MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem3 Structured version   Visualization version   GIF version

Theorem fpwwe2lem3 10673
Description: Lemma for fpwwe2 10683. (Contributed by Mario Carneiro, 19-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2lem3.4 (𝜑𝑋𝑊𝑅)
Assertion
Ref Expression
fpwwe2lem3 ((𝜑𝐵𝑋) → ((𝑅 “ {𝐵})𝐹(𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))) = 𝐵)
Distinct variable groups:   𝑦,𝑢,𝐵   𝑢,𝑟,𝑥,𝑦,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝐵(𝑥,𝑟)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2lem3
StepHypRef Expression
1 fpwwe2lem3.4 . . . . 5 (𝜑𝑋𝑊𝑅)
2 fpwwe2.1 . . . . . 6 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
3 fpwwe2.2 . . . . . 6 (𝜑𝐴𝑉)
42, 3fpwwe2lem2 10672 . . . . 5 (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))))
51, 4mpbid 232 . . . 4 (𝜑 → ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))
65simprrd 774 . . 3 (𝜑 → ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)
7 sneq 4636 . . . . . 6 (𝑦 = 𝐵 → {𝑦} = {𝐵})
87imaeq2d 6078 . . . . 5 (𝑦 = 𝐵 → (𝑅 “ {𝑦}) = (𝑅 “ {𝐵}))
9 eqeq2 2749 . . . . 5 (𝑦 = 𝐵 → ((𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵))
108, 9sbceqbid 3795 . . . 4 (𝑦 = 𝐵 → ([(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦[(𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵))
1110rspccva 3621 . . 3 ((∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦𝐵𝑋) → [(𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵)
126, 11sylan 580 . 2 ((𝜑𝐵𝑋) → [(𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵)
13 cnvimass 6100 . . . . 5 (𝑅 “ {𝐵}) ⊆ dom 𝑅
142relopabiv 5830 . . . . . . 7 Rel 𝑊
1514brrelex2i 5742 . . . . . 6 (𝑋𝑊𝑅𝑅 ∈ V)
16 dmexg 7923 . . . . . 6 (𝑅 ∈ V → dom 𝑅 ∈ V)
171, 15, 163syl 18 . . . . 5 (𝜑 → dom 𝑅 ∈ V)
18 ssexg 5323 . . . . 5 (((𝑅 “ {𝐵}) ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V) → (𝑅 “ {𝐵}) ∈ V)
1913, 17, 18sylancr 587 . . . 4 (𝜑 → (𝑅 “ {𝐵}) ∈ V)
20 id 22 . . . . . . 7 (𝑢 = (𝑅 “ {𝐵}) → 𝑢 = (𝑅 “ {𝐵}))
2120sqxpeqd 5717 . . . . . . . 8 (𝑢 = (𝑅 “ {𝐵}) → (𝑢 × 𝑢) = ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))
2221ineq2d 4220 . . . . . . 7 (𝑢 = (𝑅 “ {𝐵}) → (𝑅 ∩ (𝑢 × 𝑢)) = (𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵}))))
2320, 22oveq12d 7449 . . . . . 6 (𝑢 = (𝑅 “ {𝐵}) → (𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = ((𝑅 “ {𝐵})𝐹(𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))))
2423eqeq1d 2739 . . . . 5 (𝑢 = (𝑅 “ {𝐵}) → ((𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵 ↔ ((𝑅 “ {𝐵})𝐹(𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))) = 𝐵))
2524sbcieg 3828 . . . 4 ((𝑅 “ {𝐵}) ∈ V → ([(𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵 ↔ ((𝑅 “ {𝐵})𝐹(𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))) = 𝐵))
2619, 25syl 17 . . 3 (𝜑 → ([(𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵 ↔ ((𝑅 “ {𝐵})𝐹(𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))) = 𝐵))
2726adantr 480 . 2 ((𝜑𝐵𝑋) → ([(𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵 ↔ ((𝑅 “ {𝐵})𝐹(𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))) = 𝐵))
2812, 27mpbid 232 1 ((𝜑𝐵𝑋) → ((𝑅 “ {𝐵})𝐹(𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  [wsbc 3788  cin 3950  wss 3951  {csn 4626   class class class wbr 5143  {copab 5205   We wwe 5636   × cxp 5683  ccnv 5684  dom cdm 5685  cima 5688  (class class class)co 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fv 6569  df-ov 7434
This theorem is referenced by:  fpwwe2lem7  10677  fpwwe2lem11  10681  fpwwe2lem12  10682  fpwwe2  10683  canthwelem  10690  pwfseqlem4  10702
  Copyright terms: Public domain W3C validator