Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem9 Structured version   Visualization version   GIF version

Theorem cvmlift3lem9 35312
Description: Lemma for cvmlift2 35301. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
cvmlift3lem7.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmlift3lem9 (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Distinct variable groups:   𝑐,𝑑,𝑓,𝑘,𝑠,𝑧,𝑔,𝑥   𝐽,𝑐   𝑔,𝑑,𝑥,𝐽,𝑓,𝑘,𝑠   𝐹,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠   𝑥,𝑧,𝐹   𝐻,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑆,𝑓,𝑥   𝐵,𝑑,𝑓,𝑔,𝑥,𝑧   𝐺,𝑐,𝑑,𝑓,𝑔,𝑘,𝑥,𝑧   𝐶,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠,𝑥,𝑧   𝜑,𝑓,𝑥   𝐾,𝑐,𝑓,𝑔,𝑥,𝑧   𝑃,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑂,𝑐,𝑓,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝐵(𝑘,𝑠,𝑐)   𝑃(𝑘,𝑠)   𝑆(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝐺(𝑠)   𝐻(𝑘,𝑠)   𝐽(𝑧)   𝐾(𝑘,𝑠,𝑑)   𝑂(𝑘,𝑠,𝑑)   𝑌(𝑘,𝑠,𝑐,𝑑)

Proof of Theorem cvmlift3lem9
StepHypRef Expression
1 cvmlift3.b . . 3 𝐵 = 𝐶
2 cvmlift3.y . . 3 𝑌 = 𝐾
3 cvmlift3.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmlift3.k . . 3 (𝜑𝐾 ∈ SConn)
5 cvmlift3.l . . 3 (𝜑𝐾 ∈ 𝑛-Locally PConn)
6 cvmlift3.o . . 3 (𝜑𝑂𝑌)
7 cvmlift3.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
8 cvmlift3.p . . 3 (𝜑𝑃𝐵)
9 cvmlift3.e . . 3 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
10 cvmlift3.h . . 3 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
11 cvmlift3lem7.s . . 3 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem8 35311 . 2 (𝜑𝐻 ∈ (𝐾 Cn 𝐶))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem5 35308 . 2 (𝜑 → (𝐹𝐻) = 𝐺)
14 iitopon 24919 . . . . . 6 II ∈ (TopOn‘(0[,]1))
1514a1i 11 . . . . 5 (𝜑 → II ∈ (TopOn‘(0[,]1)))
16 sconntop 35213 . . . . . . 7 (𝐾 ∈ SConn → 𝐾 ∈ Top)
174, 16syl 17 . . . . . 6 (𝜑𝐾 ∈ Top)
182toptopon 22939 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
1917, 18sylib 218 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
20 cnconst2 23307 . . . . 5 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑂𝑌) → ((0[,]1) × {𝑂}) ∈ (II Cn 𝐾))
2115, 19, 6, 20syl3anc 1370 . . . 4 (𝜑 → ((0[,]1) × {𝑂}) ∈ (II Cn 𝐾))
22 0elunit 13506 . . . . 5 0 ∈ (0[,]1)
23 fvconst2g 7222 . . . . 5 ((𝑂𝑌 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {𝑂})‘0) = 𝑂)
246, 22, 23sylancl 586 . . . 4 (𝜑 → (((0[,]1) × {𝑂})‘0) = 𝑂)
25 1elunit 13507 . . . . 5 1 ∈ (0[,]1)
26 fvconst2g 7222 . . . . 5 ((𝑂𝑌 ∧ 1 ∈ (0[,]1)) → (((0[,]1) × {𝑂})‘1) = 𝑂)
276, 25, 26sylancl 586 . . . 4 (𝜑 → (((0[,]1) × {𝑂})‘1) = 𝑂)
289sneqd 4643 . . . . . . . . 9 (𝜑 → {(𝐹𝑃)} = {(𝐺𝑂)})
2928xpeq2d 5719 . . . . . . . 8 (𝜑 → ((0[,]1) × {(𝐹𝑃)}) = ((0[,]1) × {(𝐺𝑂)}))
30 cvmcn 35247 . . . . . . . . . 10 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
31 eqid 2735 . . . . . . . . . . 11 𝐽 = 𝐽
321, 31cnf 23270 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
33 ffn 6737 . . . . . . . . . 10 (𝐹:𝐵 𝐽𝐹 Fn 𝐵)
343, 30, 32, 334syl 19 . . . . . . . . 9 (𝜑𝐹 Fn 𝐵)
35 fcoconst 7154 . . . . . . . . 9 ((𝐹 Fn 𝐵𝑃𝐵) → (𝐹 ∘ ((0[,]1) × {𝑃})) = ((0[,]1) × {(𝐹𝑃)}))
3634, 8, 35syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹 ∘ ((0[,]1) × {𝑃})) = ((0[,]1) × {(𝐹𝑃)}))
372, 31cnf 23270 . . . . . . . . . . 11 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
387, 37syl 17 . . . . . . . . . 10 (𝜑𝐺:𝑌 𝐽)
3938ffnd 6738 . . . . . . . . 9 (𝜑𝐺 Fn 𝑌)
40 fcoconst 7154 . . . . . . . . 9 ((𝐺 Fn 𝑌𝑂𝑌) → (𝐺 ∘ ((0[,]1) × {𝑂})) = ((0[,]1) × {(𝐺𝑂)}))
4139, 6, 40syl2anc 584 . . . . . . . 8 (𝜑 → (𝐺 ∘ ((0[,]1) × {𝑂})) = ((0[,]1) × {(𝐺𝑂)}))
4229, 36, 413eqtr4d 2785 . . . . . . 7 (𝜑 → (𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})))
43 fvconst2g 7222 . . . . . . . 8 ((𝑃𝐵 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {𝑃})‘0) = 𝑃)
448, 22, 43sylancl 586 . . . . . . 7 (𝜑 → (((0[,]1) × {𝑃})‘0) = 𝑃)
45 cvmtop1 35245 . . . . . . . . . . 11 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
463, 45syl 17 . . . . . . . . . 10 (𝜑𝐶 ∈ Top)
471toptopon 22939 . . . . . . . . . 10 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
4846, 47sylib 218 . . . . . . . . 9 (𝜑𝐶 ∈ (TopOn‘𝐵))
49 cnconst2 23307 . . . . . . . . 9 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐶 ∈ (TopOn‘𝐵) ∧ 𝑃𝐵) → ((0[,]1) × {𝑃}) ∈ (II Cn 𝐶))
5015, 48, 8, 49syl3anc 1370 . . . . . . . 8 (𝜑 → ((0[,]1) × {𝑃}) ∈ (II Cn 𝐶))
51 cvmtop2 35246 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
523, 51syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
5331toptopon 22939 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
5452, 53sylib 218 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
5538, 6ffvelcdmd 7105 . . . . . . . . . . 11 (𝜑 → (𝐺𝑂) ∈ 𝐽)
56 cnconst2 23307 . . . . . . . . . . 11 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐺𝑂) ∈ 𝐽) → ((0[,]1) × {(𝐺𝑂)}) ∈ (II Cn 𝐽))
5715, 54, 55, 56syl3anc 1370 . . . . . . . . . 10 (𝜑 → ((0[,]1) × {(𝐺𝑂)}) ∈ (II Cn 𝐽))
5841, 57eqeltrd 2839 . . . . . . . . 9 (𝜑 → (𝐺 ∘ ((0[,]1) × {𝑂})) ∈ (II Cn 𝐽))
59 fvconst2g 7222 . . . . . . . . . . 11 (((𝐺𝑂) ∈ 𝐽 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {(𝐺𝑂)})‘0) = (𝐺𝑂))
6055, 22, 59sylancl 586 . . . . . . . . . 10 (𝜑 → (((0[,]1) × {(𝐺𝑂)})‘0) = (𝐺𝑂))
6141fveq1d 6909 . . . . . . . . . 10 (𝜑 → ((𝐺 ∘ ((0[,]1) × {𝑂}))‘0) = (((0[,]1) × {(𝐺𝑂)})‘0))
6260, 61, 93eqtr4rd 2786 . . . . . . . . 9 (𝜑 → (𝐹𝑃) = ((𝐺 ∘ ((0[,]1) × {𝑂}))‘0))
631cvmlift 35284 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺 ∘ ((0[,]1) × {𝑂})) ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = ((𝐺 ∘ ((0[,]1) × {𝑂}))‘0))) → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))
643, 58, 8, 62, 63syl22anc 839 . . . . . . . 8 (𝜑 → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))
65 coeq2 5872 . . . . . . . . . . 11 (𝑔 = ((0[,]1) × {𝑃}) → (𝐹𝑔) = (𝐹 ∘ ((0[,]1) × {𝑃})))
6665eqeq1d 2737 . . . . . . . . . 10 (𝑔 = ((0[,]1) × {𝑃}) → ((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ↔ (𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂}))))
67 fveq1 6906 . . . . . . . . . . 11 (𝑔 = ((0[,]1) × {𝑃}) → (𝑔‘0) = (((0[,]1) × {𝑃})‘0))
6867eqeq1d 2737 . . . . . . . . . 10 (𝑔 = ((0[,]1) × {𝑃}) → ((𝑔‘0) = 𝑃 ↔ (((0[,]1) × {𝑃})‘0) = 𝑃))
6966, 68anbi12d 632 . . . . . . . . 9 (𝑔 = ((0[,]1) × {𝑃}) → (((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (((0[,]1) × {𝑃})‘0) = 𝑃)))
7069riota2 7413 . . . . . . . 8 ((((0[,]1) × {𝑃}) ∈ (II Cn 𝐶) ∧ ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) → (((𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (((0[,]1) × {𝑃})‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) = ((0[,]1) × {𝑃})))
7150, 64, 70syl2anc 584 . . . . . . 7 (𝜑 → (((𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (((0[,]1) × {𝑃})‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) = ((0[,]1) × {𝑃})))
7242, 44, 71mpbi2and 712 . . . . . 6 (𝜑 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) = ((0[,]1) × {𝑃}))
7372fveq1d 6909 . . . . 5 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = (((0[,]1) × {𝑃})‘1))
74 fvconst2g 7222 . . . . . 6 ((𝑃𝐵 ∧ 1 ∈ (0[,]1)) → (((0[,]1) × {𝑃})‘1) = 𝑃)
758, 25, 74sylancl 586 . . . . 5 (𝜑 → (((0[,]1) × {𝑃})‘1) = 𝑃)
7673, 75eqtrd 2775 . . . 4 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)
77 fveq1 6906 . . . . . . 7 (𝑓 = ((0[,]1) × {𝑂}) → (𝑓‘0) = (((0[,]1) × {𝑂})‘0))
7877eqeq1d 2737 . . . . . 6 (𝑓 = ((0[,]1) × {𝑂}) → ((𝑓‘0) = 𝑂 ↔ (((0[,]1) × {𝑂})‘0) = 𝑂))
79 fveq1 6906 . . . . . . 7 (𝑓 = ((0[,]1) × {𝑂}) → (𝑓‘1) = (((0[,]1) × {𝑂})‘1))
8079eqeq1d 2737 . . . . . 6 (𝑓 = ((0[,]1) × {𝑂}) → ((𝑓‘1) = 𝑂 ↔ (((0[,]1) × {𝑂})‘1) = 𝑂))
81 coeq2 5872 . . . . . . . . . . 11 (𝑓 = ((0[,]1) × {𝑂}) → (𝐺𝑓) = (𝐺 ∘ ((0[,]1) × {𝑂})))
8281eqeq2d 2746 . . . . . . . . . 10 (𝑓 = ((0[,]1) × {𝑂}) → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂}))))
8382anbi1d 631 . . . . . . . . 9 (𝑓 = ((0[,]1) × {𝑂}) → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)))
8483riotabidv 7390 . . . . . . . 8 (𝑓 = ((0[,]1) × {𝑂}) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)))
8584fveq1d 6909 . . . . . . 7 (𝑓 = ((0[,]1) × {𝑂}) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1))
8685eqeq1d 2737 . . . . . 6 (𝑓 = ((0[,]1) × {𝑂}) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃))
8778, 80, 863anbi123d 1435 . . . . 5 (𝑓 = ((0[,]1) × {𝑂}) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃) ↔ ((((0[,]1) × {𝑂})‘0) = 𝑂 ∧ (((0[,]1) × {𝑂})‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)))
8887rspcev 3622 . . . 4 ((((0[,]1) × {𝑂}) ∈ (II Cn 𝐾) ∧ ((((0[,]1) × {𝑂})‘0) = 𝑂 ∧ (((0[,]1) × {𝑂})‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃))
8921, 24, 27, 76, 88syl13anc 1371 . . 3 (𝜑 → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃))
901, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem4 35307 . . . 4 ((𝜑𝑂𝑌) → ((𝐻𝑂) = 𝑃 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)))
916, 90mpdan 687 . . 3 (𝜑 → ((𝐻𝑂) = 𝑃 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)))
9289, 91mpbird 257 . 2 (𝜑 → (𝐻𝑂) = 𝑃)
93 coeq2 5872 . . . . 5 (𝑓 = 𝐻 → (𝐹𝑓) = (𝐹𝐻))
9493eqeq1d 2737 . . . 4 (𝑓 = 𝐻 → ((𝐹𝑓) = 𝐺 ↔ (𝐹𝐻) = 𝐺))
95 fveq1 6906 . . . . 5 (𝑓 = 𝐻 → (𝑓𝑂) = (𝐻𝑂))
9695eqeq1d 2737 . . . 4 (𝑓 = 𝐻 → ((𝑓𝑂) = 𝑃 ↔ (𝐻𝑂) = 𝑃))
9794, 96anbi12d 632 . . 3 (𝑓 = 𝐻 → (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ↔ ((𝐹𝐻) = 𝐺 ∧ (𝐻𝑂) = 𝑃)))
9897rspcev 3622 . 2 ((𝐻 ∈ (𝐾 Cn 𝐶) ∧ ((𝐹𝐻) = 𝐺 ∧ (𝐻𝑂) = 𝑃)) → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
9912, 13, 92, 98syl12anc 837 1 (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  ∃!wreu 3376  {crab 3433  cdif 3960  cin 3962  c0 4339  𝒫 cpw 4605  {csn 4631   cuni 4912  cmpt 5231   × cxp 5687  ccnv 5688  cres 5691  cima 5692  ccom 5693   Fn wfn 6558  wf 6559  cfv 6563  crio 7387  (class class class)co 7431  0cc0 11153  1c1 11154  [,]cicc 13387  t crest 17467  Topctop 22915  TopOnctopon 22932   Cn ccn 23248  𝑛-Locally cnlly 23489  Homeochmeo 23777  IIcii 24915  PConncpconn 35204  SConncsconn 35205   CovMap ccvm 35240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-ec 8746  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-cn 23251  df-cnp 23252  df-cmp 23411  df-conn 23436  df-lly 23490  df-nlly 23491  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348  df-ii 24917  df-cncf 24918  df-htpy 25016  df-phtpy 25017  df-phtpc 25038  df-pco 25052  df-pconn 35206  df-sconn 35207  df-cvm 35241
This theorem is referenced by:  cvmlift3  35313
  Copyright terms: Public domain W3C validator