| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodcllemf | Structured version Visualization version GIF version | ||
| Description: Finite product closure lemma. A version of fprodcllem 15858 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fprodcllemf.ph | ⊢ Ⅎ𝑘𝜑 |
| fprodcllemf.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| fprodcllemf.xy | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
| fprodcllemf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodcllemf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
| fprodcllemf.1 | ⊢ (𝜑 → 1 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fprodcllemf | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑗𝐵 | |
| 2 | nfcsb1v 3869 | . . 3 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
| 3 | csbeq1a 3859 | . . 3 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
| 4 | 1, 2, 3 | cbvprodi 15822 | . 2 ⊢ ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
| 5 | fprodcllemf.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 6 | fprodcllemf.xy | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) | |
| 7 | fprodcllemf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 8 | fprodcllemf.ph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
| 9 | fprodcllemf.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) | |
| 10 | 9 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ 𝑆)) |
| 11 | 8, 10 | ralrimi 3230 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 12 | rspsbc 3825 | . . . . 5 ⊢ (𝑗 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆 → [𝑗 / 𝑘]𝐵 ∈ 𝑆)) | |
| 13 | 11, 12 | mpan9 506 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → [𝑗 / 𝑘]𝐵 ∈ 𝑆) |
| 14 | sbcel1g 4363 | . . . . 5 ⊢ (𝑗 ∈ V → ([𝑗 / 𝑘]𝐵 ∈ 𝑆 ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑆)) | |
| 15 | 14 | elv 3441 | . . . 4 ⊢ ([𝑗 / 𝑘]𝐵 ∈ 𝑆 ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑆) |
| 16 | 13, 15 | sylib 218 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑆) |
| 17 | fprodcllemf.1 | . . 3 ⊢ (𝜑 → 1 ∈ 𝑆) | |
| 18 | 5, 6, 7, 16, 17 | fprodcllem 15858 | . 2 ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 ∈ 𝑆) |
| 19 | 4, 18 | eqeltrid 2835 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 [wsbc 3736 ⦋csb 3845 ⊆ wss 3897 (class class class)co 7346 Fincfn 8869 ℂcc 11004 1c1 11007 · cmul 11011 ∏cprod 15810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-prod 15811 |
| This theorem is referenced by: fprodreclf 15866 fprodn0f 15898 fprodclf 15899 fprodge0 15900 fprodge1 15902 |
| Copyright terms: Public domain | W3C validator |