![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextdrg | Structured version Visualization version GIF version |
Description: An extension of ℝ is a division ring. (Contributed by Thierry Arnoux, 2-May-2018.) |
Ref | Expression |
---|---|
rrextdrg | ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2728 | . . . 4 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
3 | eqid 2728 | . . . 4 ⊢ (ℤMod‘𝑅) = (ℤMod‘𝑅) | |
4 | 1, 2, 3 | isrrext 33601 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))) |
5 | 4 | simp1bi 1143 | . 2 ⊢ (𝑅 ∈ ℝExt → (𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing)) |
6 | 5 | simprd 495 | 1 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 × cxp 5676 ↾ cres 5680 ‘cfv 6548 0cc0 11138 Basecbs 17179 distcds 17241 DivRingcdr 20623 metUnifcmetu 21269 ℤModczlm 21425 chrcchr 21426 UnifStcuss 24157 CUnifSpccusp 24201 NrmRingcnrg 24487 NrmModcnlm 24488 ℝExt crrext 33595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5684 df-res 5690 df-iota 6500 df-fv 6556 df-rrext 33600 |
This theorem is referenced by: rrhfe 33613 rrhcne 33614 rrhqima 33615 rrh0 33616 sitgclg 33962 |
Copyright terms: Public domain | W3C validator |