Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saldifcl2 Structured version   Visualization version   GIF version

Theorem saldifcl2 43849
Description: The difference of two elements of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
saldifcl2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)

Proof of Theorem saldifcl2
StepHypRef Expression
1 indif2 4210 . . . 4 (𝐸 ∩ ( 𝑆𝐹)) = ((𝐸 𝑆) ∖ 𝐹)
21a1i 11 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸 ∩ ( 𝑆𝐹)) = ((𝐸 𝑆) ∖ 𝐹))
3 elssuni 4877 . . . . . 6 (𝐸𝑆𝐸 𝑆)
4 df-ss 3909 . . . . . 6 (𝐸 𝑆 ↔ (𝐸 𝑆) = 𝐸)
53, 4sylib 217 . . . . 5 (𝐸𝑆 → (𝐸 𝑆) = 𝐸)
65difeq1d 4061 . . . 4 (𝐸𝑆 → ((𝐸 𝑆) ∖ 𝐹) = (𝐸𝐹))
763ad2ant2 1133 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ((𝐸 𝑆) ∖ 𝐹) = (𝐸𝐹))
82, 7eqtr2d 2781 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) = (𝐸 ∩ ( 𝑆𝐹)))
9 simp1 1135 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → 𝑆 ∈ SAlg)
10 simp2 1136 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → 𝐸𝑆)
11 saldifcl 43842 . . . 4 ((𝑆 ∈ SAlg ∧ 𝐹𝑆) → ( 𝑆𝐹) ∈ 𝑆)
12113adant2 1130 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → ( 𝑆𝐹) ∈ 𝑆)
13 salincl 43846 . . 3 ((𝑆 ∈ SAlg ∧ 𝐸𝑆 ∧ ( 𝑆𝐹) ∈ 𝑆) → (𝐸 ∩ ( 𝑆𝐹)) ∈ 𝑆)
149, 10, 12, 13syl3anc 1370 . 2 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸 ∩ ( 𝑆𝐹)) ∈ 𝑆)
158, 14eqeltrd 2841 1 ((𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆) → (𝐸𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1542  wcel 2110  cdif 3889  cin 3891  wss 3892   cuni 4845  SAlgcsalg 43831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-inf2 9387
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7275  df-om 7708  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-salg 43832
This theorem is referenced by:  meassle  43983  meaunle  43984  meaiunlelem  43988  meadif  43999  meaiuninclem  44000  meaiininclem  44006  hoimbllem  44150
  Copyright terms: Public domain W3C validator