| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | imasrng.u | . . 3
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | 
| 2 |  | imasrng.v | . . 3
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | 
| 3 |  | imasrng.f | . . 3
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | 
| 4 |  | imasrng.r | . . 3
⊢ (𝜑 → 𝑅 ∈ Rng) | 
| 5 | 1, 2, 3, 4 | imasbas 17558 | . 2
⊢ (𝜑 → 𝐵 = (Base‘𝑈)) | 
| 6 |  | eqidd 2737 | . 2
⊢ (𝜑 → (+g‘𝑈) = (+g‘𝑈)) | 
| 7 |  | eqidd 2737 | . 2
⊢ (𝜑 → (.r‘𝑈) = (.r‘𝑈)) | 
| 8 |  | imasrng.p | . . . . 5
⊢  + =
(+g‘𝑅) | 
| 9 | 8 | a1i 11 | . . . 4
⊢ (𝜑 → + =
(+g‘𝑅)) | 
| 10 |  | imasrng.e1 | . . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) | 
| 11 |  | rngabl 20153 | . . . . 5
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | 
| 12 | 4, 11 | syl 17 | . . . 4
⊢ (𝜑 → 𝑅 ∈ Abel) | 
| 13 |  | eqid 2736 | . . . 4
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 14 | 1, 2, 9, 3, 10, 12, 13 | imasabl 19895 | . . 3
⊢ (𝜑 → (𝑈 ∈ Abel ∧ (𝐹‘(0g‘𝑅)) = (0g‘𝑈))) | 
| 15 | 14 | simpld 494 | . 2
⊢ (𝜑 → 𝑈 ∈ Abel) | 
| 16 |  | imasrng.e2 | . . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) | 
| 17 |  | imasrng.t | . . . 4
⊢  · =
(.r‘𝑅) | 
| 18 |  | eqid 2736 | . . . 4
⊢
(.r‘𝑈) = (.r‘𝑈) | 
| 19 | 4 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑅 ∈ Rng) | 
| 20 |  | simprl 770 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑢 ∈ 𝑉) | 
| 21 | 2 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) | 
| 22 | 20, 21 | eleqtrd 2842 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑢 ∈ (Base‘𝑅)) | 
| 23 |  | simprr 772 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ 𝑉) | 
| 24 | 23, 21 | eleqtrd 2842 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ (Base‘𝑅)) | 
| 25 |  | eqid 2736 | . . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 26 | 25, 17 | rngcl 20162 | . . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢 · 𝑣) ∈ (Base‘𝑅)) | 
| 27 | 19, 22, 24, 26 | syl3anc 1372 | . . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝑢 · 𝑣) ∈ (Base‘𝑅)) | 
| 28 | 27, 21 | eleqtrrd 2843 | . . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝑢 · 𝑣) ∈ 𝑉) | 
| 29 | 28 | caovclg 7626 | . . . 4
⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | 
| 30 | 3, 16, 1, 2, 4, 17,
18, 29 | imasmulf 17582 | . . 3
⊢ (𝜑 → (.r‘𝑈):(𝐵 × 𝐵)⟶𝐵) | 
| 31 | 30 | fovcld 7561 | . 2
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢(.r‘𝑈)𝑣) ∈ 𝐵) | 
| 32 |  | forn 6822 | . . . . . . . . 9
⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) | 
| 33 | 3, 32 | syl 17 | . . . . . . . 8
⊢ (𝜑 → ran 𝐹 = 𝐵) | 
| 34 | 33 | eleq2d 2826 | . . . . . . 7
⊢ (𝜑 → (𝑢 ∈ ran 𝐹 ↔ 𝑢 ∈ 𝐵)) | 
| 35 | 33 | eleq2d 2826 | . . . . . . 7
⊢ (𝜑 → (𝑣 ∈ ran 𝐹 ↔ 𝑣 ∈ 𝐵)) | 
| 36 | 33 | eleq2d 2826 | . . . . . . 7
⊢ (𝜑 → (𝑤 ∈ ran 𝐹 ↔ 𝑤 ∈ 𝐵)) | 
| 37 | 34, 35, 36 | 3anbi123d 1437 | . . . . . 6
⊢ (𝜑 → ((𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹) ↔ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) | 
| 38 |  | fofn 6821 | . . . . . . 7
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹 Fn 𝑉) | 
| 39 |  | fvelrnb 6968 | . . . . . . . 8
⊢ (𝐹 Fn 𝑉 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢)) | 
| 40 |  | fvelrnb 6968 | . . . . . . . 8
⊢ (𝐹 Fn 𝑉 → (𝑣 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣)) | 
| 41 |  | fvelrnb 6968 | . . . . . . . 8
⊢ (𝐹 Fn 𝑉 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤)) | 
| 42 | 39, 40, 41 | 3anbi123d 1437 | . . . . . . 7
⊢ (𝐹 Fn 𝑉 → ((𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤))) | 
| 43 | 3, 38, 42 | 3syl 18 | . . . . . 6
⊢ (𝜑 → ((𝑢 ∈ ran 𝐹 ∧ 𝑣 ∈ ran 𝐹 ∧ 𝑤 ∈ ran 𝐹) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤))) | 
| 44 | 37, 43 | bitr3d 281 | . . . . 5
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤))) | 
| 45 |  | 3reeanv 3229 | . . . . 5
⊢
(∃𝑥 ∈
𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) ↔ (∃𝑥 ∈ 𝑉 (𝐹‘𝑥) = 𝑢 ∧ ∃𝑦 ∈ 𝑉 (𝐹‘𝑦) = 𝑣 ∧ ∃𝑧 ∈ 𝑉 (𝐹‘𝑧) = 𝑤)) | 
| 46 | 44, 45 | bitr4di 289 | . . . 4
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤))) | 
| 47 | 4 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑅 ∈ Rng) | 
| 48 |  | simp2 1137 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ 𝑉) | 
| 49 | 2 | 3ad2ant1 1133 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑉 = (Base‘𝑅)) | 
| 50 | 48, 49 | eleqtrd 2842 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ (Base‘𝑅)) | 
| 51 | 50 | 3adant3r3 1184 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑥 ∈ (Base‘𝑅)) | 
| 52 |  | simp3 1138 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) | 
| 53 | 52, 49 | eleqtrd 2842 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ (Base‘𝑅)) | 
| 54 | 53 | 3adant3r3 1184 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑦 ∈ (Base‘𝑅)) | 
| 55 |  | simpr3 1196 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ 𝑉) | 
| 56 | 2 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑉 = (Base‘𝑅)) | 
| 57 | 55, 56 | eleqtrd 2842 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑧 ∈ (Base‘𝑅)) | 
| 58 | 25, 17 | rngass 20157 | . . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | 
| 59 | 47, 51, 54, 57, 58 | syl13anc 1373 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | 
| 60 | 59 | fveq2d 6909 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 · 𝑦) · 𝑧)) = (𝐹‘(𝑥 · (𝑦 · 𝑧)))) | 
| 61 |  | simpl 482 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝜑) | 
| 62 | 28 | caovclg 7626 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ 𝑉) | 
| 63 | 62 | 3adantr3 1171 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · 𝑦) ∈ 𝑉) | 
| 64 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17581 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 · 𝑦) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘(𝑥 · 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 · 𝑦) · 𝑧))) | 
| 65 | 61, 63, 55, 64 | syl3anc 1372 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 · 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 · 𝑦) · 𝑧))) | 
| 66 |  | simpr1 1194 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → 𝑥 ∈ 𝑉) | 
| 67 | 28 | caovclg 7626 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 · 𝑧) ∈ 𝑉) | 
| 68 | 67 | 3adantr1 1169 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 · 𝑧) ∈ 𝑉) | 
| 69 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17581 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ (𝑦 · 𝑧) ∈ 𝑉) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘(𝑥 · (𝑦 · 𝑧)))) | 
| 70 | 61, 66, 68, 69 | syl3anc 1372 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘(𝑥 · (𝑦 · 𝑧)))) | 
| 71 | 60, 65, 70 | 3eqtr4d 2786 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 · 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 · 𝑧)))) | 
| 72 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17581 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥 · 𝑦))) | 
| 73 | 72 | 3adant3r3 1184 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥 · 𝑦))) | 
| 74 | 73 | oveq1d 7447 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘(𝑥 · 𝑦))(.r‘𝑈)(𝐹‘𝑧))) | 
| 75 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17581 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦 · 𝑧))) | 
| 76 | 75 | 3adant3r1 1182 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦 · 𝑧))) | 
| 77 | 76 | oveq2d 7448 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) = ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 · 𝑧)))) | 
| 78 | 71, 74, 77 | 3eqtr4d 2786 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)))) | 
| 79 |  | simp1 1136 | . . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑥) = 𝑢) | 
| 80 |  | simp2 1137 | . . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑦) = 𝑣) | 
| 81 | 79, 80 | oveq12d 7450 | . . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦)) = (𝑢(.r‘𝑈)𝑣)) | 
| 82 |  | simp3 1138 | . . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝐹‘𝑧) = 𝑤) | 
| 83 | 81, 82 | oveq12d 7450 | . . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤)) | 
| 84 | 80, 82 | oveq12d 7450 | . . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)) = (𝑣(.r‘𝑈)𝑤)) | 
| 85 | 79, 84 | oveq12d 7450 | . . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤))) | 
| 86 | 83, 85 | eqeq12d 2752 | . . . . . . . . 9
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) ↔ ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤)))) | 
| 87 | 78, 86 | syl5ibcom 245 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤)))) | 
| 88 | 87 | 3exp2 1354 | . . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑉 → (𝑦 ∈ 𝑉 → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤))))))) | 
| 89 | 88 | imp32 418 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤))))) | 
| 90 | 89 | rexlimdv 3152 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤)))) | 
| 91 | 90 | rexlimdvva 3212 | . . . 4
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤)))) | 
| 92 | 46, 91 | sylbid 240 | . . 3
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤)))) | 
| 93 | 92 | imp 406 | . 2
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝑈)𝑣)(.r‘𝑈)𝑤) = (𝑢(.r‘𝑈)(𝑣(.r‘𝑈)𝑤))) | 
| 94 | 25, 8, 17 | rngdi 20158 | . . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | 
| 95 | 47, 51, 54, 57, 94 | syl13anc 1373 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | 
| 96 | 95 | fveq2d 6909 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘(𝑥 · (𝑦 + 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧)))) | 
| 97 | 25, 8 | rngacl 20160 | . . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Rng ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢 + 𝑣) ∈ (Base‘𝑅)) | 
| 98 | 19, 22, 24, 97 | syl3anc 1372 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝑢 + 𝑣) ∈ (Base‘𝑅)) | 
| 99 | 98, 21 | eleqtrrd 2843 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝑢 + 𝑣) ∈ 𝑉) | 
| 100 | 99 | caovclg 7626 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 + 𝑧) ∈ 𝑉) | 
| 101 | 100 | 3adantr1 1169 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑦 + 𝑧) ∈ 𝑉) | 
| 102 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17581 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ (𝑦 + 𝑧) ∈ 𝑉) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 · (𝑦 + 𝑧)))) | 
| 103 | 61, 66, 101, 102 | syl3anc 1372 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 · (𝑦 + 𝑧)))) | 
| 104 | 28 | caovclg 7626 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · 𝑧) ∈ 𝑉) | 
| 105 | 104 | 3adantr2 1170 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 · 𝑧) ∈ 𝑉) | 
| 106 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢
(+g‘𝑈) = (+g‘𝑈) | 
| 107 | 3, 10, 1, 2, 4, 8, 106 | imasaddval 17578 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 · 𝑦) ∈ 𝑉 ∧ (𝑥 · 𝑧) ∈ 𝑉) → ((𝐹‘(𝑥 · 𝑦))(+g‘𝑈)(𝐹‘(𝑥 · 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧)))) | 
| 108 | 61, 63, 105, 107 | syl3anc 1372 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 · 𝑦))(+g‘𝑈)(𝐹‘(𝑥 · 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧)))) | 
| 109 | 96, 103, 108 | 3eqtr4d 2786 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 + 𝑧))) = ((𝐹‘(𝑥 · 𝑦))(+g‘𝑈)(𝐹‘(𝑥 · 𝑧)))) | 
| 110 | 3, 10, 1, 2, 4, 8, 106 | imasaddval 17578 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦 + 𝑧))) | 
| 111 | 110 | 3adant3r1 1182 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑦 + 𝑧))) | 
| 112 | 111 | oveq2d 7448 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘(𝑦 + 𝑧)))) | 
| 113 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17581 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑥 · 𝑧))) | 
| 114 | 113 | 3adant3r2 1183 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘(𝑥 · 𝑧))) | 
| 115 | 73, 114 | oveq12d 7450 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(+g‘𝑈)((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))) = ((𝐹‘(𝑥 · 𝑦))(+g‘𝑈)(𝐹‘(𝑥 · 𝑧)))) | 
| 116 | 109, 112,
115 | 3eqtr4d 2786 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(+g‘𝑈)((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧)))) | 
| 117 | 80, 82 | oveq12d 7450 | . . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧)) = (𝑣(+g‘𝑈)𝑤)) | 
| 118 | 79, 117 | oveq12d 7450 | . . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤))) | 
| 119 | 79, 82 | oveq12d 7450 | . . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧)) = (𝑢(.r‘𝑈)𝑤)) | 
| 120 | 81, 119 | oveq12d 7450 | . . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(+g‘𝑈)((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤))) | 
| 121 | 118, 120 | eqeq12d 2752 | . . . . . . . . 9
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(.r‘𝑈)((𝐹‘𝑦)(+g‘𝑈)(𝐹‘𝑧))) = (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑦))(+g‘𝑈)((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))) ↔ (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤)))) | 
| 122 | 116, 121 | syl5ibcom 245 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤)))) | 
| 123 | 122 | 3exp2 1354 | . . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑉 → (𝑦 ∈ 𝑉 → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤))))))) | 
| 124 | 123 | imp32 418 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤))))) | 
| 125 | 124 | rexlimdv 3152 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤)))) | 
| 126 | 125 | rexlimdvva 3212 | . . . 4
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤)))) | 
| 127 | 46, 126 | sylbid 240 | . . 3
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤)))) | 
| 128 | 127 | imp 406 | . 2
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝑈)(𝑣(+g‘𝑈)𝑤)) = ((𝑢(.r‘𝑈)𝑣)(+g‘𝑈)(𝑢(.r‘𝑈)𝑤))) | 
| 129 | 25, 8, 17 | rngdir 20159 | . . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | 
| 130 | 47, 51, 54, 57, 129 | syl13anc 1373 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | 
| 131 | 130 | fveq2d 6909 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦) · 𝑧)) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧)))) | 
| 132 | 99 | caovclg 7626 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) | 
| 133 | 132 | 3adantr3 1171 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝑥 + 𝑦) ∈ 𝑉) | 
| 134 | 3, 16, 1, 2, 4, 17,
18 | imasmulval 17581 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 + 𝑦) ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → ((𝐹‘(𝑥 + 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 + 𝑦) · 𝑧))) | 
| 135 | 61, 133, 55, 134 | syl3anc 1372 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 + 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (𝐹‘((𝑥 + 𝑦) · 𝑧))) | 
| 136 | 3, 10, 1, 2, 4, 8, 106 | imasaddval 17578 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 · 𝑧) ∈ 𝑉 ∧ (𝑦 · 𝑧) ∈ 𝑉) → ((𝐹‘(𝑥 · 𝑧))(+g‘𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧)))) | 
| 137 | 61, 105, 68, 136 | syl3anc 1372 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 · 𝑧))(+g‘𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧)))) | 
| 138 | 131, 135,
137 | 3eqtr4d 2786 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘(𝑥 + 𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘(𝑥 · 𝑧))(+g‘𝑈)(𝐹‘(𝑦 · 𝑧)))) | 
| 139 | 3, 10, 1, 2, 4, 8, 106 | imasaddval 17578 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) | 
| 140 | 139 | 3adant3r3 1184 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) | 
| 141 | 140 | oveq1d 7447 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝐹‘(𝑥 + 𝑦))(.r‘𝑈)(𝐹‘𝑧))) | 
| 142 | 114, 76 | oveq12d 7450 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))(+g‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) = ((𝐹‘(𝑥 · 𝑧))(+g‘𝑈)(𝐹‘(𝑦 · 𝑧)))) | 
| 143 | 138, 141,
142 | 3eqtr4d 2786 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))(+g‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)))) | 
| 144 | 79, 80 | oveq12d 7450 | . . . . . . . . . . 11
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦)) = (𝑢(+g‘𝑈)𝑣)) | 
| 145 | 144, 82 | oveq12d 7450 | . . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤)) | 
| 146 | 119, 84 | oveq12d 7450 | . . . . . . . . . 10
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))(+g‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤))) | 
| 147 | 145, 146 | eqeq12d 2752 | . . . . . . . . 9
⊢ (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((((𝐹‘𝑥)(+g‘𝑈)(𝐹‘𝑦))(.r‘𝑈)(𝐹‘𝑧)) = (((𝐹‘𝑥)(.r‘𝑈)(𝐹‘𝑧))(+g‘𝑈)((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) ↔ ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤)))) | 
| 148 | 143, 147 | syl5ibcom 245 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤)))) | 
| 149 | 148 | 3exp2 1354 | . . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑉 → (𝑦 ∈ 𝑉 → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤))))))) | 
| 150 | 149 | imp32 418 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑧 ∈ 𝑉 → (((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤))))) | 
| 151 | 150 | rexlimdv 3152 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤)))) | 
| 152 | 151 | rexlimdvva 3212 | . . . 4
⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 ((𝐹‘𝑥) = 𝑢 ∧ (𝐹‘𝑦) = 𝑣 ∧ (𝐹‘𝑧) = 𝑤) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤)))) | 
| 153 | 46, 152 | sylbid 240 | . . 3
⊢ (𝜑 → ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤)))) | 
| 154 | 153 | imp 406 | . 2
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝑈)𝑣)(.r‘𝑈)𝑤) = ((𝑢(.r‘𝑈)𝑤)(+g‘𝑈)(𝑣(.r‘𝑈)𝑤))) | 
| 155 | 5, 6, 7, 15, 31, 93, 128, 154 | isrngd 20171 | 1
⊢ (𝜑 → 𝑈 ∈ Rng) |