Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > saldifcl2 | Structured version Visualization version GIF version |
Description: The difference of two elements of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saldifcl2 | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∖ 𝐹) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif2 4210 | . . . 4 ⊢ (𝐸 ∩ (∪ 𝑆 ∖ 𝐹)) = ((𝐸 ∩ ∪ 𝑆) ∖ 𝐹) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ (∪ 𝑆 ∖ 𝐹)) = ((𝐸 ∩ ∪ 𝑆) ∖ 𝐹)) |
3 | elssuni 4877 | . . . . . 6 ⊢ (𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆) | |
4 | df-ss 3909 | . . . . . 6 ⊢ (𝐸 ⊆ ∪ 𝑆 ↔ (𝐸 ∩ ∪ 𝑆) = 𝐸) | |
5 | 3, 4 | sylib 217 | . . . . 5 ⊢ (𝐸 ∈ 𝑆 → (𝐸 ∩ ∪ 𝑆) = 𝐸) |
6 | 5 | difeq1d 4061 | . . . 4 ⊢ (𝐸 ∈ 𝑆 → ((𝐸 ∩ ∪ 𝑆) ∖ 𝐹) = (𝐸 ∖ 𝐹)) |
7 | 6 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ((𝐸 ∩ ∪ 𝑆) ∖ 𝐹) = (𝐸 ∖ 𝐹)) |
8 | 2, 7 | eqtr2d 2781 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∖ 𝐹) = (𝐸 ∩ (∪ 𝑆 ∖ 𝐹))) |
9 | simp1 1135 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → 𝑆 ∈ SAlg) | |
10 | simp2 1136 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → 𝐸 ∈ 𝑆) | |
11 | saldifcl 43842 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) | |
12 | 11 | 3adant2 1130 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) |
13 | salincl 43846 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) → (𝐸 ∩ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) | |
14 | 9, 10, 12, 13 | syl3anc 1370 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) |
15 | 8, 14 | eqeltrd 2841 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∖ 𝐹) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ∖ cdif 3889 ∩ cin 3891 ⊆ wss 3892 ∪ cuni 4845 SAlgcsalg 43831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-inf2 9387 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-om 7708 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-fin 8729 df-salg 43832 |
This theorem is referenced by: meassle 43983 meaunle 43984 meaiunlelem 43988 meadif 43999 meaiuninclem 44000 meaiininclem 44006 hoimbllem 44150 |
Copyright terms: Public domain | W3C validator |