![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrh0 | Structured version Visualization version GIF version |
Description: The image of 0 by the βHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
rrh0 | β’ (π β βExt β ((βHomβπ )β0) = (0gβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssq 12946 | . . . 4 β’ β€ β β | |
2 | 0z 12575 | . . . 4 β’ 0 β β€ | |
3 | 1, 2 | sselii 3980 | . . 3 β’ 0 β β |
4 | simpl 481 | . . . 4 β’ ((π β βExt β§ 0 β β) β π β βExt ) | |
5 | simpr 483 | . . . 4 β’ ((π β βExt β§ 0 β β) β 0 β β) | |
6 | rrhqima 33290 | . . . 4 β’ ((π β βExt β§ 0 β β) β ((βHomβπ )β0) = ((βHomβπ )β0)) | |
7 | 4, 5, 6 | syl2anc 582 | . . 3 β’ ((π β βExt β§ 0 β β) β ((βHomβπ )β0) = ((βHomβπ )β0)) |
8 | 3, 7 | mpan2 687 | . 2 β’ (π β βExt β ((βHomβπ )β0) = ((βHomβπ )β0)) |
9 | rrextdrg 33278 | . . 3 β’ (π β βExt β π β DivRing) | |
10 | rrextchr 33280 | . . 3 β’ (π β βExt β (chrβπ ) = 0) | |
11 | eqid 2730 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
12 | eqid 2730 | . . . 4 β’ (/rβπ ) = (/rβπ ) | |
13 | eqid 2730 | . . . 4 β’ (β€RHomβπ ) = (β€RHomβπ ) | |
14 | 11, 12, 13 | qqh0 33260 | . . 3 β’ ((π β DivRing β§ (chrβπ ) = 0) β ((βHomβπ )β0) = (0gβπ )) |
15 | 9, 10, 14 | syl2anc 582 | . 2 β’ (π β βExt β ((βHomβπ )β0) = (0gβπ )) |
16 | 8, 15 | eqtrd 2770 | 1 β’ (π β βExt β ((βHomβπ )β0) = (0gβπ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βcfv 6544 0cc0 11114 β€cz 12564 βcq 12938 Basecbs 17150 0gc0g 17391 /rcdvr 20293 DivRingcdr 20502 β€RHomczrh 21270 chrcchr 21272 βHomcqqh 33248 βHomcrrh 33269 βExt crrext 33270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-er 8707 df-map 8826 df-pm 8827 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-fi 9410 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-q 12939 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ioo 13334 df-ico 13336 df-icc 13337 df-fz 13491 df-fzo 13634 df-fl 13763 df-mod 13841 df-seq 13973 df-exp 14034 df-hash 14297 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-dvds 16204 df-gcd 16442 df-numer 16677 df-denom 16678 df-gz 16869 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-hom 17227 df-cco 17228 df-rest 17374 df-topn 17375 df-0g 17393 df-gsum 17394 df-topgen 17395 df-pt 17396 df-prds 17399 df-xrs 17454 df-qtop 17459 df-imas 17460 df-xps 17462 df-mre 17536 df-mrc 17537 df-acs 17539 df-plusf 18566 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18707 df-submnd 18708 df-grp 18860 df-minusg 18861 df-sbg 18862 df-mulg 18989 df-subg 19041 df-ghm 19130 df-cntz 19224 df-od 19439 df-cmn 19693 df-abl 19694 df-mgp 20031 df-rng 20049 df-ur 20078 df-ring 20131 df-cring 20132 df-oppr 20227 df-dvdsr 20250 df-unit 20251 df-invr 20281 df-dvr 20294 df-rhm 20365 df-nzr 20406 df-subrng 20436 df-subrg 20461 df-drng 20504 df-abv 20570 df-lmod 20618 df-scaf 20619 df-sra 20932 df-rgmod 20933 df-psmet 21138 df-xmet 21139 df-met 21140 df-bl 21141 df-mopn 21142 df-fbas 21143 df-fg 21144 df-cnfld 21147 df-zring 21220 df-zrh 21274 df-zlm 21275 df-chr 21276 df-refld 21379 df-top 22618 df-topon 22635 df-topsp 22657 df-bases 22671 df-cld 22745 df-ntr 22746 df-cls 22747 df-nei 22824 df-cn 22953 df-cnp 22954 df-haus 23041 df-tx 23288 df-hmeo 23481 df-fil 23572 df-fm 23664 df-flim 23665 df-flf 23666 df-cnext 23786 df-tmd 23798 df-tgp 23799 df-trg 23886 df-xms 24048 df-ms 24049 df-tms 24050 df-nm 24313 df-ngp 24314 df-nrg 24316 df-nlm 24317 df-qqh 33249 df-rrh 33271 df-rrext 33275 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |