Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrextdrg Structured version   Visualization version   GIF version

Theorem rrextdrg 31894
Description: An extension of is a division ring. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
rrextdrg (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing)

Proof of Theorem rrextdrg
StepHypRef Expression
1 eqid 2737 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2737 . . . 4 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
3 eqid 2737 . . . 4 (ℤMod‘𝑅) = (ℤMod‘𝑅)
41, 2, 3isrrext 31892 . . 3 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))))
54simp1bi 1143 . 2 (𝑅 ∈ ℝExt → (𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing))
65simprd 495 1 (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107   × cxp 5583  cres 5587  cfv 6423  0cc0 10818  Basecbs 16856  distcds 16915  DivRingcdr 19935  metUnifcmetu 20532  ℤModczlm 20646  chrcchr 20647  UnifStcuss 23349  CUnifSpccusp 23393  NrmRingcnrg 23679  NrmModcnlm 23680   ℝExt crrext 31886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3071  df-v 3429  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5076  df-opab 5138  df-xp 5591  df-res 5597  df-iota 6381  df-fv 6431  df-rrext 31891
This theorem is referenced by:  rrhfe  31904  rrhcne  31905  rrhqima  31906  rrh0  31907  sitgclg  32251
  Copyright terms: Public domain W3C validator