Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrextdrg Structured version   Visualization version   GIF version

Theorem rrextdrg 33988
Description: An extension of is a division ring. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
rrextdrg (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing)

Proof of Theorem rrextdrg
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2729 . . . 4 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
3 eqid 2729 . . . 4 (ℤMod‘𝑅) = (ℤMod‘𝑅)
41, 2, 3isrrext 33986 . . 3 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))))
54simp1bi 1145 . 2 (𝑅 ∈ ℝExt → (𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing))
65simprd 495 1 (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   × cxp 5621  cres 5625  cfv 6486  0cc0 11028  Basecbs 17139  distcds 17189  DivRingcdr 20633  metUnifcmetu 21271  ℤModczlm 21426  chrcchr 21427  UnifStcuss 24158  CUnifSpccusp 24201  NrmRingcnrg 24484  NrmModcnlm 24485   ℝExt crrext 33980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-res 5635  df-iota 6442  df-fv 6494  df-rrext 33985
This theorem is referenced by:  rrhfe  33998  rrhcne  33999  rrhqima  34000  rrh0  34001  sitgclg  34329
  Copyright terms: Public domain W3C validator