Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrh0 Structured version   Visualization version   GIF version

Theorem rrh0 34012
Description: The image of 0 by the ℝHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Assertion
Ref Expression
rrh0 (𝑅 ∈ ℝExt → ((ℝHom‘𝑅)‘0) = (0g𝑅))

Proof of Theorem rrh0
StepHypRef Expression
1 zssq 12922 . . . 4 ℤ ⊆ ℚ
2 0z 12547 . . . 4 0 ∈ ℤ
31, 2sselii 3946 . . 3 0 ∈ ℚ
4 simpl 482 . . . 4 ((𝑅 ∈ ℝExt ∧ 0 ∈ ℚ) → 𝑅 ∈ ℝExt )
5 simpr 484 . . . 4 ((𝑅 ∈ ℝExt ∧ 0 ∈ ℚ) → 0 ∈ ℚ)
6 rrhqima 34011 . . . 4 ((𝑅 ∈ ℝExt ∧ 0 ∈ ℚ) → ((ℝHom‘𝑅)‘0) = ((ℚHom‘𝑅)‘0))
74, 5, 6syl2anc 584 . . 3 ((𝑅 ∈ ℝExt ∧ 0 ∈ ℚ) → ((ℝHom‘𝑅)‘0) = ((ℚHom‘𝑅)‘0))
83, 7mpan2 691 . 2 (𝑅 ∈ ℝExt → ((ℝHom‘𝑅)‘0) = ((ℚHom‘𝑅)‘0))
9 rrextdrg 33999 . . 3 (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing)
10 rrextchr 34001 . . 3 (𝑅 ∈ ℝExt → (chr‘𝑅) = 0)
11 eqid 2730 . . . 4 (Base‘𝑅) = (Base‘𝑅)
12 eqid 2730 . . . 4 (/r𝑅) = (/r𝑅)
13 eqid 2730 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
1411, 12, 13qqh0 33981 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g𝑅))
159, 10, 14syl2anc 584 . 2 (𝑅 ∈ ℝExt → ((ℚHom‘𝑅)‘0) = (0g𝑅))
168, 15eqtrd 2765 1 (𝑅 ∈ ℝExt → ((ℝHom‘𝑅)‘0) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6514  0cc0 11075  cz 12536  cq 12914  Basecbs 17186  0gc0g 17409  /rcdvr 20316  DivRingcdr 20645  ℤRHomczrh 21416  chrcchr 21418  ℚHomcqqh 33967  ℝHomcrrh 33990   ℝExt crrext 33991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-numer 16712  df-denom 16713  df-gz 16908  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-od 19465  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-drng 20647  df-abv 20725  df-lmod 20775  df-scaf 20776  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-zlm 21421  df-chr 21422  df-refld 21521  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-cnext 23954  df-tmd 23966  df-tgp 23967  df-trg 24054  df-xms 24215  df-ms 24216  df-tms 24217  df-nm 24477  df-ngp 24478  df-nrg 24480  df-nlm 24481  df-qqh 33968  df-rrh 33992  df-rrext 33996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator