| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrh0 | Structured version Visualization version GIF version | ||
| Description: The image of 0 by the ℝHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| rrh0 | ⊢ (𝑅 ∈ ℝExt → ((ℝHom‘𝑅)‘0) = (0g‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zssq 12922 | . . . 4 ⊢ ℤ ⊆ ℚ | |
| 2 | 0z 12547 | . . . 4 ⊢ 0 ∈ ℤ | |
| 3 | 1, 2 | sselii 3946 | . . 3 ⊢ 0 ∈ ℚ |
| 4 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ ℝExt ∧ 0 ∈ ℚ) → 𝑅 ∈ ℝExt ) | |
| 5 | simpr 484 | . . . 4 ⊢ ((𝑅 ∈ ℝExt ∧ 0 ∈ ℚ) → 0 ∈ ℚ) | |
| 6 | rrhqima 34011 | . . . 4 ⊢ ((𝑅 ∈ ℝExt ∧ 0 ∈ ℚ) → ((ℝHom‘𝑅)‘0) = ((ℚHom‘𝑅)‘0)) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ ℝExt ∧ 0 ∈ ℚ) → ((ℝHom‘𝑅)‘0) = ((ℚHom‘𝑅)‘0)) |
| 8 | 3, 7 | mpan2 691 | . 2 ⊢ (𝑅 ∈ ℝExt → ((ℝHom‘𝑅)‘0) = ((ℚHom‘𝑅)‘0)) |
| 9 | rrextdrg 33999 | . . 3 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing) | |
| 10 | rrextchr 34001 | . . 3 ⊢ (𝑅 ∈ ℝExt → (chr‘𝑅) = 0) | |
| 11 | eqid 2730 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 12 | eqid 2730 | . . . 4 ⊢ (/r‘𝑅) = (/r‘𝑅) | |
| 13 | eqid 2730 | . . . 4 ⊢ (ℤRHom‘𝑅) = (ℤRHom‘𝑅) | |
| 14 | 11, 12, 13 | qqh0 33981 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) |
| 15 | 9, 10, 14 | syl2anc 584 | . 2 ⊢ (𝑅 ∈ ℝExt → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) |
| 16 | 8, 15 | eqtrd 2765 | 1 ⊢ (𝑅 ∈ ℝExt → ((ℝHom‘𝑅)‘0) = (0g‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 0cc0 11075 ℤcz 12536 ℚcq 12914 Basecbs 17186 0gc0g 17409 /rcdvr 20316 DivRingcdr 20645 ℤRHomczrh 21416 chrcchr 21418 ℚHomcqqh 33967 ℝHomcrrh 33990 ℝExt crrext 33991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 df-numer 16712 df-denom 16713 df-gz 16908 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-plusf 18573 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-od 19465 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-rhm 20388 df-nzr 20429 df-subrng 20462 df-subrg 20486 df-drng 20647 df-abv 20725 df-lmod 20775 df-scaf 20776 df-sra 21087 df-rgmod 21088 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-zring 21364 df-zrh 21420 df-zlm 21421 df-chr 21422 df-refld 21521 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-cn 23121 df-cnp 23122 df-haus 23209 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-cnext 23954 df-tmd 23966 df-tgp 23967 df-trg 24054 df-xms 24215 df-ms 24216 df-tms 24217 df-nm 24477 df-ngp 24478 df-nrg 24480 df-nlm 24481 df-qqh 33968 df-rrh 33992 df-rrext 33996 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |