Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrhqima Structured version   Visualization version   GIF version

Theorem rrhqima 31964
Description: The ℝHom homomorphism leaves rational numbers unchanged. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Assertion
Ref Expression
rrhqima ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → ((ℝHom‘𝑅)‘𝑄) = ((ℚHom‘𝑅)‘𝑄))

Proof of Theorem rrhqima
StepHypRef Expression
1 eqid 2738 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
2 eqid 2738 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
31, 2rrhval 31946 . . . 4 (𝑅 ∈ ℝExt → (ℝHom‘𝑅) = (((topGen‘ran (,))CnExt(TopOpen‘𝑅))‘(ℚHom‘𝑅)))
43fveq1d 6776 . . 3 (𝑅 ∈ ℝExt → ((ℝHom‘𝑅)‘𝑄) = ((((topGen‘ran (,))CnExt(TopOpen‘𝑅))‘(ℚHom‘𝑅))‘𝑄))
54adantr 481 . 2 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → ((ℝHom‘𝑅)‘𝑄) = ((((topGen‘ran (,))CnExt(TopOpen‘𝑅))‘(ℚHom‘𝑅))‘𝑄))
6 uniretop 23926 . . 3 ℝ = (topGen‘ran (,))
7 eqid 2738 . . 3 (TopOpen‘𝑅) = (TopOpen‘𝑅)
8 retop 23925 . . . 4 (topGen‘ran (,)) ∈ Top
98a1i 11 . . 3 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → (topGen‘ran (,)) ∈ Top)
102rrexthaus 31957 . . . 4 (𝑅 ∈ ℝExt → (TopOpen‘𝑅) ∈ Haus)
1110adantr 481 . . 3 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → (TopOpen‘𝑅) ∈ Haus)
12 qssre 12699 . . . 4 ℚ ⊆ ℝ
1312a1i 11 . . 3 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → ℚ ⊆ ℝ)
14 rrextnrg 31951 . . . . . . 7 (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing)
15 rrextdrg 31952 . . . . . . 7 (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing)
1614, 15elind 4128 . . . . . 6 (𝑅 ∈ ℝExt → 𝑅 ∈ (NrmRing ∩ DivRing))
17 eqid 2738 . . . . . . 7 (ℤMod‘𝑅) = (ℤMod‘𝑅)
1817rrextnlm 31953 . . . . . 6 (𝑅 ∈ ℝExt → (ℤMod‘𝑅) ∈ NrmMod)
19 rrextchr 31954 . . . . . 6 (𝑅 ∈ ℝExt → (chr‘𝑅) = 0)
20 eqid 2738 . . . . . . 7 (ℂflds ℚ) = (ℂflds ℚ)
21 qqtopn 31961 . . . . . . 7 ((TopOpen‘ℝfld) ↾t ℚ) = (TopOpen‘(ℂflds ℚ))
2220, 21, 17, 2qqhcn 31941 . . . . . 6 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ (ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (((TopOpen‘ℝfld) ↾t ℚ) Cn (TopOpen‘𝑅)))
2316, 18, 19, 22syl3anc 1370 . . . . 5 (𝑅 ∈ ℝExt → (ℚHom‘𝑅) ∈ (((TopOpen‘ℝfld) ↾t ℚ) Cn (TopOpen‘𝑅)))
24 retopn 24543 . . . . . . . 8 (topGen‘ran (,)) = (TopOpen‘ℝfld)
2524eqcomi 2747 . . . . . . 7 (TopOpen‘ℝfld) = (topGen‘ran (,))
2625oveq1i 7285 . . . . . 6 ((TopOpen‘ℝfld) ↾t ℚ) = ((topGen‘ran (,)) ↾t ℚ)
2726oveq1i 7285 . . . . 5 (((TopOpen‘ℝfld) ↾t ℚ) Cn (TopOpen‘𝑅)) = (((topGen‘ran (,)) ↾t ℚ) Cn (TopOpen‘𝑅))
2823, 27eleqtrdi 2849 . . . 4 (𝑅 ∈ ℝExt → (ℚHom‘𝑅) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (TopOpen‘𝑅)))
2928adantr 481 . . 3 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → (ℚHom‘𝑅) ∈ (((topGen‘ran (,)) ↾t ℚ) Cn (TopOpen‘𝑅)))
30 simpr 485 . . 3 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → 𝑄 ∈ ℚ)
316, 7, 9, 11, 13, 29, 30cnextfres 23220 . 2 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → ((((topGen‘ran (,))CnExt(TopOpen‘𝑅))‘(ℚHom‘𝑅))‘𝑄) = ((ℚHom‘𝑅)‘𝑄))
325, 31eqtrd 2778 1 ((𝑅 ∈ ℝExt ∧ 𝑄 ∈ ℚ) → ((ℝHom‘𝑅)‘𝑄) = ((ℚHom‘𝑅)‘𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cin 3886  wss 3887   cuni 4839  ran crn 5590  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  cq 12688  (,)cioo 13079  s cress 16941  t crest 17131  TopOpenctopn 17132  topGenctg 17148  DivRingcdr 19991  fldccnfld 20597  ℤModczlm 20702  chrcchr 20703  fldcrefld 20809  Topctop 22042   Cn ccn 22375  Hauscha 22459  CnExtccnext 23210  NrmRingcnrg 23735  NrmModcnlm 23736  ℚHomcqqh 31922  ℝHomcrrh 31943   ℝExt crrext 31944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-numer 16439  df-denom 16440  df-gz 16631  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-plusf 18325  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-od 19136  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-abv 20077  df-lmod 20125  df-scaf 20126  df-sra 20434  df-rgmod 20435  df-nzr 20529  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zlm 20706  df-chr 20707  df-refld 20810  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-cnext 23211  df-tmd 23223  df-tgp 23224  df-trg 23311  df-xms 23473  df-ms 23474  df-tms 23475  df-nm 23738  df-ngp 23739  df-nrg 23741  df-nlm 23742  df-qqh 31923  df-rrh 31945  df-rrext 31949
This theorem is referenced by:  rrh0  31965
  Copyright terms: Public domain W3C validator