Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrextnlm Structured version   Visualization version   GIF version

Theorem rrextnlm 34016
Description: The norm of an extension of is absolutely homogeneous. (Contributed by Thierry Arnoux, 2-May-2018.)
Hypothesis
Ref Expression
rrextnlm.z 𝑍 = (ℤMod‘𝑅)
Assertion
Ref Expression
rrextnlm (𝑅 ∈ ℝExt → 𝑍 ∈ NrmMod)

Proof of Theorem rrextnlm
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2731 . . . 4 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
3 rrextnlm.z . . . 4 𝑍 = (ℤMod‘𝑅)
41, 2, 3isrrext 34013 . . 3 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))))
54simp2bi 1146 . 2 (𝑅 ∈ ℝExt → (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0))
65simpld 494 1 (𝑅 ∈ ℝExt → 𝑍 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   × cxp 5612  cres 5616  cfv 6481  0cc0 11006  Basecbs 17120  distcds 17170  DivRingcdr 20644  metUnifcmetu 21282  ℤModczlm 21437  chrcchr 21438  UnifStcuss 24168  CUnifSpccusp 24211  NrmRingcnrg 24494  NrmModcnlm 24495   ℝExt crrext 34007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-res 5626  df-iota 6437  df-fv 6489  df-rrext 34012
This theorem is referenced by:  rrhfe  34025  rrhcne  34026  rrhqima  34027  sitgclg  34355
  Copyright terms: Public domain W3C validator