MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodcllemf Structured version   Visualization version   GIF version

Theorem fprodcllemf 15972
Description: Finite product closure lemma. A version of fprodcllem 15965 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodcllemf.ph 𝑘𝜑
fprodcllemf.s (𝜑𝑆 ⊆ ℂ)
fprodcllemf.xy ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
fprodcllemf.a (𝜑𝐴 ∈ Fin)
fprodcllemf.b ((𝜑𝑘𝐴) → 𝐵𝑆)
fprodcllemf.1 (𝜑 → 1 ∈ 𝑆)
Assertion
Ref Expression
fprodcllemf (𝜑 → ∏𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑆,𝑘,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodcllemf
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2898 . . 3 𝑗𝐵
2 nfcsb1v 3898 . . 3 𝑘𝑗 / 𝑘𝐵
3 csbeq1a 3888 . . 3 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
41, 2, 3cbvprodi 15929 . 2 𝑘𝐴 𝐵 = ∏𝑗𝐴 𝑗 / 𝑘𝐵
5 fprodcllemf.s . . 3 (𝜑𝑆 ⊆ ℂ)
6 fprodcllemf.xy . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
7 fprodcllemf.a . . 3 (𝜑𝐴 ∈ Fin)
8 fprodcllemf.ph . . . . . 6 𝑘𝜑
9 fprodcllemf.b . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵𝑆)
109ex 412 . . . . . 6 (𝜑 → (𝑘𝐴𝐵𝑆))
118, 10ralrimi 3240 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐵𝑆)
12 rspsbc 3854 . . . . 5 (𝑗𝐴 → (∀𝑘𝐴 𝐵𝑆[𝑗 / 𝑘]𝐵𝑆))
1311, 12mpan9 506 . . . 4 ((𝜑𝑗𝐴) → [𝑗 / 𝑘]𝐵𝑆)
14 sbcel1g 4391 . . . . 5 (𝑗 ∈ V → ([𝑗 / 𝑘]𝐵𝑆𝑗 / 𝑘𝐵𝑆))
1514elv 3464 . . . 4 ([𝑗 / 𝑘]𝐵𝑆𝑗 / 𝑘𝐵𝑆)
1613, 15sylib 218 . . 3 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵𝑆)
17 fprodcllemf.1 . . 3 (𝜑 → 1 ∈ 𝑆)
185, 6, 7, 16, 17fprodcllem 15965 . 2 (𝜑 → ∏𝑗𝐴 𝑗 / 𝑘𝐵𝑆)
194, 18eqeltrid 2838 1 (𝜑 → ∏𝑘𝐴 𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1783  wcel 2108  wral 3051  Vcvv 3459  [wsbc 3765  csb 3874  wss 3926  (class class class)co 7403  Fincfn 8957  cc 11125  1c1 11128   · cmul 11132  cprod 15917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-prod 15918
This theorem is referenced by:  fprodreclf  15973  fprodn0f  16005  fprodclf  16006  fprodge0  16007  fprodge1  16009
  Copyright terms: Public domain W3C validator