Step | Hyp | Ref
| Expression |
1 | | cvmlift3.b |
. . 3
β’ π΅ = βͺ
πΆ |
2 | | cvmlift3.y |
. . 3
β’ π = βͺ
πΎ |
3 | | cvmlift3.f |
. . 3
β’ (π β πΉ β (πΆ CovMap π½)) |
4 | | cvmlift3.k |
. . 3
β’ (π β πΎ β SConn) |
5 | | cvmlift3.l |
. . 3
β’ (π β πΎ β π-Locally
PConn) |
6 | | cvmlift3.o |
. . 3
β’ (π β π β π) |
7 | | cvmlift3.g |
. . 3
β’ (π β πΊ β (πΎ Cn π½)) |
8 | | cvmlift3.p |
. . 3
β’ (π β π β π΅) |
9 | | cvmlift3.e |
. . 3
β’ (π β (πΉβπ) = (πΊβπ)) |
10 | | cvmlift3.h |
. . 3
β’ π» = (π₯ β π β¦ (β©π§ β π΅ βπ β (II Cn πΎ)((πβ0) = π β§ (πβ1) = π₯ β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = π§))) |
11 | | cvmlift3lem7.s |
. . 3
β’ π = (π β π½ β¦ {π β (π« πΆ β {β
}) β£ (βͺ π =
(β‘πΉ β π) β§ βπ β π (βπ β (π β {π})(π β© π) = β
β§ (πΉ βΎ π) β ((πΆ βΎt π)Homeo(π½ βΎt π))))}) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11 | cvmlift3lem8 34305 |
. 2
β’ (π β π» β (πΎ Cn πΆ)) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cvmlift3lem5 34302 |
. 2
β’ (π β (πΉ β π») = πΊ) |
14 | | iitopon 24386 |
. . . . . 6
β’ II β
(TopOnβ(0[,]1)) |
15 | 14 | a1i 11 |
. . . . 5
β’ (π β II β
(TopOnβ(0[,]1))) |
16 | | sconntop 34207 |
. . . . . . 7
β’ (πΎ β SConn β πΎ β Top) |
17 | 4, 16 | syl 17 |
. . . . . 6
β’ (π β πΎ β Top) |
18 | 2 | toptopon 22410 |
. . . . . 6
β’ (πΎ β Top β πΎ β (TopOnβπ)) |
19 | 17, 18 | sylib 217 |
. . . . 5
β’ (π β πΎ β (TopOnβπ)) |
20 | | cnconst2 22778 |
. . . . 5
β’ ((II
β (TopOnβ(0[,]1)) β§ πΎ β (TopOnβπ) β§ π β π) β ((0[,]1) Γ {π}) β (II Cn πΎ)) |
21 | 15, 19, 6, 20 | syl3anc 1371 |
. . . 4
β’ (π β ((0[,]1) Γ {π}) β (II Cn πΎ)) |
22 | | 0elunit 13442 |
. . . . 5
β’ 0 β
(0[,]1) |
23 | | fvconst2g 7199 |
. . . . 5
β’ ((π β π β§ 0 β (0[,]1)) β (((0[,]1)
Γ {π})β0) =
π) |
24 | 6, 22, 23 | sylancl 586 |
. . . 4
β’ (π β (((0[,]1) Γ {π})β0) = π) |
25 | | 1elunit 13443 |
. . . . 5
β’ 1 β
(0[,]1) |
26 | | fvconst2g 7199 |
. . . . 5
β’ ((π β π β§ 1 β (0[,]1)) β (((0[,]1)
Γ {π})β1) =
π) |
27 | 6, 25, 26 | sylancl 586 |
. . . 4
β’ (π β (((0[,]1) Γ {π})β1) = π) |
28 | 9 | sneqd 4639 |
. . . . . . . . 9
β’ (π β {(πΉβπ)} = {(πΊβπ)}) |
29 | 28 | xpeq2d 5705 |
. . . . . . . 8
β’ (π β ((0[,]1) Γ {(πΉβπ)}) = ((0[,]1) Γ {(πΊβπ)})) |
30 | | cvmcn 34241 |
. . . . . . . . . 10
β’ (πΉ β (πΆ CovMap π½) β πΉ β (πΆ Cn π½)) |
31 | | eqid 2732 |
. . . . . . . . . . 11
β’ βͺ π½ =
βͺ π½ |
32 | 1, 31 | cnf 22741 |
. . . . . . . . . 10
β’ (πΉ β (πΆ Cn π½) β πΉ:π΅βΆβͺ π½) |
33 | | ffn 6714 |
. . . . . . . . . 10
β’ (πΉ:π΅βΆβͺ π½ β πΉ Fn π΅) |
34 | 3, 30, 32, 33 | 4syl 19 |
. . . . . . . . 9
β’ (π β πΉ Fn π΅) |
35 | | fcoconst 7128 |
. . . . . . . . 9
β’ ((πΉ Fn π΅ β§ π β π΅) β (πΉ β ((0[,]1) Γ {π})) = ((0[,]1) Γ {(πΉβπ)})) |
36 | 34, 8, 35 | syl2anc 584 |
. . . . . . . 8
β’ (π β (πΉ β ((0[,]1) Γ {π})) = ((0[,]1) Γ {(πΉβπ)})) |
37 | 2, 31 | cnf 22741 |
. . . . . . . . . . 11
β’ (πΊ β (πΎ Cn π½) β πΊ:πβΆβͺ π½) |
38 | 7, 37 | syl 17 |
. . . . . . . . . 10
β’ (π β πΊ:πβΆβͺ π½) |
39 | 38 | ffnd 6715 |
. . . . . . . . 9
β’ (π β πΊ Fn π) |
40 | | fcoconst 7128 |
. . . . . . . . 9
β’ ((πΊ Fn π β§ π β π) β (πΊ β ((0[,]1) Γ {π})) = ((0[,]1) Γ {(πΊβπ)})) |
41 | 39, 6, 40 | syl2anc 584 |
. . . . . . . 8
β’ (π β (πΊ β ((0[,]1) Γ {π})) = ((0[,]1) Γ {(πΊβπ)})) |
42 | 29, 36, 41 | 3eqtr4d 2782 |
. . . . . . 7
β’ (π β (πΉ β ((0[,]1) Γ {π})) = (πΊ β ((0[,]1) Γ {π}))) |
43 | | fvconst2g 7199 |
. . . . . . . 8
β’ ((π β π΅ β§ 0 β (0[,]1)) β (((0[,]1)
Γ {π})β0) =
π) |
44 | 8, 22, 43 | sylancl 586 |
. . . . . . 7
β’ (π β (((0[,]1) Γ {π})β0) = π) |
45 | | cvmtop1 34239 |
. . . . . . . . . . 11
β’ (πΉ β (πΆ CovMap π½) β πΆ β Top) |
46 | 3, 45 | syl 17 |
. . . . . . . . . 10
β’ (π β πΆ β Top) |
47 | 1 | toptopon 22410 |
. . . . . . . . . 10
β’ (πΆ β Top β πΆ β (TopOnβπ΅)) |
48 | 46, 47 | sylib 217 |
. . . . . . . . 9
β’ (π β πΆ β (TopOnβπ΅)) |
49 | | cnconst2 22778 |
. . . . . . . . 9
β’ ((II
β (TopOnβ(0[,]1)) β§ πΆ β (TopOnβπ΅) β§ π β π΅) β ((0[,]1) Γ {π}) β (II Cn πΆ)) |
50 | 15, 48, 8, 49 | syl3anc 1371 |
. . . . . . . 8
β’ (π β ((0[,]1) Γ {π}) β (II Cn πΆ)) |
51 | | cvmtop2 34240 |
. . . . . . . . . . . . 13
β’ (πΉ β (πΆ CovMap π½) β π½ β Top) |
52 | 3, 51 | syl 17 |
. . . . . . . . . . . 12
β’ (π β π½ β Top) |
53 | 31 | toptopon 22410 |
. . . . . . . . . . . 12
β’ (π½ β Top β π½ β (TopOnββͺ π½)) |
54 | 52, 53 | sylib 217 |
. . . . . . . . . . 11
β’ (π β π½ β (TopOnββͺ π½)) |
55 | 38, 6 | ffvelcdmd 7084 |
. . . . . . . . . . 11
β’ (π β (πΊβπ) β βͺ π½) |
56 | | cnconst2 22778 |
. . . . . . . . . . 11
β’ ((II
β (TopOnβ(0[,]1)) β§ π½ β (TopOnββͺ π½)
β§ (πΊβπ) β βͺ π½)
β ((0[,]1) Γ {(πΊβπ)}) β (II Cn π½)) |
57 | 15, 54, 55, 56 | syl3anc 1371 |
. . . . . . . . . 10
β’ (π β ((0[,]1) Γ {(πΊβπ)}) β (II Cn π½)) |
58 | 41, 57 | eqeltrd 2833 |
. . . . . . . . 9
β’ (π β (πΊ β ((0[,]1) Γ {π})) β (II Cn π½)) |
59 | | fvconst2g 7199 |
. . . . . . . . . . 11
β’ (((πΊβπ) β βͺ π½ β§ 0 β (0[,]1)) β
(((0[,]1) Γ {(πΊβπ)})β0) = (πΊβπ)) |
60 | 55, 22, 59 | sylancl 586 |
. . . . . . . . . 10
β’ (π β (((0[,]1) Γ {(πΊβπ)})β0) = (πΊβπ)) |
61 | 41 | fveq1d 6890 |
. . . . . . . . . 10
β’ (π β ((πΊ β ((0[,]1) Γ {π}))β0) = (((0[,]1) Γ {(πΊβπ)})β0)) |
62 | 60, 61, 9 | 3eqtr4rd 2783 |
. . . . . . . . 9
β’ (π β (πΉβπ) = ((πΊ β ((0[,]1) Γ {π}))β0)) |
63 | 1 | cvmlift 34278 |
. . . . . . . . 9
β’ (((πΉ β (πΆ CovMap π½) β§ (πΊ β ((0[,]1) Γ {π})) β (II Cn π½)) β§ (π β π΅ β§ (πΉβπ) = ((πΊ β ((0[,]1) Γ {π}))β0))) β β!π β (II Cn πΆ)((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β§ (πβ0) = π)) |
64 | 3, 58, 8, 62, 63 | syl22anc 837 |
. . . . . . . 8
β’ (π β β!π β (II Cn πΆ)((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β§ (πβ0) = π)) |
65 | | coeq2 5856 |
. . . . . . . . . . 11
β’ (π = ((0[,]1) Γ {π}) β (πΉ β π) = (πΉ β ((0[,]1) Γ {π}))) |
66 | 65 | eqeq1d 2734 |
. . . . . . . . . 10
β’ (π = ((0[,]1) Γ {π}) β ((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β (πΉ β ((0[,]1) Γ {π})) = (πΊ β ((0[,]1) Γ {π})))) |
67 | | fveq1 6887 |
. . . . . . . . . . 11
β’ (π = ((0[,]1) Γ {π}) β (πβ0) = (((0[,]1) Γ {π})β0)) |
68 | 67 | eqeq1d 2734 |
. . . . . . . . . 10
β’ (π = ((0[,]1) Γ {π}) β ((πβ0) = π β (((0[,]1) Γ {π})β0) = π)) |
69 | 66, 68 | anbi12d 631 |
. . . . . . . . 9
β’ (π = ((0[,]1) Γ {π}) β (((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β§ (πβ0) = π) β ((πΉ β ((0[,]1) Γ {π})) = (πΊ β ((0[,]1) Γ {π})) β§ (((0[,]1) Γ {π})β0) = π))) |
70 | 69 | riota2 7387 |
. . . . . . . 8
β’
((((0[,]1) Γ {π}) β (II Cn πΆ) β§ β!π β (II Cn πΆ)((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β§ (πβ0) = π)) β (((πΉ β ((0[,]1) Γ {π})) = (πΊ β ((0[,]1) Γ {π})) β§ (((0[,]1) Γ {π})β0) = π) β (β©π β (II Cn πΆ)((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β§ (πβ0) = π)) = ((0[,]1) Γ {π}))) |
71 | 50, 64, 70 | syl2anc 584 |
. . . . . . 7
β’ (π β (((πΉ β ((0[,]1) Γ {π})) = (πΊ β ((0[,]1) Γ {π})) β§ (((0[,]1) Γ {π})β0) = π) β (β©π β (II Cn πΆ)((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β§ (πβ0) = π)) = ((0[,]1) Γ {π}))) |
72 | 42, 44, 71 | mpbi2and 710 |
. . . . . 6
β’ (π β (β©π β (II Cn πΆ)((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β§ (πβ0) = π)) = ((0[,]1) Γ {π})) |
73 | 72 | fveq1d 6890 |
. . . . 5
β’ (π β ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β§ (πβ0) = π))β1) = (((0[,]1) Γ {π})β1)) |
74 | | fvconst2g 7199 |
. . . . . 6
β’ ((π β π΅ β§ 1 β (0[,]1)) β (((0[,]1)
Γ {π})β1) =
π) |
75 | 8, 25, 74 | sylancl 586 |
. . . . 5
β’ (π β (((0[,]1) Γ {π})β1) = π) |
76 | 73, 75 | eqtrd 2772 |
. . . 4
β’ (π β ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β§ (πβ0) = π))β1) = π) |
77 | | fveq1 6887 |
. . . . . . 7
β’ (π = ((0[,]1) Γ {π}) β (πβ0) = (((0[,]1) Γ {π})β0)) |
78 | 77 | eqeq1d 2734 |
. . . . . 6
β’ (π = ((0[,]1) Γ {π}) β ((πβ0) = π β (((0[,]1) Γ {π})β0) = π)) |
79 | | fveq1 6887 |
. . . . . . 7
β’ (π = ((0[,]1) Γ {π}) β (πβ1) = (((0[,]1) Γ {π})β1)) |
80 | 79 | eqeq1d 2734 |
. . . . . 6
β’ (π = ((0[,]1) Γ {π}) β ((πβ1) = π β (((0[,]1) Γ {π})β1) = π)) |
81 | | coeq2 5856 |
. . . . . . . . . . 11
β’ (π = ((0[,]1) Γ {π}) β (πΊ β π) = (πΊ β ((0[,]1) Γ {π}))) |
82 | 81 | eqeq2d 2743 |
. . . . . . . . . 10
β’ (π = ((0[,]1) Γ {π}) β ((πΉ β π) = (πΊ β π) β (πΉ β π) = (πΊ β ((0[,]1) Γ {π})))) |
83 | 82 | anbi1d 630 |
. . . . . . . . 9
β’ (π = ((0[,]1) Γ {π}) β (((πΉ β π) = (πΊ β π) β§ (πβ0) = π) β ((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β§ (πβ0) = π))) |
84 | 83 | riotabidv 7363 |
. . . . . . . 8
β’ (π = ((0[,]1) Γ {π}) β (β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π)) = (β©π β (II Cn πΆ)((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β§ (πβ0) = π))) |
85 | 84 | fveq1d 6890 |
. . . . . . 7
β’ (π = ((0[,]1) Γ {π}) β ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β§ (πβ0) = π))β1)) |
86 | 85 | eqeq1d 2734 |
. . . . . 6
β’ (π = ((0[,]1) Γ {π}) β (((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = π β ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β§ (πβ0) = π))β1) = π)) |
87 | 78, 80, 86 | 3anbi123d 1436 |
. . . . 5
β’ (π = ((0[,]1) Γ {π}) β (((πβ0) = π β§ (πβ1) = π β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = π) β ((((0[,]1) Γ {π})β0) = π β§ (((0[,]1) Γ {π})β1) = π β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β§ (πβ0) = π))β1) = π))) |
88 | 87 | rspcev 3612 |
. . . 4
β’
((((0[,]1) Γ {π}) β (II Cn πΎ) β§ ((((0[,]1) Γ {π})β0) = π β§ (((0[,]1) Γ {π})β1) = π β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β ((0[,]1) Γ {π})) β§ (πβ0) = π))β1) = π)) β βπ β (II Cn πΎ)((πβ0) = π β§ (πβ1) = π β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = π)) |
89 | 21, 24, 27, 76, 88 | syl13anc 1372 |
. . 3
β’ (π β βπ β (II Cn πΎ)((πβ0) = π β§ (πβ1) = π β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = π)) |
90 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cvmlift3lem4 34301 |
. . . 4
β’ ((π β§ π β π) β ((π»βπ) = π β βπ β (II Cn πΎ)((πβ0) = π β§ (πβ1) = π β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = π))) |
91 | 6, 90 | mpdan 685 |
. . 3
β’ (π β ((π»βπ) = π β βπ β (II Cn πΎ)((πβ0) = π β§ (πβ1) = π β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = π))) |
92 | 89, 91 | mpbird 256 |
. 2
β’ (π β (π»βπ) = π) |
93 | | coeq2 5856 |
. . . . 5
β’ (π = π» β (πΉ β π) = (πΉ β π»)) |
94 | 93 | eqeq1d 2734 |
. . . 4
β’ (π = π» β ((πΉ β π) = πΊ β (πΉ β π») = πΊ)) |
95 | | fveq1 6887 |
. . . . 5
β’ (π = π» β (πβπ) = (π»βπ)) |
96 | 95 | eqeq1d 2734 |
. . . 4
β’ (π = π» β ((πβπ) = π β (π»βπ) = π)) |
97 | 94, 96 | anbi12d 631 |
. . 3
β’ (π = π» β (((πΉ β π) = πΊ β§ (πβπ) = π) β ((πΉ β π») = πΊ β§ (π»βπ) = π))) |
98 | 97 | rspcev 3612 |
. 2
β’ ((π» β (πΎ Cn πΆ) β§ ((πΉ β π») = πΊ β§ (π»βπ) = π)) β βπ β (πΎ Cn πΆ)((πΉ β π) = πΊ β§ (πβπ) = π)) |
99 | 12, 13, 92, 98 | syl12anc 835 |
1
β’ (π β βπ β (πΎ Cn πΆ)((πΉ β π) = πΊ β§ (πβπ) = π)) |