|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextdrg | Structured version Visualization version GIF version | ||
| Description: An extension of ℝ is a division ring. (Contributed by Thierry Arnoux, 2-May-2018.) | 
| Ref | Expression | 
|---|---|
| rrextdrg | ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2737 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2737 | . . . 4 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
| 3 | eqid 2737 | . . . 4 ⊢ (ℤMod‘𝑅) = (ℤMod‘𝑅) | |
| 4 | 1, 2, 3 | isrrext 34001 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))) | 
| 5 | 4 | simp1bi 1146 | . 2 ⊢ (𝑅 ∈ ℝExt → (𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing)) | 
| 6 | 5 | simprd 495 | 1 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 × cxp 5683 ↾ cres 5687 ‘cfv 6561 0cc0 11155 Basecbs 17247 distcds 17306 DivRingcdr 20729 metUnifcmetu 21355 ℤModczlm 21511 chrcchr 21512 UnifStcuss 24262 CUnifSpccusp 24306 NrmRingcnrg 24592 NrmModcnlm 24593 ℝExt crrext 33995 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-res 5697 df-iota 6514 df-fv 6569 df-rrext 34000 | 
| This theorem is referenced by: rrhfe 34013 rrhcne 34014 rrhqima 34015 rrh0 34016 sitgclg 34344 | 
| Copyright terms: Public domain | W3C validator |