![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextnlm | Structured version Visualization version GIF version |
Description: The norm of an extension of ℝ is absolutely homogeneous. (Contributed by Thierry Arnoux, 2-May-2018.) |
Ref | Expression |
---|---|
rrextnlm.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
Ref | Expression |
---|---|
rrextnlm | ⊢ (𝑅 ∈ ℝExt → 𝑍 ∈ NrmMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2728 | . . . 4 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
3 | rrextnlm.z | . . . 4 ⊢ 𝑍 = (ℤMod‘𝑅) | |
4 | 1, 2, 3 | isrrext 33634 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))) |
5 | 4 | simp2bi 1143 | . 2 ⊢ (𝑅 ∈ ℝExt → (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0)) |
6 | 5 | simpld 493 | 1 ⊢ (𝑅 ∈ ℝExt → 𝑍 ∈ NrmMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 × cxp 5680 ↾ cres 5684 ‘cfv 6553 0cc0 11146 Basecbs 17187 distcds 17249 DivRingcdr 20631 metUnifcmetu 21277 ℤModczlm 21433 chrcchr 21434 UnifStcuss 24178 CUnifSpccusp 24222 NrmRingcnrg 24508 NrmModcnlm 24509 ℝExt crrext 33628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-xp 5688 df-res 5694 df-iota 6505 df-fv 6561 df-rrext 33633 |
This theorem is referenced by: rrhfe 33646 rrhcne 33647 rrhqima 33648 sitgclg 33995 |
Copyright terms: Public domain | W3C validator |