Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrextdrg Structured version   Visualization version   GIF version

Theorem rrextdrg 34033
Description: An extension of is a division ring. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
rrextdrg (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing)

Proof of Theorem rrextdrg
StepHypRef Expression
1 eqid 2735 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2735 . . . 4 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
3 eqid 2735 . . . 4 (ℤMod‘𝑅) = (ℤMod‘𝑅)
41, 2, 3isrrext 34031 . . 3 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))))
54simp1bi 1145 . 2 (𝑅 ∈ ℝExt → (𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing))
65simprd 495 1 (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   × cxp 5652  cres 5656  cfv 6531  0cc0 11129  Basecbs 17228  distcds 17280  DivRingcdr 20689  metUnifcmetu 21306  ℤModczlm 21461  chrcchr 21462  UnifStcuss 24192  CUnifSpccusp 24235  NrmRingcnrg 24518  NrmModcnlm 24519   ℝExt crrext 34025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-res 5666  df-iota 6484  df-fv 6539  df-rrext 34030
This theorem is referenced by:  rrhfe  34043  rrhcne  34044  rrhqima  34045  rrh0  34046  sitgclg  34374
  Copyright terms: Public domain W3C validator