Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrextdrg Structured version   Visualization version   GIF version

Theorem rrextdrg 33965
Description: An extension of is a division ring. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
rrextdrg (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing)

Proof of Theorem rrextdrg
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2729 . . . 4 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
3 eqid 2729 . . . 4 (ℤMod‘𝑅) = (ℤMod‘𝑅)
41, 2, 3isrrext 33963 . . 3 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))))
54simp1bi 1145 . 2 (𝑅 ∈ ℝExt → (𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing))
65simprd 495 1 (𝑅 ∈ ℝExt → 𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   × cxp 5629  cres 5633  cfv 6499  0cc0 11044  Basecbs 17155  distcds 17205  DivRingcdr 20614  metUnifcmetu 21231  ℤModczlm 21386  chrcchr 21387  UnifStcuss 24117  CUnifSpccusp 24160  NrmRingcnrg 24443  NrmModcnlm 24444   ℝExt crrext 33957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-res 5643  df-iota 6452  df-fv 6507  df-rrext 33962
This theorem is referenced by:  rrhfe  33975  rrhcne  33976  rrhqima  33977  rrh0  33978  sitgclg  34306
  Copyright terms: Public domain W3C validator