![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nvocnvb | Structured version Visualization version GIF version |
Description: Equivalence to saying the converse of an involution is the function itself. (Contributed by RP, 13-Oct-2024.) |
Ref | Expression |
---|---|
nvocnvb | ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ↔ (𝐹:𝐴–1-1-onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvof1o 7273 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) → 𝐹:𝐴–1-1-onto→𝐴) | |
2 | fveq1 6883 | . . . . . 6 ⊢ (◡𝐹 = 𝐹 → (◡𝐹‘(𝐹‘𝑥)) = (𝐹‘(𝐹‘𝑥))) | |
3 | 2 | ad2antlr 724 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ∧ 𝑥 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝑥)) = (𝐹‘(𝐹‘𝑥))) |
4 | f1ocnvfv1 7269 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝑥)) = 𝑥) | |
5 | 1, 4 | sylan 579 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ∧ 𝑥 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝑥)) = 𝑥) |
6 | 3, 5 | eqtr3d 2768 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ∧ 𝑥 ∈ 𝐴) → (𝐹‘(𝐹‘𝑥)) = 𝑥) |
7 | 6 | ralrimiva 3140 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) → ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) |
8 | 1, 7 | jca 511 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) → (𝐹:𝐴–1-1-onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥)) |
9 | f1of 6826 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹:𝐴⟶𝐴) | |
10 | ffn 6710 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐴 → 𝐹 Fn 𝐴) | |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → 𝐹 Fn 𝐴) |
12 | nvocnv 7274 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → ◡𝐹 = 𝐹) | |
13 | 11, 12 | jca 511 | . . 3 ⊢ ((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → (𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹)) |
14 | 9, 13 | sylan 579 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → (𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹)) |
15 | 8, 14 | impbii 208 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ↔ (𝐹:𝐴–1-1-onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ◡ccnv 5668 Fn wfn 6531 ⟶wf 6532 –1-1-onto→wf1o 6535 ‘cfv 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |