MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodcllemf Structured version   Visualization version   GIF version

Theorem fprodcllemf 15979
Description: Finite product closure lemma. A version of fprodcllem 15972 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodcllemf.ph 𝑘𝜑
fprodcllemf.s (𝜑𝑆 ⊆ ℂ)
fprodcllemf.xy ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
fprodcllemf.a (𝜑𝐴 ∈ Fin)
fprodcllemf.b ((𝜑𝑘𝐴) → 𝐵𝑆)
fprodcllemf.1 (𝜑 → 1 ∈ 𝑆)
Assertion
Ref Expression
fprodcllemf (𝜑 → ∏𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑆,𝑘,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodcllemf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2899 . . 3 𝑗𝐵
2 nfcsb1v 3903 . . 3 𝑘𝑗 / 𝑘𝐵
3 csbeq1a 3893 . . 3 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
41, 2, 3cbvprodi 15936 . 2 𝑘𝐴 𝐵 = ∏𝑗𝐴 𝑗 / 𝑘𝐵
5 fprodcllemf.s . . 3 (𝜑𝑆 ⊆ ℂ)
6 fprodcllemf.xy . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
7 fprodcllemf.a . . 3 (𝜑𝐴 ∈ Fin)
8 fprodcllemf.ph . . . . . 6 𝑘𝜑
9 fprodcllemf.b . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵𝑆)
109ex 412 . . . . . 6 (𝜑 → (𝑘𝐴𝐵𝑆))
118, 10ralrimi 3244 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐵𝑆)
12 rspsbc 3859 . . . . 5 (𝑗𝐴 → (∀𝑘𝐴 𝐵𝑆[𝑗 / 𝑘]𝐵𝑆))
1311, 12mpan9 506 . . . 4 ((𝜑𝑗𝐴) → [𝑗 / 𝑘]𝐵𝑆)
14 sbcel1g 4396 . . . . 5 (𝑗 ∈ V → ([𝑗 / 𝑘]𝐵𝑆𝑗 / 𝑘𝐵𝑆))
1514elv 3469 . . . 4 ([𝑗 / 𝑘]𝐵𝑆𝑗 / 𝑘𝐵𝑆)
1613, 15sylib 218 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑆)
17 fprodcllemf.1 . . 3 (𝜑 → 1 ∈ 𝑆)
185, 6, 7, 16, 17fprodcllem 15972 . 2 (𝜑 → ∏𝑗𝐴 𝑗 / 𝑘𝐵𝑆)
194, 18eqeltrid 2839 1 (𝜑 → ∏𝑘𝐴 𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1783  wcel 2109  wral 3052  Vcvv 3464  [wsbc 3770  csb 3879  wss 3931  (class class class)co 7410  Fincfn 8964  cc 11132  1c1 11135   · cmul 11139  cprod 15924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-prod 15925
This theorem is referenced by:  fprodreclf  15980  fprodn0f  16012  fprodclf  16013  fprodge0  16014  fprodge1  16016
  Copyright terms: Public domain W3C validator