| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodcllemf | Structured version Visualization version GIF version | ||
| Description: Finite product closure lemma. A version of fprodcllem 15917 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fprodcllemf.ph | ⊢ Ⅎ𝑘𝜑 |
| fprodcllemf.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| fprodcllemf.xy | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
| fprodcllemf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodcllemf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
| fprodcllemf.1 | ⊢ (𝜑 → 1 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fprodcllemf | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑗𝐵 | |
| 2 | nfcsb1v 3886 | . . 3 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
| 3 | csbeq1a 3876 | . . 3 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
| 4 | 1, 2, 3 | cbvprodi 15881 | . 2 ⊢ ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
| 5 | fprodcllemf.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 6 | fprodcllemf.xy | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) | |
| 7 | fprodcllemf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 8 | fprodcllemf.ph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
| 9 | fprodcllemf.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) | |
| 10 | 9 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ 𝑆)) |
| 11 | 8, 10 | ralrimi 3235 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 12 | rspsbc 3842 | . . . . 5 ⊢ (𝑗 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → [𝑗 / 𝑘]𝐵 ∈ 𝑆)) | |
| 13 | 11, 12 | mpan9 506 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → [𝑗 / 𝑘]𝐵 ∈ 𝑆) |
| 14 | sbcel1g 4379 | . . . . 5 ⊢ (𝑗 ∈ V → ([𝑗 / 𝑘]𝐵 ∈ 𝑆 ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑆)) | |
| 15 | 14 | elv 3452 | . . . 4 ⊢ ([𝑗 / 𝑘]𝐵 ∈ 𝑆 ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑆) |
| 16 | 13, 15 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑆) |
| 17 | fprodcllemf.1 | . . 3 ⊢ (𝜑 → 1 ∈ 𝑆) | |
| 18 | 5, 6, 7, 16, 17 | fprodcllem 15917 | . 2 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑆) |
| 19 | 4, 18 | eqeltrid 2832 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 [wsbc 3753 ⦋csb 3862 ⊆ wss 3914 (class class class)co 7387 Fincfn 8918 ℂcc 11066 1c1 11069 · cmul 11073 ∏cprod 15869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-prod 15870 |
| This theorem is referenced by: fprodreclf 15925 fprodn0f 15957 fprodclf 15958 fprodge0 15959 fprodge1 15961 |
| Copyright terms: Public domain | W3C validator |