| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > saldifcl2 | Structured version Visualization version GIF version | ||
| Description: The difference of two elements of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| saldifcl2 | ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∖ 𝐹) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indif2 4256 | . . . 4 ⊢ (𝐸 ∩ (∪ 𝑆 ∖ 𝐹)) = ((𝐸 ∩ ∪ 𝑆) ∖ 𝐹) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ (∪ 𝑆 ∖ 𝐹)) = ((𝐸 ∩ ∪ 𝑆) ∖ 𝐹)) |
| 3 | elssuni 4913 | . . . . . 6 ⊢ (𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆) | |
| 4 | dfss2 3944 | . . . . . 6 ⊢ (𝐸 ⊆ ∪ 𝑆 ↔ (𝐸 ∩ ∪ 𝑆) = 𝐸) | |
| 5 | 3, 4 | sylib 218 | . . . . 5 ⊢ (𝐸 ∈ 𝑆 → (𝐸 ∩ ∪ 𝑆) = 𝐸) |
| 6 | 5 | difeq1d 4100 | . . . 4 ⊢ (𝐸 ∈ 𝑆 → ((𝐸 ∩ ∪ 𝑆) ∖ 𝐹) = (𝐸 ∖ 𝐹)) |
| 7 | 6 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → ((𝐸 ∩ ∪ 𝑆) ∖ 𝐹) = (𝐸 ∖ 𝐹)) |
| 8 | 2, 7 | eqtr2d 2771 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∖ 𝐹) = (𝐸 ∩ (∪ 𝑆 ∖ 𝐹))) |
| 9 | simp1 1136 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → 𝑆 ∈ SAlg) | |
| 10 | simp2 1137 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → 𝐸 ∈ 𝑆) | |
| 11 | saldifcl 46348 | . . . 4 ⊢ ((𝑆 ∈ SAlg ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) | |
| 12 | 11 | 3adant2 1131 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) |
| 13 | salincl 46353 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ (∪ 𝑆 ∖ 𝐹) ∈ 𝑆) → (𝐸 ∩ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) | |
| 14 | 9, 10, 12, 13 | syl3anc 1373 | . 2 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∩ (∪ 𝑆 ∖ 𝐹)) ∈ 𝑆) |
| 15 | 8, 14 | eqeltrd 2834 | 1 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ∧ 𝐹 ∈ 𝑆) → (𝐸 ∖ 𝐹) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 ∪ cuni 4883 SAlgcsalg 46337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-salg 46338 |
| This theorem is referenced by: meassle 46492 meaunle 46493 meaiunlelem 46497 meadif 46508 meaiuninclem 46509 meaiininclem 46515 hoimbllem 46659 |
| Copyright terms: Public domain | W3C validator |