Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrextdrg Structured version   Visualization version   GIF version

Theorem rrextdrg 31852
Description: An extension of is a division ring. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
rrextdrg (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing)

Proof of Theorem rrextdrg
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2738 . . . 4 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
3 eqid 2738 . . . 4 (ℤMod‘𝑅) = (ℤMod‘𝑅)
41, 2, 3isrrext 31850 . . 3 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))))
54simp1bi 1143 . 2 (𝑅 ∈ ℝExt → (𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing))
65simprd 495 1 (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108   × cxp 5578  cres 5582  cfv 6418  0cc0 10802  Basecbs 16840  distcds 16897  DivRingcdr 19906  metUnifcmetu 20501  ℤModczlm 20614  chrcchr 20615  UnifStcuss 23313  CUnifSpccusp 23357  NrmRingcnrg 23641  NrmModcnlm 23642   ℝExt crrext 31844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-res 5592  df-iota 6376  df-fv 6426  df-rrext 31849
This theorem is referenced by:  rrhfe  31862  rrhcne  31863  rrhqima  31864  rrh0  31865  sitgclg  32209
  Copyright terms: Public domain W3C validator