![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextnlm | Structured version Visualization version GIF version |
Description: The norm of an extension of β is absolutely homogeneous. (Contributed by Thierry Arnoux, 2-May-2018.) |
Ref | Expression |
---|---|
rrextnlm.z | β’ π = (β€Modβπ ) |
Ref | Expression |
---|---|
rrextnlm | β’ (π β βExt β π β NrmMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
2 | eqid 2731 | . . . 4 β’ ((distβπ ) βΎ ((Baseβπ ) Γ (Baseβπ ))) = ((distβπ ) βΎ ((Baseβπ ) Γ (Baseβπ ))) | |
3 | rrextnlm.z | . . . 4 β’ π = (β€Modβπ ) | |
4 | 1, 2, 3 | isrrext 33279 | . . 3 β’ (π β βExt β ((π β NrmRing β§ π β DivRing) β§ (π β NrmMod β§ (chrβπ ) = 0) β§ (π β CUnifSp β§ (UnifStβπ ) = (metUnifβ((distβπ ) βΎ ((Baseβπ ) Γ (Baseβπ ))))))) |
5 | 4 | simp2bi 1145 | . 2 β’ (π β βExt β (π β NrmMod β§ (chrβπ ) = 0)) |
6 | 5 | simpld 494 | 1 β’ (π β βExt β π β NrmMod) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 Γ cxp 5674 βΎ cres 5678 βcfv 6543 0cc0 11114 Basecbs 17149 distcds 17211 DivRingcdr 20501 metUnifcmetu 21136 β€Modczlm 21270 chrcchr 21271 UnifStcuss 23979 CUnifSpccusp 24023 NrmRingcnrg 24309 NrmModcnlm 24310 βExt crrext 33273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-res 5688 df-iota 6495 df-fv 6551 df-rrext 33278 |
This theorem is referenced by: rrhfe 33291 rrhcne 33292 rrhqima 33293 sitgclg 33640 |
Copyright terms: Public domain | W3C validator |