Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nvocnvb Structured version   Visualization version   GIF version

Theorem nvocnvb 43514
Description: Equivalence to saying the converse of an involution is the function itself. (Contributed by RP, 13-Oct-2024.)
Assertion
Ref Expression
nvocnvb ((𝐹 Fn 𝐴𝐹 = 𝐹) ↔ (𝐹:𝐴1-1-onto𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem nvocnvb
StepHypRef Expression
1 nvof1o 7214 . . 3 ((𝐹 Fn 𝐴𝐹 = 𝐹) → 𝐹:𝐴1-1-onto𝐴)
2 fveq1 6821 . . . . . 6 (𝐹 = 𝐹 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹𝑥)))
32ad2antlr 727 . . . . 5 (((𝐹 Fn 𝐴𝐹 = 𝐹) ∧ 𝑥𝐴) → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹𝑥)))
4 f1ocnvfv1 7210 . . . . . 6 ((𝐹:𝐴1-1-onto𝐴𝑥𝐴) → (𝐹‘(𝐹𝑥)) = 𝑥)
51, 4sylan 580 . . . . 5 (((𝐹 Fn 𝐴𝐹 = 𝐹) ∧ 𝑥𝐴) → (𝐹‘(𝐹𝑥)) = 𝑥)
63, 5eqtr3d 2768 . . . 4 (((𝐹 Fn 𝐴𝐹 = 𝐹) ∧ 𝑥𝐴) → (𝐹‘(𝐹𝑥)) = 𝑥)
76ralrimiva 3124 . . 3 ((𝐹 Fn 𝐴𝐹 = 𝐹) → ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥)
81, 7jca 511 . 2 ((𝐹 Fn 𝐴𝐹 = 𝐹) → (𝐹:𝐴1-1-onto𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥))
9 f1of 6763 . . 3 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴𝐴)
10 ffn 6651 . . . . 5 (𝐹:𝐴𝐴𝐹 Fn 𝐴)
1110adantr 480 . . . 4 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 Fn 𝐴)
12 nvocnv 7215 . . . 4 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = 𝐹)
1311, 12jca 511 . . 3 ((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → (𝐹 Fn 𝐴𝐹 = 𝐹))
149, 13sylan 580 . 2 ((𝐹:𝐴1-1-onto𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → (𝐹 Fn 𝐴𝐹 = 𝐹))
158, 14impbii 209 1 ((𝐹 Fn 𝐴𝐹 = 𝐹) ↔ (𝐹:𝐴1-1-onto𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  ccnv 5613   Fn wfn 6476  wf 6477  1-1-ontowf1o 6480  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator