| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrh0 | Structured version Visualization version GIF version | ||
| Description: The image of 0 by the ℝHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| rrh0 | ⊢ (𝑅 ∈ ℝExt → ((ℝHom‘𝑅)‘0) = (0g‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zssq 12860 | . . . 4 ⊢ ℤ ⊆ ℚ | |
| 2 | 0z 12490 | . . . 4 ⊢ 0 ∈ ℤ | |
| 3 | 1, 2 | sselii 3927 | . . 3 ⊢ 0 ∈ ℚ |
| 4 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ ℝExt ∧ 0 ∈ ℚ) → 𝑅 ∈ ℝExt ) | |
| 5 | simpr 484 | . . . 4 ⊢ ((𝑅 ∈ ℝExt ∧ 0 ∈ ℚ) → 0 ∈ ℚ) | |
| 6 | rrhqima 34099 | . . . 4 ⊢ ((𝑅 ∈ ℝExt ∧ 0 ∈ ℚ) → ((ℝHom‘𝑅)‘0) = ((ℚHom‘𝑅)‘0)) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ ℝExt ∧ 0 ∈ ℚ) → ((ℝHom‘𝑅)‘0) = ((ℚHom‘𝑅)‘0)) |
| 8 | 3, 7 | mpan2 691 | . 2 ⊢ (𝑅 ∈ ℝExt → ((ℝHom‘𝑅)‘0) = ((ℚHom‘𝑅)‘0)) |
| 9 | rrextdrg 34087 | . . 3 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing) | |
| 10 | rrextchr 34089 | . . 3 ⊢ (𝑅 ∈ ℝExt → (chr‘𝑅) = 0) | |
| 11 | eqid 2733 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 12 | eqid 2733 | . . . 4 ⊢ (/r‘𝑅) = (/r‘𝑅) | |
| 13 | eqid 2733 | . . . 4 ⊢ (ℤRHom‘𝑅) = (ℤRHom‘𝑅) | |
| 14 | 11, 12, 13 | qqh0 34069 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) |
| 15 | 9, 10, 14 | syl2anc 584 | . 2 ⊢ (𝑅 ∈ ℝExt → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) |
| 16 | 8, 15 | eqtrd 2768 | 1 ⊢ (𝑅 ∈ ℝExt → ((ℝHom‘𝑅)‘0) = (0g‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 0cc0 11017 ℤcz 12479 ℚcq 12852 Basecbs 17127 0gc0g 17350 /rcdvr 20327 DivRingcdr 20653 ℤRHomczrh 21445 chrcchr 21447 ℚHomcqqh 34055 ℝHomcrrh 34078 ℝExt crrext 34079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 ax-mulf 11097 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-fi 9306 df-sup 9337 df-inf 9338 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ioo 13256 df-ico 13258 df-icc 13259 df-fz 13415 df-fzo 13562 df-fl 13703 df-mod 13781 df-seq 13916 df-exp 13976 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-dvds 16171 df-gcd 16413 df-numer 16653 df-denom 16654 df-gz 16849 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-hom 17192 df-cco 17193 df-rest 17333 df-topn 17334 df-0g 17352 df-gsum 17353 df-topgen 17354 df-pt 17355 df-prds 17358 df-xrs 17414 df-qtop 17419 df-imas 17420 df-xps 17422 df-mre 17496 df-mrc 17497 df-acs 17499 df-plusf 18555 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-ghm 19133 df-cntz 19237 df-od 19448 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-cring 20162 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-dvr 20328 df-rhm 20399 df-nzr 20437 df-subrng 20470 df-subrg 20494 df-drng 20655 df-abv 20733 df-lmod 20804 df-scaf 20805 df-sra 21116 df-rgmod 21117 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-cnfld 21301 df-zring 21393 df-zrh 21449 df-zlm 21450 df-chr 21451 df-refld 21551 df-top 22829 df-topon 22846 df-topsp 22868 df-bases 22881 df-cld 22954 df-ntr 22955 df-cls 22956 df-nei 23033 df-cn 23162 df-cnp 23163 df-haus 23250 df-tx 23497 df-hmeo 23690 df-fil 23781 df-fm 23873 df-flim 23874 df-flf 23875 df-cnext 23995 df-tmd 24007 df-tgp 24008 df-trg 24095 df-xms 24255 df-ms 24256 df-tms 24257 df-nm 24517 df-ngp 24518 df-nrg 24520 df-nlm 24521 df-qqh 34056 df-rrh 34080 df-rrext 34084 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |