Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem9 Structured version   Visualization version   GIF version

Theorem cvmlift3lem9 32862
Description: Lemma for cvmlift2 32851. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
cvmlift3lem7.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmlift3lem9 (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Distinct variable groups:   𝑐,𝑑,𝑓,𝑘,𝑠,𝑧,𝑔,𝑥   𝐽,𝑐   𝑔,𝑑,𝑥,𝐽,𝑓,𝑘,𝑠   𝐹,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠   𝑥,𝑧,𝐹   𝐻,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑆,𝑓,𝑥   𝐵,𝑑,𝑓,𝑔,𝑥,𝑧   𝐺,𝑐,𝑑,𝑓,𝑔,𝑘,𝑥,𝑧   𝐶,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠,𝑥,𝑧   𝜑,𝑓,𝑥   𝐾,𝑐,𝑓,𝑔,𝑥,𝑧   𝑃,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑂,𝑐,𝑓,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝐵(𝑘,𝑠,𝑐)   𝑃(𝑘,𝑠)   𝑆(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝐺(𝑠)   𝐻(𝑘,𝑠)   𝐽(𝑧)   𝐾(𝑘,𝑠,𝑑)   𝑂(𝑘,𝑠,𝑑)   𝑌(𝑘,𝑠,𝑐,𝑑)

Proof of Theorem cvmlift3lem9
StepHypRef Expression
1 cvmlift3.b . . 3 𝐵 = 𝐶
2 cvmlift3.y . . 3 𝑌 = 𝐾
3 cvmlift3.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmlift3.k . . 3 (𝜑𝐾 ∈ SConn)
5 cvmlift3.l . . 3 (𝜑𝐾 ∈ 𝑛-Locally PConn)
6 cvmlift3.o . . 3 (𝜑𝑂𝑌)
7 cvmlift3.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
8 cvmlift3.p . . 3 (𝜑𝑃𝐵)
9 cvmlift3.e . . 3 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
10 cvmlift3.h . . 3 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
11 cvmlift3lem7.s . . 3 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem8 32861 . 2 (𝜑𝐻 ∈ (𝐾 Cn 𝐶))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem5 32858 . 2 (𝜑 → (𝐹𝐻) = 𝐺)
14 iitopon 23633 . . . . . 6 II ∈ (TopOn‘(0[,]1))
1514a1i 11 . . . . 5 (𝜑 → II ∈ (TopOn‘(0[,]1)))
16 sconntop 32763 . . . . . . 7 (𝐾 ∈ SConn → 𝐾 ∈ Top)
174, 16syl 17 . . . . . 6 (𝜑𝐾 ∈ Top)
182toptopon 21670 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
1917, 18sylib 221 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
20 cnconst2 22036 . . . . 5 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑂𝑌) → ((0[,]1) × {𝑂}) ∈ (II Cn 𝐾))
2115, 19, 6, 20syl3anc 1372 . . . 4 (𝜑 → ((0[,]1) × {𝑂}) ∈ (II Cn 𝐾))
22 0elunit 12945 . . . . 5 0 ∈ (0[,]1)
23 fvconst2g 6976 . . . . 5 ((𝑂𝑌 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {𝑂})‘0) = 𝑂)
246, 22, 23sylancl 589 . . . 4 (𝜑 → (((0[,]1) × {𝑂})‘0) = 𝑂)
25 1elunit 12946 . . . . 5 1 ∈ (0[,]1)
26 fvconst2g 6976 . . . . 5 ((𝑂𝑌 ∧ 1 ∈ (0[,]1)) → (((0[,]1) × {𝑂})‘1) = 𝑂)
276, 25, 26sylancl 589 . . . 4 (𝜑 → (((0[,]1) × {𝑂})‘1) = 𝑂)
289sneqd 4528 . . . . . . . . 9 (𝜑 → {(𝐹𝑃)} = {(𝐺𝑂)})
2928xpeq2d 5555 . . . . . . . 8 (𝜑 → ((0[,]1) × {(𝐹𝑃)}) = ((0[,]1) × {(𝐺𝑂)}))
30 cvmcn 32797 . . . . . . . . . 10 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
31 eqid 2738 . . . . . . . . . . 11 𝐽 = 𝐽
321, 31cnf 21999 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
33 ffn 6504 . . . . . . . . . 10 (𝐹:𝐵 𝐽𝐹 Fn 𝐵)
343, 30, 32, 334syl 19 . . . . . . . . 9 (𝜑𝐹 Fn 𝐵)
35 fcoconst 6908 . . . . . . . . 9 ((𝐹 Fn 𝐵𝑃𝐵) → (𝐹 ∘ ((0[,]1) × {𝑃})) = ((0[,]1) × {(𝐹𝑃)}))
3634, 8, 35syl2anc 587 . . . . . . . 8 (𝜑 → (𝐹 ∘ ((0[,]1) × {𝑃})) = ((0[,]1) × {(𝐹𝑃)}))
372, 31cnf 21999 . . . . . . . . . . 11 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
387, 37syl 17 . . . . . . . . . 10 (𝜑𝐺:𝑌 𝐽)
3938ffnd 6505 . . . . . . . . 9 (𝜑𝐺 Fn 𝑌)
40 fcoconst 6908 . . . . . . . . 9 ((𝐺 Fn 𝑌𝑂𝑌) → (𝐺 ∘ ((0[,]1) × {𝑂})) = ((0[,]1) × {(𝐺𝑂)}))
4139, 6, 40syl2anc 587 . . . . . . . 8 (𝜑 → (𝐺 ∘ ((0[,]1) × {𝑂})) = ((0[,]1) × {(𝐺𝑂)}))
4229, 36, 413eqtr4d 2783 . . . . . . 7 (𝜑 → (𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})))
43 fvconst2g 6976 . . . . . . . 8 ((𝑃𝐵 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {𝑃})‘0) = 𝑃)
448, 22, 43sylancl 589 . . . . . . 7 (𝜑 → (((0[,]1) × {𝑃})‘0) = 𝑃)
45 cvmtop1 32795 . . . . . . . . . . 11 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
463, 45syl 17 . . . . . . . . . 10 (𝜑𝐶 ∈ Top)
471toptopon 21670 . . . . . . . . . 10 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
4846, 47sylib 221 . . . . . . . . 9 (𝜑𝐶 ∈ (TopOn‘𝐵))
49 cnconst2 22036 . . . . . . . . 9 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐶 ∈ (TopOn‘𝐵) ∧ 𝑃𝐵) → ((0[,]1) × {𝑃}) ∈ (II Cn 𝐶))
5015, 48, 8, 49syl3anc 1372 . . . . . . . 8 (𝜑 → ((0[,]1) × {𝑃}) ∈ (II Cn 𝐶))
51 cvmtop2 32796 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
523, 51syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
5331toptopon 21670 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
5452, 53sylib 221 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
5538, 6ffvelrnd 6864 . . . . . . . . . . 11 (𝜑 → (𝐺𝑂) ∈ 𝐽)
56 cnconst2 22036 . . . . . . . . . . 11 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐺𝑂) ∈ 𝐽) → ((0[,]1) × {(𝐺𝑂)}) ∈ (II Cn 𝐽))
5715, 54, 55, 56syl3anc 1372 . . . . . . . . . 10 (𝜑 → ((0[,]1) × {(𝐺𝑂)}) ∈ (II Cn 𝐽))
5841, 57eqeltrd 2833 . . . . . . . . 9 (𝜑 → (𝐺 ∘ ((0[,]1) × {𝑂})) ∈ (II Cn 𝐽))
59 fvconst2g 6976 . . . . . . . . . . 11 (((𝐺𝑂) ∈ 𝐽 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {(𝐺𝑂)})‘0) = (𝐺𝑂))
6055, 22, 59sylancl 589 . . . . . . . . . 10 (𝜑 → (((0[,]1) × {(𝐺𝑂)})‘0) = (𝐺𝑂))
6141fveq1d 6678 . . . . . . . . . 10 (𝜑 → ((𝐺 ∘ ((0[,]1) × {𝑂}))‘0) = (((0[,]1) × {(𝐺𝑂)})‘0))
6260, 61, 93eqtr4rd 2784 . . . . . . . . 9 (𝜑 → (𝐹𝑃) = ((𝐺 ∘ ((0[,]1) × {𝑂}))‘0))
631cvmlift 32834 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺 ∘ ((0[,]1) × {𝑂})) ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = ((𝐺 ∘ ((0[,]1) × {𝑂}))‘0))) → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))
643, 58, 8, 62, 63syl22anc 838 . . . . . . . 8 (𝜑 → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))
65 coeq2 5701 . . . . . . . . . . 11 (𝑔 = ((0[,]1) × {𝑃}) → (𝐹𝑔) = (𝐹 ∘ ((0[,]1) × {𝑃})))
6665eqeq1d 2740 . . . . . . . . . 10 (𝑔 = ((0[,]1) × {𝑃}) → ((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ↔ (𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂}))))
67 fveq1 6675 . . . . . . . . . . 11 (𝑔 = ((0[,]1) × {𝑃}) → (𝑔‘0) = (((0[,]1) × {𝑃})‘0))
6867eqeq1d 2740 . . . . . . . . . 10 (𝑔 = ((0[,]1) × {𝑃}) → ((𝑔‘0) = 𝑃 ↔ (((0[,]1) × {𝑃})‘0) = 𝑃))
6966, 68anbi12d 634 . . . . . . . . 9 (𝑔 = ((0[,]1) × {𝑃}) → (((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (((0[,]1) × {𝑃})‘0) = 𝑃)))
7069riota2 7155 . . . . . . . 8 ((((0[,]1) × {𝑃}) ∈ (II Cn 𝐶) ∧ ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) → (((𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (((0[,]1) × {𝑃})‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) = ((0[,]1) × {𝑃})))
7150, 64, 70syl2anc 587 . . . . . . 7 (𝜑 → (((𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (((0[,]1) × {𝑃})‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) = ((0[,]1) × {𝑃})))
7242, 44, 71mpbi2and 712 . . . . . 6 (𝜑 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) = ((0[,]1) × {𝑃}))
7372fveq1d 6678 . . . . 5 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = (((0[,]1) × {𝑃})‘1))
74 fvconst2g 6976 . . . . . 6 ((𝑃𝐵 ∧ 1 ∈ (0[,]1)) → (((0[,]1) × {𝑃})‘1) = 𝑃)
758, 25, 74sylancl 589 . . . . 5 (𝜑 → (((0[,]1) × {𝑃})‘1) = 𝑃)
7673, 75eqtrd 2773 . . . 4 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)
77 fveq1 6675 . . . . . . 7 (𝑓 = ((0[,]1) × {𝑂}) → (𝑓‘0) = (((0[,]1) × {𝑂})‘0))
7877eqeq1d 2740 . . . . . 6 (𝑓 = ((0[,]1) × {𝑂}) → ((𝑓‘0) = 𝑂 ↔ (((0[,]1) × {𝑂})‘0) = 𝑂))
79 fveq1 6675 . . . . . . 7 (𝑓 = ((0[,]1) × {𝑂}) → (𝑓‘1) = (((0[,]1) × {𝑂})‘1))
8079eqeq1d 2740 . . . . . 6 (𝑓 = ((0[,]1) × {𝑂}) → ((𝑓‘1) = 𝑂 ↔ (((0[,]1) × {𝑂})‘1) = 𝑂))
81 coeq2 5701 . . . . . . . . . . 11 (𝑓 = ((0[,]1) × {𝑂}) → (𝐺𝑓) = (𝐺 ∘ ((0[,]1) × {𝑂})))
8281eqeq2d 2749 . . . . . . . . . 10 (𝑓 = ((0[,]1) × {𝑂}) → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂}))))
8382anbi1d 633 . . . . . . . . 9 (𝑓 = ((0[,]1) × {𝑂}) → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)))
8483riotabidv 7131 . . . . . . . 8 (𝑓 = ((0[,]1) × {𝑂}) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)))
8584fveq1d 6678 . . . . . . 7 (𝑓 = ((0[,]1) × {𝑂}) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1))
8685eqeq1d 2740 . . . . . 6 (𝑓 = ((0[,]1) × {𝑂}) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃))
8778, 80, 863anbi123d 1437 . . . . 5 (𝑓 = ((0[,]1) × {𝑂}) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃) ↔ ((((0[,]1) × {𝑂})‘0) = 𝑂 ∧ (((0[,]1) × {𝑂})‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)))
8887rspcev 3526 . . . 4 ((((0[,]1) × {𝑂}) ∈ (II Cn 𝐾) ∧ ((((0[,]1) × {𝑂})‘0) = 𝑂 ∧ (((0[,]1) × {𝑂})‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃))
8921, 24, 27, 76, 88syl13anc 1373 . . 3 (𝜑 → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃))
901, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem4 32857 . . . 4 ((𝜑𝑂𝑌) → ((𝐻𝑂) = 𝑃 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)))
916, 90mpdan 687 . . 3 (𝜑 → ((𝐻𝑂) = 𝑃 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)))
9289, 91mpbird 260 . 2 (𝜑 → (𝐻𝑂) = 𝑃)
93 coeq2 5701 . . . . 5 (𝑓 = 𝐻 → (𝐹𝑓) = (𝐹𝐻))
9493eqeq1d 2740 . . . 4 (𝑓 = 𝐻 → ((𝐹𝑓) = 𝐺 ↔ (𝐹𝐻) = 𝐺))
95 fveq1 6675 . . . . 5 (𝑓 = 𝐻 → (𝑓𝑂) = (𝐻𝑂))
9695eqeq1d 2740 . . . 4 (𝑓 = 𝐻 → ((𝑓𝑂) = 𝑃 ↔ (𝐻𝑂) = 𝑃))
9794, 96anbi12d 634 . . 3 (𝑓 = 𝐻 → (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ↔ ((𝐹𝐻) = 𝐺 ∧ (𝐻𝑂) = 𝑃)))
9897rspcev 3526 . 2 ((𝐻 ∈ (𝐾 Cn 𝐶) ∧ ((𝐹𝐻) = 𝐺 ∧ (𝐻𝑂) = 𝑃)) → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
9912, 13, 92, 98syl12anc 836 1 (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3053  wrex 3054  ∃!wreu 3055  {crab 3057  cdif 3840  cin 3842  c0 4211  𝒫 cpw 4488  {csn 4516   cuni 4796  cmpt 5110   × cxp 5523  ccnv 5524  cres 5527  cima 5528  ccom 5529   Fn wfn 6334  wf 6335  cfv 6339  crio 7128  (class class class)co 7172  0cc0 10617  1c1 10618  [,]cicc 12826  t crest 16799  Topctop 21646  TopOnctopon 21663   Cn ccn 21977  𝑛-Locally cnlly 22218  Homeochmeo 22506  IIcii 23629  PConncpconn 32754  SConncsconn 32755   CovMap ccvm 32790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-inf2 9179  ax-cnex 10673  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693  ax-pre-mulgt0 10694  ax-pre-sup 10695  ax-addf 10696  ax-mulf 10697
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-of 7427  df-om 7602  df-1st 7716  df-2nd 7717  df-supp 7859  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-1o 8133  df-2o 8134  df-er 8322  df-ec 8324  df-map 8441  df-ixp 8510  df-en 8558  df-dom 8559  df-sdom 8560  df-fin 8561  df-fsupp 8909  df-fi 8950  df-sup 8981  df-inf 8982  df-oi 9049  df-card 9443  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-sub 10952  df-neg 10953  df-div 11378  df-nn 11719  df-2 11781  df-3 11782  df-4 11783  df-5 11784  df-6 11785  df-7 11786  df-8 11787  df-9 11788  df-n0 11979  df-z 12065  df-dec 12182  df-uz 12327  df-q 12433  df-rp 12475  df-xneg 12592  df-xadd 12593  df-xmul 12594  df-ioo 12827  df-ico 12829  df-icc 12830  df-fz 12984  df-fzo 13127  df-fl 13255  df-seq 13463  df-exp 13524  df-hash 13785  df-cj 14550  df-re 14551  df-im 14552  df-sqrt 14686  df-abs 14687  df-clim 14937  df-sum 15138  df-struct 16590  df-ndx 16591  df-slot 16592  df-base 16594  df-sets 16595  df-ress 16596  df-plusg 16683  df-mulr 16684  df-starv 16685  df-sca 16686  df-vsca 16687  df-ip 16688  df-tset 16689  df-ple 16690  df-ds 16692  df-unif 16693  df-hom 16694  df-cco 16695  df-rest 16801  df-topn 16802  df-0g 16820  df-gsum 16821  df-topgen 16822  df-pt 16823  df-prds 16826  df-xrs 16880  df-qtop 16885  df-imas 16886  df-xps 16888  df-mre 16962  df-mrc 16963  df-acs 16965  df-mgm 17970  df-sgrp 18019  df-mnd 18030  df-submnd 18075  df-mulg 18345  df-cntz 18567  df-cmn 19028  df-psmet 20211  df-xmet 20212  df-met 20213  df-bl 20214  df-mopn 20215  df-cnfld 20220  df-top 21647  df-topon 21664  df-topsp 21686  df-bases 21699  df-cld 21772  df-ntr 21773  df-cls 21774  df-nei 21851  df-cn 21980  df-cnp 21981  df-cmp 22140  df-conn 22165  df-lly 22219  df-nlly 22220  df-tx 22315  df-hmeo 22508  df-xms 23075  df-ms 23076  df-tms 23077  df-ii 23631  df-htpy 23724  df-phtpy 23725  df-phtpc 23746  df-pco 23759  df-pconn 32756  df-sconn 32757  df-cvm 32791
This theorem is referenced by:  cvmlift3  32863
  Copyright terms: Public domain W3C validator