| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextnlm | Structured version Visualization version GIF version | ||
| Description: The norm of an extension of ℝ is absolutely homogeneous. (Contributed by Thierry Arnoux, 2-May-2018.) |
| Ref | Expression |
|---|---|
| rrextnlm.z | ⊢ 𝑍 = (ℤMod‘𝑅) |
| Ref | Expression |
|---|---|
| rrextnlm | ⊢ (𝑅 ∈ ℝExt → 𝑍 ∈ NrmMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2735 | . . . 4 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
| 3 | rrextnlm.z | . . . 4 ⊢ 𝑍 = (ℤMod‘𝑅) | |
| 4 | 1, 2, 3 | isrrext 34031 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))) |
| 5 | 4 | simp2bi 1146 | . 2 ⊢ (𝑅 ∈ ℝExt → (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0)) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝑅 ∈ ℝExt → 𝑍 ∈ NrmMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 × cxp 5652 ↾ cres 5656 ‘cfv 6531 0cc0 11129 Basecbs 17228 distcds 17280 DivRingcdr 20689 metUnifcmetu 21306 ℤModczlm 21461 chrcchr 21462 UnifStcuss 24192 CUnifSpccusp 24235 NrmRingcnrg 24518 NrmModcnlm 24519 ℝExt crrext 34025 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-res 5666 df-iota 6484 df-fv 6539 df-rrext 34030 |
| This theorem is referenced by: rrhfe 34043 rrhcne 34044 rrhqima 34045 sitgclg 34374 |
| Copyright terms: Public domain | W3C validator |