Proof of Theorem fpwwe2lem3
Step | Hyp | Ref
| Expression |
1 | | fpwwe2lem3.4 |
. . . . 5
⊢ (𝜑 → 𝑋𝑊𝑅) |
2 | | fpwwe2.1 |
. . . . . 6
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
3 | | fpwwe2.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
4 | 2, 3 | fpwwe2lem2 10319 |
. . . . 5
⊢ (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
5 | 1, 4 | mpbid 231 |
. . . 4
⊢ (𝜑 → ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) |
6 | 5 | simprrd 770 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦) |
7 | | sneq 4568 |
. . . . . 6
⊢ (𝑦 = 𝐵 → {𝑦} = {𝐵}) |
8 | 7 | imaeq2d 5958 |
. . . . 5
⊢ (𝑦 = 𝐵 → (◡𝑅 “ {𝑦}) = (◡𝑅 “ {𝐵})) |
9 | | eqeq2 2750 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵)) |
10 | 8, 9 | sbceqbid 3718 |
. . . 4
⊢ (𝑦 = 𝐵 → ([(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ [(◡𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵)) |
11 | 10 | rspccva 3551 |
. . 3
⊢
((∀𝑦 ∈
𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦 ∧ 𝐵 ∈ 𝑋) → [(◡𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵) |
12 | 6, 11 | sylan 579 |
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑋) → [(◡𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵) |
13 | | cnvimass 5978 |
. . . . 5
⊢ (◡𝑅 “ {𝐵}) ⊆ dom 𝑅 |
14 | 2 | relopabiv 5719 |
. . . . . . 7
⊢ Rel 𝑊 |
15 | 14 | brrelex2i 5635 |
. . . . . 6
⊢ (𝑋𝑊𝑅 → 𝑅 ∈ V) |
16 | | dmexg 7724 |
. . . . . 6
⊢ (𝑅 ∈ V → dom 𝑅 ∈ V) |
17 | 1, 15, 16 | 3syl 18 |
. . . . 5
⊢ (𝜑 → dom 𝑅 ∈ V) |
18 | | ssexg 5242 |
. . . . 5
⊢ (((◡𝑅 “ {𝐵}) ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V) → (◡𝑅 “ {𝐵}) ∈ V) |
19 | 13, 17, 18 | sylancr 586 |
. . . 4
⊢ (𝜑 → (◡𝑅 “ {𝐵}) ∈ V) |
20 | | id 22 |
. . . . . . 7
⊢ (𝑢 = (◡𝑅 “ {𝐵}) → 𝑢 = (◡𝑅 “ {𝐵})) |
21 | 20 | sqxpeqd 5612 |
. . . . . . . 8
⊢ (𝑢 = (◡𝑅 “ {𝐵}) → (𝑢 × 𝑢) = ((◡𝑅 “ {𝐵}) × (◡𝑅 “ {𝐵}))) |
22 | 21 | ineq2d 4143 |
. . . . . . 7
⊢ (𝑢 = (◡𝑅 “ {𝐵}) → (𝑅 ∩ (𝑢 × 𝑢)) = (𝑅 ∩ ((◡𝑅 “ {𝐵}) × (◡𝑅 “ {𝐵})))) |
23 | 20, 22 | oveq12d 7273 |
. . . . . 6
⊢ (𝑢 = (◡𝑅 “ {𝐵}) → (𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = ((◡𝑅 “ {𝐵})𝐹(𝑅 ∩ ((◡𝑅 “ {𝐵}) × (◡𝑅 “ {𝐵}))))) |
24 | 23 | eqeq1d 2740 |
. . . . 5
⊢ (𝑢 = (◡𝑅 “ {𝐵}) → ((𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵 ↔ ((◡𝑅 “ {𝐵})𝐹(𝑅 ∩ ((◡𝑅 “ {𝐵}) × (◡𝑅 “ {𝐵})))) = 𝐵)) |
25 | 24 | sbcieg 3751 |
. . . 4
⊢ ((◡𝑅 “ {𝐵}) ∈ V → ([(◡𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵 ↔ ((◡𝑅 “ {𝐵})𝐹(𝑅 ∩ ((◡𝑅 “ {𝐵}) × (◡𝑅 “ {𝐵})))) = 𝐵)) |
26 | 19, 25 | syl 17 |
. . 3
⊢ (𝜑 → ([(◡𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵 ↔ ((◡𝑅 “ {𝐵})𝐹(𝑅 ∩ ((◡𝑅 “ {𝐵}) × (◡𝑅 “ {𝐵})))) = 𝐵)) |
27 | 26 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑋) → ([(◡𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵 ↔ ((◡𝑅 “ {𝐵})𝐹(𝑅 ∩ ((◡𝑅 “ {𝐵}) × (◡𝑅 “ {𝐵})))) = 𝐵)) |
28 | 12, 27 | mpbid 231 |
1
⊢ ((𝜑 ∧ 𝐵 ∈ 𝑋) → ((◡𝑅 “ {𝐵})𝐹(𝑅 ∩ ((◡𝑅 “ {𝐵}) × (◡𝑅 “ {𝐵})))) = 𝐵) |