝑉) | |
| 20 | 2 | eleq2d 2819 | . . . . . . 7 ⊢ (𝜑 → (𝑦 ∈ 𝑉 ↔ 𝑦 ∈ (Base‘𝑅))) |
| 21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑦 ∈ 𝑉 ↔ 𝑦 ∈ (Base‘𝑅))) |
| 22 | 19, 21 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ (Base‘𝑅)) |
| 23 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 24 | 23, 11 | rngacl 20128 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
| 25 | 14, 18, 22, 24 | syl3anc 1372 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ (Base‘𝑅)) |
| 26 | 2 | eleq2d 2819 | . . . . 5 ⊢ (𝜑 → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅))) |
| 27 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝑥 + 𝑦) ∈ 𝑉 ↔ (𝑥 + 𝑦) ∈ (Base‘𝑅))) |
| 28 | 25, 27 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) |
| 29 | qusrng.e1 | . . 3 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) | |
| 30 | 4, 6, 3, 28, 29 | ercpbl 17566 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 + 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 + 𝑞)))) |
| 31 | 23, 12 | rngcl 20130 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 · 𝑦) ∈ (Base‘𝑅)) |
| 32 | 14, 18, 22, 31 | syl3anc 1372 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ (Base‘𝑅)) |
| 33 | 2 | eleq2d 2819 | . . . . 5 ⊢ (𝜑 → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅))) |
| 34 | 33 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝑥 · 𝑦) ∈ 𝑉 ↔ (𝑥 · 𝑦) ∈ (Base‘𝑅))) |
| 35 | 32, 34 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ 𝑉) |
| 36 | qusrng.e2 | . . 3 ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) | |
| 37 | 4, 6, 3, 35, 36 | ercpbl 17566 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑎) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑝) ∧ ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑏) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘𝑞)) → ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑎 · 𝑏)) = ((𝑢 ∈ 𝑉 ↦ [𝑢] ∼ )‘(𝑝 · 𝑞)))) |
| 38 | 10, 2, 11, 12, 13, 30, 37, 9 | imasrng 20143 | 1 ⊢ (𝜑 → 𝑈 ∈ Rng) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 class class class wbr 5123 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 Er wer 8724 [cec 8725 / cqs 8726 Basecbs 17230 +gcplusg 17274 .rcmulr 17275 /s cqus 17522 Rngcrng 20118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-ec 8729 df-qs 8733 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17287 df-mulr 17288 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ds 17296 df-0g 17458 df-imas 17525 df-qus 17526 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 |
| This theorem is referenced by: qus2idrng 21246 |
| Copyright terms: Public domain | W3C validator |