![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nvocnvb | Structured version Visualization version GIF version |
Description: Equivalence to saying the converse of an involution is the function itself. (Contributed by RP, 13-Oct-2024.) |
Ref | Expression |
---|---|
nvocnvb | ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ↔ (𝐹:𝐴–1-1-onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvof1o 7278 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) → 𝐹:𝐴–1-1-onto→𝐴) | |
2 | fveq1 6891 | . . . . . 6 ⊢ (◡𝐹 = 𝐹 → (◡𝐹‘(𝐹‘𝑥)) = (𝐹‘(𝐹‘𝑥))) | |
3 | 2 | ad2antlr 726 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ∧ 𝑥 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝑥)) = (𝐹‘(𝐹‘𝑥))) |
4 | f1ocnvfv1 7274 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ 𝑥 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝑥)) = 𝑥) | |
5 | 1, 4 | sylan 581 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ∧ 𝑥 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝑥)) = 𝑥) |
6 | 3, 5 | eqtr3d 2775 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ∧ 𝑥 ∈ 𝐴) → (𝐹‘(𝐹‘𝑥)) = 𝑥) |
7 | 6 | ralrimiva 3147 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) → ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) |
8 | 1, 7 | jca 513 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) → (𝐹:𝐴–1-1-onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥)) |
9 | f1of 6834 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → 𝐹:𝐴⟶𝐴) | |
10 | ffn 6718 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐴 → 𝐹 Fn 𝐴) | |
11 | 10 | adantr 482 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → 𝐹 Fn 𝐴) |
12 | nvocnv 7279 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → ◡𝐹 = 𝐹) | |
13 | 11, 12 | jca 513 | . . 3 ⊢ ((𝐹:𝐴⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → (𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹)) |
14 | 9, 13 | sylan 581 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥) → (𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹)) |
15 | 8, 14 | impbii 208 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ↔ (𝐹:𝐴–1-1-onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ◡ccnv 5676 Fn wfn 6539 ⟶wf 6540 –1-1-onto→wf1o 6543 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |