| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextnlm | Structured version Visualization version GIF version | ||
| Description: The norm of an extension of ℝ is absolutely homogeneous. (Contributed by Thierry Arnoux, 2-May-2018.) |
| Ref | Expression |
|---|---|
| rrextnlm.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
| Ref | Expression |
|---|---|
| rrextnlm | ⊢ (𝑅 ∈ ℝExt → 𝑍 ∈ NrmMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2731 | . . . 4 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
| 3 | rrextnlm.z | . . . 4 ⊢ 𝑍 = (ℤMod‘𝑅) | |
| 4 | 1, 2, 3 | isrrext 34013 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))) |
| 5 | 4 | simp2bi 1146 | . 2 ⊢ (𝑅 ∈ ℝExt → (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0)) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝑅 ∈ ℝExt → 𝑍 ∈ NrmMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 × cxp 5612 ↾ cres 5616 ‘cfv 6481 0cc0 11006 Basecbs 17120 distcds 17170 DivRingcdr 20644 metUnifcmetu 21282 ℤModczlm 21437 chrcchr 21438 UnifStcuss 24168 CUnifSpccusp 24211 NrmRingcnrg 24494 NrmModcnlm 24495 ℝExt crrext 34007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-res 5626 df-iota 6437 df-fv 6489 df-rrext 34012 |
| This theorem is referenced by: rrhfe 34025 rrhcne 34026 rrhqima 34027 sitgclg 34355 |
| Copyright terms: Public domain | W3C validator |