| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nvocnvb | Structured version Visualization version GIF version | ||
| Description: Equivalence to saying the converse of an involution is the function itself. (Contributed by RP, 13-Oct-2024.) |
| Ref | Expression |
|---|---|
| nvocnvb | ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ↔ (𝐹:𝐴–1-1-onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvof1o 7217 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) → 𝐹:𝐴–1-1-onto→𝐴) | |
| 2 | fveq1 6821 | . . . . . 6 ⊢ (◡𝐹 = 𝐹 → (◡𝐹‘(𝐹‘𝑥)) = (𝐹‘(𝐹‘𝑥))) | |
| 3 | 2 | ad2antlr 727 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ∧ 𝑥 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝑥)) = (𝐹‘(𝐹‘𝑥))) |
| 4 | f1ocnvfv1 7213 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝑥)) = 𝑥) | |
| 5 | 1, 4 | sylan 580 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ∧ 𝑥 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝑥)) = 𝑥) |
| 6 | 3, 5 | eqtr3d 2766 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ∧ 𝑥 ∈ 𝐴) → (𝐹‘(𝐹‘𝑥)) = 𝑥) |
| 7 | 6 | ralrimiva 3121 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) → ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) |
| 8 | 1, 7 | jca 511 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) → (𝐹:𝐴–1-1-onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥)) |
| 9 | f1of 6764 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹:𝐴⟶𝐴) | |
| 10 | ffn 6652 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐴 → 𝐹 Fn 𝐴) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → 𝐹 Fn 𝐴) |
| 12 | nvocnv 7218 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → ◡𝐹 = 𝐹) | |
| 13 | 11, 12 | jca 511 | . . 3 ⊢ ((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → (𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹)) |
| 14 | 9, 13 | sylan 580 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → (𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹)) |
| 15 | 8, 14 | impbii 209 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ↔ (𝐹:𝐴–1-1-onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ◡ccnv 5618 Fn wfn 6477 ⟶wf 6478 –1-1-onto→wf1o 6481 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |