![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextnlm | Structured version Visualization version GIF version |
Description: The norm of an extension of ℝ is absolutely homogeneous. (Contributed by Thierry Arnoux, 2-May-2018.) |
Ref | Expression |
---|---|
rrextnlm.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
Ref | Expression |
---|---|
rrextnlm | ⊢ (𝑅 ∈ ℝExt → 𝑍 ∈ NrmMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2740 | . . . 4 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
3 | rrextnlm.z | . . . 4 ⊢ 𝑍 = (ℤMod‘𝑅) | |
4 | 1, 2, 3 | isrrext 33946 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))) |
5 | 4 | simp2bi 1146 | . 2 ⊢ (𝑅 ∈ ℝExt → (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0)) |
6 | 5 | simpld 494 | 1 ⊢ (𝑅 ∈ ℝExt → 𝑍 ∈ NrmMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 × cxp 5698 ↾ cres 5702 ‘cfv 6573 0cc0 11184 Basecbs 17258 distcds 17320 DivRingcdr 20751 metUnifcmetu 21378 ℤModczlm 21534 chrcchr 21535 UnifStcuss 24283 CUnifSpccusp 24327 NrmRingcnrg 24613 NrmModcnlm 24614 ℝExt crrext 33940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-res 5712 df-iota 6525 df-fv 6581 df-rrext 33945 |
This theorem is referenced by: rrhfe 33958 rrhcne 33959 rrhqima 33960 sitgclg 34307 |
Copyright terms: Public domain | W3C validator |