Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saldifcl2 Structured version   Visualization version   GIF version

Theorem saldifcl2 41330
Description: The difference of two elements of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
saldifcl2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)

Proof of Theorem saldifcl2
StepHypRef Expression
1 indif2 4100 . . . 4 (𝐸 ∩ ( 𝑆𝐹)) = ((𝐸 𝑆) ∖ 𝐹)
21a1i 11 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸 ∩ ( 𝑆𝐹)) = ((𝐸 𝑆) ∖ 𝐹))
3 elssuni 4689 . . . . . 6 (𝐸𝑆𝐸 𝑆)
4 df-ss 3812 . . . . . 6 (𝐸 𝑆 ↔ (𝐸 𝑆) = 𝐸)
53, 4sylib 210 . . . . 5 (𝐸𝑆 → (𝐸 𝑆) = 𝐸)
65difeq1d 3954 . . . 4 (𝐸𝑆 → ((𝐸 𝑆) ∖ 𝐹) = (𝐸𝐹))
763ad2ant2 1168 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ((𝐸 𝑆) ∖ 𝐹) = (𝐸𝐹))
82, 7eqtr2d 2862 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = (𝐸 ∩ ( 𝑆𝐹)))
9 simp1 1170 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → 𝑆 ∈ SAlg)
10 simp2 1171 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → 𝐸𝑆)
11 saldifcl 41323 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐹𝑆) → ( 𝑆𝐹) ∈ 𝑆)
12113adant2 1165 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆𝐹) ∈ 𝑆)
13 salincl 41327 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆 ∧ ( 𝑆𝐹) ∈ 𝑆) → (𝐸 ∩ ( 𝑆𝐹)) ∈ 𝑆)
149, 10, 12, 13syl3anc 1494 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸 ∩ ( 𝑆𝐹)) ∈ 𝑆)
158, 14eqeltrd 2906 1 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1111   = wceq 1656  wcel 2164  cdif 3795  cin 3797  wss 3798   cuni 4658  SAlgcsalg 41312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-salg 41313
This theorem is referenced by:  meassle  41464  meaunle  41465  meaiunlelem  41469  meadif  41480  meaiuninclem  41481  meaiininclem  41487  hoimbllem  41631
  Copyright terms: Public domain W3C validator