Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nvocnvb Structured version   Visualization version   GIF version

Theorem nvocnvb 42173
Description: Equivalence to saying the converse of an involution is the function itself. (Contributed by RP, 13-Oct-2024.)
Assertion
Ref Expression
nvocnvb ((𝐹 Fn 𝐴𝐹 = 𝐹) ↔ (𝐹:𝐴1-1-onto𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem nvocnvb
StepHypRef Expression
1 nvof1o 7278 . . 3 ((𝐹 Fn 𝐴𝐹 = 𝐹) → 𝐹:𝐴1-1-onto𝐴)
2 fveq1 6891 . . . . . 6 (𝐹 = 𝐹 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹𝑥)))
32ad2antlr 726 . . . . 5 (((𝐹 Fn 𝐴𝐹 = 𝐹) ∧ 𝑥𝐴) → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹𝑥)))
4 f1ocnvfv1 7274 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑥𝐴) → (𝐹‘(𝐹𝑥)) = 𝑥)
51, 4sylan 581 . . . . 5 (((𝐹 Fn 𝐴𝐹 = 𝐹) ∧ 𝑥𝐴) → (𝐹‘(𝐹𝑥)) = 𝑥)
63, 5eqtr3d 2775 . . . 4 (((𝐹 Fn 𝐴𝐹 = 𝐹) ∧ 𝑥𝐴) → (𝐹‘(𝐹𝑥)) = 𝑥)
76ralrimiva 3147 . . 3 ((𝐹 Fn 𝐴𝐹 = 𝐹) → ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥)
81, 7jca 513 . 2 ((𝐹 Fn 𝐴𝐹 = 𝐹) → (𝐹:𝐴1-1-onto𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥))
9 f1of 6834 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴𝐴)
10 ffn 6718 . . . . 5 (𝐹:𝐴𝐴𝐹 Fn 𝐴)
1110adantr 482 . . . 4 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 Fn 𝐴)
12 nvocnv 7279 . . . 4 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = 𝐹)
1311, 12jca 513 . . 3 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → (𝐹 Fn 𝐴𝐹 = 𝐹))
149, 13sylan 581 . 2 ((𝐹:𝐴1-1-onto𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → (𝐹 Fn 𝐴𝐹 = 𝐹))
158, 14impbii 208 1 ((𝐹 Fn 𝐴𝐹 = 𝐹) ↔ (𝐹:𝐴1-1-onto𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  ccnv 5676   Fn wfn 6539  wf 6540  1-1-ontowf1o 6543  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator