Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem9 Structured version   Visualization version   GIF version

Theorem cvmlift3lem9 33298
Description: Lemma for cvmlift2 33287. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
cvmlift3lem7.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmlift3lem9 (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Distinct variable groups:   𝑐,𝑑,𝑓,𝑘,𝑠,𝑧,𝑔,𝑥   𝐽,𝑐   𝑔,𝑑,𝑥,𝐽,𝑓,𝑘,𝑠   𝐹,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠   𝑥,𝑧,𝐹   𝐻,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑆,𝑓,𝑥   𝐵,𝑑,𝑓,𝑔,𝑥,𝑧   𝐺,𝑐,𝑑,𝑓,𝑔,𝑘,𝑥,𝑧   𝐶,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠,𝑥,𝑧   𝜑,𝑓,𝑥   𝐾,𝑐,𝑓,𝑔,𝑥,𝑧   𝑃,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑂,𝑐,𝑓,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝐵(𝑘,𝑠,𝑐)   𝑃(𝑘,𝑠)   𝑆(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝐺(𝑠)   𝐻(𝑘,𝑠)   𝐽(𝑧)   𝐾(𝑘,𝑠,𝑑)   𝑂(𝑘,𝑠,𝑑)   𝑌(𝑘,𝑠,𝑐,𝑑)

Proof of Theorem cvmlift3lem9
StepHypRef Expression
1 cvmlift3.b . . 3 𝐵 = 𝐶
2 cvmlift3.y . . 3 𝑌 = 𝐾
3 cvmlift3.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmlift3.k . . 3 (𝜑𝐾 ∈ SConn)
5 cvmlift3.l . . 3 (𝜑𝐾 ∈ 𝑛-Locally PConn)
6 cvmlift3.o . . 3 (𝜑𝑂𝑌)
7 cvmlift3.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
8 cvmlift3.p . . 3 (𝜑𝑃𝐵)
9 cvmlift3.e . . 3 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
10 cvmlift3.h . . 3 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
11 cvmlift3lem7.s . . 3 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem8 33297 . 2 (𝜑𝐻 ∈ (𝐾 Cn 𝐶))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem5 33294 . 2 (𝜑 → (𝐹𝐻) = 𝐺)
14 iitopon 24051 . . . . . 6 II ∈ (TopOn‘(0[,]1))
1514a1i 11 . . . . 5 (𝜑 → II ∈ (TopOn‘(0[,]1)))
16 sconntop 33199 . . . . . . 7 (𝐾 ∈ SConn → 𝐾 ∈ Top)
174, 16syl 17 . . . . . 6 (𝜑𝐾 ∈ Top)
182toptopon 22075 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
1917, 18sylib 217 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
20 cnconst2 22443 . . . . 5 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑂𝑌) → ((0[,]1) × {𝑂}) ∈ (II Cn 𝐾))
2115, 19, 6, 20syl3anc 1370 . . . 4 (𝜑 → ((0[,]1) × {𝑂}) ∈ (II Cn 𝐾))
22 0elunit 13210 . . . . 5 0 ∈ (0[,]1)
23 fvconst2g 7086 . . . . 5 ((𝑂𝑌 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {𝑂})‘0) = 𝑂)
246, 22, 23sylancl 586 . . . 4 (𝜑 → (((0[,]1) × {𝑂})‘0) = 𝑂)
25 1elunit 13211 . . . . 5 1 ∈ (0[,]1)
26 fvconst2g 7086 . . . . 5 ((𝑂𝑌 ∧ 1 ∈ (0[,]1)) → (((0[,]1) × {𝑂})‘1) = 𝑂)
276, 25, 26sylancl 586 . . . 4 (𝜑 → (((0[,]1) × {𝑂})‘1) = 𝑂)
289sneqd 4574 . . . . . . . . 9 (𝜑 → {(𝐹𝑃)} = {(𝐺𝑂)})
2928xpeq2d 5620 . . . . . . . 8 (𝜑 → ((0[,]1) × {(𝐹𝑃)}) = ((0[,]1) × {(𝐺𝑂)}))
30 cvmcn 33233 . . . . . . . . . 10 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
31 eqid 2739 . . . . . . . . . . 11 𝐽 = 𝐽
321, 31cnf 22406 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
33 ffn 6609 . . . . . . . . . 10 (𝐹:𝐵 𝐽𝐹 Fn 𝐵)
343, 30, 32, 334syl 19 . . . . . . . . 9 (𝜑𝐹 Fn 𝐵)
35 fcoconst 7015 . . . . . . . . 9 ((𝐹 Fn 𝐵𝑃𝐵) → (𝐹 ∘ ((0[,]1) × {𝑃})) = ((0[,]1) × {(𝐹𝑃)}))
3634, 8, 35syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹 ∘ ((0[,]1) × {𝑃})) = ((0[,]1) × {(𝐹𝑃)}))
372, 31cnf 22406 . . . . . . . . . . 11 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
387, 37syl 17 . . . . . . . . . 10 (𝜑𝐺:𝑌 𝐽)
3938ffnd 6610 . . . . . . . . 9 (𝜑𝐺 Fn 𝑌)
40 fcoconst 7015 . . . . . . . . 9 ((𝐺 Fn 𝑌𝑂𝑌) → (𝐺 ∘ ((0[,]1) × {𝑂})) = ((0[,]1) × {(𝐺𝑂)}))
4139, 6, 40syl2anc 584 . . . . . . . 8 (𝜑 → (𝐺 ∘ ((0[,]1) × {𝑂})) = ((0[,]1) × {(𝐺𝑂)}))
4229, 36, 413eqtr4d 2789 . . . . . . 7 (𝜑 → (𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})))
43 fvconst2g 7086 . . . . . . . 8 ((𝑃𝐵 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {𝑃})‘0) = 𝑃)
448, 22, 43sylancl 586 . . . . . . 7 (𝜑 → (((0[,]1) × {𝑃})‘0) = 𝑃)
45 cvmtop1 33231 . . . . . . . . . . 11 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
463, 45syl 17 . . . . . . . . . 10 (𝜑𝐶 ∈ Top)
471toptopon 22075 . . . . . . . . . 10 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
4846, 47sylib 217 . . . . . . . . 9 (𝜑𝐶 ∈ (TopOn‘𝐵))
49 cnconst2 22443 . . . . . . . . 9 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐶 ∈ (TopOn‘𝐵) ∧ 𝑃𝐵) → ((0[,]1) × {𝑃}) ∈ (II Cn 𝐶))
5015, 48, 8, 49syl3anc 1370 . . . . . . . 8 (𝜑 → ((0[,]1) × {𝑃}) ∈ (II Cn 𝐶))
51 cvmtop2 33232 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
523, 51syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
5331toptopon 22075 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
5452, 53sylib 217 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
5538, 6ffvelrnd 6971 . . . . . . . . . . 11 (𝜑 → (𝐺𝑂) ∈ 𝐽)
56 cnconst2 22443 . . . . . . . . . . 11 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐺𝑂) ∈ 𝐽) → ((0[,]1) × {(𝐺𝑂)}) ∈ (II Cn 𝐽))
5715, 54, 55, 56syl3anc 1370 . . . . . . . . . 10 (𝜑 → ((0[,]1) × {(𝐺𝑂)}) ∈ (II Cn 𝐽))
5841, 57eqeltrd 2840 . . . . . . . . 9 (𝜑 → (𝐺 ∘ ((0[,]1) × {𝑂})) ∈ (II Cn 𝐽))
59 fvconst2g 7086 . . . . . . . . . . 11 (((𝐺𝑂) ∈ 𝐽 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {(𝐺𝑂)})‘0) = (𝐺𝑂))
6055, 22, 59sylancl 586 . . . . . . . . . 10 (𝜑 → (((0[,]1) × {(𝐺𝑂)})‘0) = (𝐺𝑂))
6141fveq1d 6785 . . . . . . . . . 10 (𝜑 → ((𝐺 ∘ ((0[,]1) × {𝑂}))‘0) = (((0[,]1) × {(𝐺𝑂)})‘0))
6260, 61, 93eqtr4rd 2790 . . . . . . . . 9 (𝜑 → (𝐹𝑃) = ((𝐺 ∘ ((0[,]1) × {𝑂}))‘0))
631cvmlift 33270 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺 ∘ ((0[,]1) × {𝑂})) ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = ((𝐺 ∘ ((0[,]1) × {𝑂}))‘0))) → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))
643, 58, 8, 62, 63syl22anc 836 . . . . . . . 8 (𝜑 → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))
65 coeq2 5770 . . . . . . . . . . 11 (𝑔 = ((0[,]1) × {𝑃}) → (𝐹𝑔) = (𝐹 ∘ ((0[,]1) × {𝑃})))
6665eqeq1d 2741 . . . . . . . . . 10 (𝑔 = ((0[,]1) × {𝑃}) → ((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ↔ (𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂}))))
67 fveq1 6782 . . . . . . . . . . 11 (𝑔 = ((0[,]1) × {𝑃}) → (𝑔‘0) = (((0[,]1) × {𝑃})‘0))
6867eqeq1d 2741 . . . . . . . . . 10 (𝑔 = ((0[,]1) × {𝑃}) → ((𝑔‘0) = 𝑃 ↔ (((0[,]1) × {𝑃})‘0) = 𝑃))
6966, 68anbi12d 631 . . . . . . . . 9 (𝑔 = ((0[,]1) × {𝑃}) → (((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (((0[,]1) × {𝑃})‘0) = 𝑃)))
7069riota2 7267 . . . . . . . 8 ((((0[,]1) × {𝑃}) ∈ (II Cn 𝐶) ∧ ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) → (((𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (((0[,]1) × {𝑃})‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) = ((0[,]1) × {𝑃})))
7150, 64, 70syl2anc 584 . . . . . . 7 (𝜑 → (((𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (((0[,]1) × {𝑃})‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) = ((0[,]1) × {𝑃})))
7242, 44, 71mpbi2and 709 . . . . . 6 (𝜑 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) = ((0[,]1) × {𝑃}))
7372fveq1d 6785 . . . . 5 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = (((0[,]1) × {𝑃})‘1))
74 fvconst2g 7086 . . . . . 6 ((𝑃𝐵 ∧ 1 ∈ (0[,]1)) → (((0[,]1) × {𝑃})‘1) = 𝑃)
758, 25, 74sylancl 586 . . . . 5 (𝜑 → (((0[,]1) × {𝑃})‘1) = 𝑃)
7673, 75eqtrd 2779 . . . 4 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)
77 fveq1 6782 . . . . . . 7 (𝑓 = ((0[,]1) × {𝑂}) → (𝑓‘0) = (((0[,]1) × {𝑂})‘0))
7877eqeq1d 2741 . . . . . 6 (𝑓 = ((0[,]1) × {𝑂}) → ((𝑓‘0) = 𝑂 ↔ (((0[,]1) × {𝑂})‘0) = 𝑂))
79 fveq1 6782 . . . . . . 7 (𝑓 = ((0[,]1) × {𝑂}) → (𝑓‘1) = (((0[,]1) × {𝑂})‘1))
8079eqeq1d 2741 . . . . . 6 (𝑓 = ((0[,]1) × {𝑂}) → ((𝑓‘1) = 𝑂 ↔ (((0[,]1) × {𝑂})‘1) = 𝑂))
81 coeq2 5770 . . . . . . . . . . 11 (𝑓 = ((0[,]1) × {𝑂}) → (𝐺𝑓) = (𝐺 ∘ ((0[,]1) × {𝑂})))
8281eqeq2d 2750 . . . . . . . . . 10 (𝑓 = ((0[,]1) × {𝑂}) → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂}))))
8382anbi1d 630 . . . . . . . . 9 (𝑓 = ((0[,]1) × {𝑂}) → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)))
8483riotabidv 7243 . . . . . . . 8 (𝑓 = ((0[,]1) × {𝑂}) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)))
8584fveq1d 6785 . . . . . . 7 (𝑓 = ((0[,]1) × {𝑂}) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1))
8685eqeq1d 2741 . . . . . 6 (𝑓 = ((0[,]1) × {𝑂}) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃))
8778, 80, 863anbi123d 1435 . . . . 5 (𝑓 = ((0[,]1) × {𝑂}) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃) ↔ ((((0[,]1) × {𝑂})‘0) = 𝑂 ∧ (((0[,]1) × {𝑂})‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)))
8887rspcev 3562 . . . 4 ((((0[,]1) × {𝑂}) ∈ (II Cn 𝐾) ∧ ((((0[,]1) × {𝑂})‘0) = 𝑂 ∧ (((0[,]1) × {𝑂})‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃))
8921, 24, 27, 76, 88syl13anc 1371 . . 3 (𝜑 → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃))
901, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem4 33293 . . . 4 ((𝜑𝑂𝑌) → ((𝐻𝑂) = 𝑃 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)))
916, 90mpdan 684 . . 3 (𝜑 → ((𝐻𝑂) = 𝑃 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)))
9289, 91mpbird 256 . 2 (𝜑 → (𝐻𝑂) = 𝑃)
93 coeq2 5770 . . . . 5 (𝑓 = 𝐻 → (𝐹𝑓) = (𝐹𝐻))
9493eqeq1d 2741 . . . 4 (𝑓 = 𝐻 → ((𝐹𝑓) = 𝐺 ↔ (𝐹𝐻) = 𝐺))
95 fveq1 6782 . . . . 5 (𝑓 = 𝐻 → (𝑓𝑂) = (𝐻𝑂))
9695eqeq1d 2741 . . . 4 (𝑓 = 𝐻 → ((𝑓𝑂) = 𝑃 ↔ (𝐻𝑂) = 𝑃))
9794, 96anbi12d 631 . . 3 (𝑓 = 𝐻 → (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ↔ ((𝐹𝐻) = 𝐺 ∧ (𝐻𝑂) = 𝑃)))
9897rspcev 3562 . 2 ((𝐻 ∈ (𝐾 Cn 𝐶) ∧ ((𝐹𝐻) = 𝐺 ∧ (𝐻𝑂) = 𝑃)) → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
9912, 13, 92, 98syl12anc 834 1 (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  wral 3065  wrex 3066  ∃!wreu 3067  {crab 3069  cdif 3885  cin 3887  c0 4257  𝒫 cpw 4534  {csn 4562   cuni 4840  cmpt 5158   × cxp 5588  ccnv 5589  cres 5592  cima 5593  ccom 5594   Fn wfn 6432  wf 6433  cfv 6437  crio 7240  (class class class)co 7284  0cc0 10880  1c1 10881  [,]cicc 13091  t crest 17140  Topctop 22051  TopOnctopon 22068   Cn ccn 22384  𝑛-Locally cnlly 22625  Homeochmeo 22913  IIcii 24047  PConncpconn 33190  SConncsconn 33191   CovMap ccvm 33226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-ec 8509  df-map 8626  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-seq 13731  df-exp 13792  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-clim 15206  df-sum 15407  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-cn 22387  df-cnp 22388  df-cmp 22547  df-conn 22572  df-lly 22626  df-nlly 22627  df-tx 22722  df-hmeo 22915  df-xms 23482  df-ms 23483  df-tms 23484  df-ii 24049  df-htpy 24142  df-phtpy 24143  df-phtpc 24164  df-pco 24177  df-pconn 33192  df-sconn 33193  df-cvm 33227
This theorem is referenced by:  cvmlift3  33299
  Copyright terms: Public domain W3C validator