Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem9 Structured version   Visualization version   GIF version

Theorem cvmlift3lem9 33189
Description: Lemma for cvmlift2 33178. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
cvmlift3lem7.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmlift3lem9 (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Distinct variable groups:   𝑐,𝑑,𝑓,𝑘,𝑠,𝑧,𝑔,𝑥   𝐽,𝑐   𝑔,𝑑,𝑥,𝐽,𝑓,𝑘,𝑠   𝐹,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠   𝑥,𝑧,𝐹   𝐻,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑆,𝑓,𝑥   𝐵,𝑑,𝑓,𝑔,𝑥,𝑧   𝐺,𝑐,𝑑,𝑓,𝑔,𝑘,𝑥,𝑧   𝐶,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠,𝑥,𝑧   𝜑,𝑓,𝑥   𝐾,𝑐,𝑓,𝑔,𝑥,𝑧   𝑃,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑂,𝑐,𝑓,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝐵(𝑘,𝑠,𝑐)   𝑃(𝑘,𝑠)   𝑆(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝐺(𝑠)   𝐻(𝑘,𝑠)   𝐽(𝑧)   𝐾(𝑘,𝑠,𝑑)   𝑂(𝑘,𝑠,𝑑)   𝑌(𝑘,𝑠,𝑐,𝑑)

Proof of Theorem cvmlift3lem9
StepHypRef Expression
1 cvmlift3.b . . 3 𝐵 = 𝐶
2 cvmlift3.y . . 3 𝑌 = 𝐾
3 cvmlift3.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmlift3.k . . 3 (𝜑𝐾 ∈ SConn)
5 cvmlift3.l . . 3 (𝜑𝐾 ∈ 𝑛-Locally PConn)
6 cvmlift3.o . . 3 (𝜑𝑂𝑌)
7 cvmlift3.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
8 cvmlift3.p . . 3 (𝜑𝑃𝐵)
9 cvmlift3.e . . 3 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
10 cvmlift3.h . . 3 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
11 cvmlift3lem7.s . . 3 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem8 33188 . 2 (𝜑𝐻 ∈ (𝐾 Cn 𝐶))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem5 33185 . 2 (𝜑 → (𝐹𝐻) = 𝐺)
14 iitopon 23948 . . . . . 6 II ∈ (TopOn‘(0[,]1))
1514a1i 11 . . . . 5 (𝜑 → II ∈ (TopOn‘(0[,]1)))
16 sconntop 33090 . . . . . . 7 (𝐾 ∈ SConn → 𝐾 ∈ Top)
174, 16syl 17 . . . . . 6 (𝜑𝐾 ∈ Top)
182toptopon 21974 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
1917, 18sylib 217 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
20 cnconst2 22342 . . . . 5 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑂𝑌) → ((0[,]1) × {𝑂}) ∈ (II Cn 𝐾))
2115, 19, 6, 20syl3anc 1369 . . . 4 (𝜑 → ((0[,]1) × {𝑂}) ∈ (II Cn 𝐾))
22 0elunit 13130 . . . . 5 0 ∈ (0[,]1)
23 fvconst2g 7059 . . . . 5 ((𝑂𝑌 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {𝑂})‘0) = 𝑂)
246, 22, 23sylancl 585 . . . 4 (𝜑 → (((0[,]1) × {𝑂})‘0) = 𝑂)
25 1elunit 13131 . . . . 5 1 ∈ (0[,]1)
26 fvconst2g 7059 . . . . 5 ((𝑂𝑌 ∧ 1 ∈ (0[,]1)) → (((0[,]1) × {𝑂})‘1) = 𝑂)
276, 25, 26sylancl 585 . . . 4 (𝜑 → (((0[,]1) × {𝑂})‘1) = 𝑂)
289sneqd 4570 . . . . . . . . 9 (𝜑 → {(𝐹𝑃)} = {(𝐺𝑂)})
2928xpeq2d 5610 . . . . . . . 8 (𝜑 → ((0[,]1) × {(𝐹𝑃)}) = ((0[,]1) × {(𝐺𝑂)}))
30 cvmcn 33124 . . . . . . . . . 10 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
31 eqid 2738 . . . . . . . . . . 11 𝐽 = 𝐽
321, 31cnf 22305 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
33 ffn 6584 . . . . . . . . . 10 (𝐹:𝐵 𝐽𝐹 Fn 𝐵)
343, 30, 32, 334syl 19 . . . . . . . . 9 (𝜑𝐹 Fn 𝐵)
35 fcoconst 6988 . . . . . . . . 9 ((𝐹 Fn 𝐵𝑃𝐵) → (𝐹 ∘ ((0[,]1) × {𝑃})) = ((0[,]1) × {(𝐹𝑃)}))
3634, 8, 35syl2anc 583 . . . . . . . 8 (𝜑 → (𝐹 ∘ ((0[,]1) × {𝑃})) = ((0[,]1) × {(𝐹𝑃)}))
372, 31cnf 22305 . . . . . . . . . . 11 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
387, 37syl 17 . . . . . . . . . 10 (𝜑𝐺:𝑌 𝐽)
3938ffnd 6585 . . . . . . . . 9 (𝜑𝐺 Fn 𝑌)
40 fcoconst 6988 . . . . . . . . 9 ((𝐺 Fn 𝑌𝑂𝑌) → (𝐺 ∘ ((0[,]1) × {𝑂})) = ((0[,]1) × {(𝐺𝑂)}))
4139, 6, 40syl2anc 583 . . . . . . . 8 (𝜑 → (𝐺 ∘ ((0[,]1) × {𝑂})) = ((0[,]1) × {(𝐺𝑂)}))
4229, 36, 413eqtr4d 2788 . . . . . . 7 (𝜑 → (𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})))
43 fvconst2g 7059 . . . . . . . 8 ((𝑃𝐵 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {𝑃})‘0) = 𝑃)
448, 22, 43sylancl 585 . . . . . . 7 (𝜑 → (((0[,]1) × {𝑃})‘0) = 𝑃)
45 cvmtop1 33122 . . . . . . . . . . 11 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
463, 45syl 17 . . . . . . . . . 10 (𝜑𝐶 ∈ Top)
471toptopon 21974 . . . . . . . . . 10 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
4846, 47sylib 217 . . . . . . . . 9 (𝜑𝐶 ∈ (TopOn‘𝐵))
49 cnconst2 22342 . . . . . . . . 9 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐶 ∈ (TopOn‘𝐵) ∧ 𝑃𝐵) → ((0[,]1) × {𝑃}) ∈ (II Cn 𝐶))
5015, 48, 8, 49syl3anc 1369 . . . . . . . 8 (𝜑 → ((0[,]1) × {𝑃}) ∈ (II Cn 𝐶))
51 cvmtop2 33123 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
523, 51syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
5331toptopon 21974 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
5452, 53sylib 217 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
5538, 6ffvelrnd 6944 . . . . . . . . . . 11 (𝜑 → (𝐺𝑂) ∈ 𝐽)
56 cnconst2 22342 . . . . . . . . . . 11 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐺𝑂) ∈ 𝐽) → ((0[,]1) × {(𝐺𝑂)}) ∈ (II Cn 𝐽))
5715, 54, 55, 56syl3anc 1369 . . . . . . . . . 10 (𝜑 → ((0[,]1) × {(𝐺𝑂)}) ∈ (II Cn 𝐽))
5841, 57eqeltrd 2839 . . . . . . . . 9 (𝜑 → (𝐺 ∘ ((0[,]1) × {𝑂})) ∈ (II Cn 𝐽))
59 fvconst2g 7059 . . . . . . . . . . 11 (((𝐺𝑂) ∈ 𝐽 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {(𝐺𝑂)})‘0) = (𝐺𝑂))
6055, 22, 59sylancl 585 . . . . . . . . . 10 (𝜑 → (((0[,]1) × {(𝐺𝑂)})‘0) = (𝐺𝑂))
6141fveq1d 6758 . . . . . . . . . 10 (𝜑 → ((𝐺 ∘ ((0[,]1) × {𝑂}))‘0) = (((0[,]1) × {(𝐺𝑂)})‘0))
6260, 61, 93eqtr4rd 2789 . . . . . . . . 9 (𝜑 → (𝐹𝑃) = ((𝐺 ∘ ((0[,]1) × {𝑂}))‘0))
631cvmlift 33161 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺 ∘ ((0[,]1) × {𝑂})) ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = ((𝐺 ∘ ((0[,]1) × {𝑂}))‘0))) → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))
643, 58, 8, 62, 63syl22anc 835 . . . . . . . 8 (𝜑 → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))
65 coeq2 5756 . . . . . . . . . . 11 (𝑔 = ((0[,]1) × {𝑃}) → (𝐹𝑔) = (𝐹 ∘ ((0[,]1) × {𝑃})))
6665eqeq1d 2740 . . . . . . . . . 10 (𝑔 = ((0[,]1) × {𝑃}) → ((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ↔ (𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂}))))
67 fveq1 6755 . . . . . . . . . . 11 (𝑔 = ((0[,]1) × {𝑃}) → (𝑔‘0) = (((0[,]1) × {𝑃})‘0))
6867eqeq1d 2740 . . . . . . . . . 10 (𝑔 = ((0[,]1) × {𝑃}) → ((𝑔‘0) = 𝑃 ↔ (((0[,]1) × {𝑃})‘0) = 𝑃))
6966, 68anbi12d 630 . . . . . . . . 9 (𝑔 = ((0[,]1) × {𝑃}) → (((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (((0[,]1) × {𝑃})‘0) = 𝑃)))
7069riota2 7238 . . . . . . . 8 ((((0[,]1) × {𝑃}) ∈ (II Cn 𝐶) ∧ ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) → (((𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (((0[,]1) × {𝑃})‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) = ((0[,]1) × {𝑃})))
7150, 64, 70syl2anc 583 . . . . . . 7 (𝜑 → (((𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (((0[,]1) × {𝑃})‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) = ((0[,]1) × {𝑃})))
7242, 44, 71mpbi2and 708 . . . . . 6 (𝜑 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) = ((0[,]1) × {𝑃}))
7372fveq1d 6758 . . . . 5 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = (((0[,]1) × {𝑃})‘1))
74 fvconst2g 7059 . . . . . 6 ((𝑃𝐵 ∧ 1 ∈ (0[,]1)) → (((0[,]1) × {𝑃})‘1) = 𝑃)
758, 25, 74sylancl 585 . . . . 5 (𝜑 → (((0[,]1) × {𝑃})‘1) = 𝑃)
7673, 75eqtrd 2778 . . . 4 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)
77 fveq1 6755 . . . . . . 7 (𝑓 = ((0[,]1) × {𝑂}) → (𝑓‘0) = (((0[,]1) × {𝑂})‘0))
7877eqeq1d 2740 . . . . . 6 (𝑓 = ((0[,]1) × {𝑂}) → ((𝑓‘0) = 𝑂 ↔ (((0[,]1) × {𝑂})‘0) = 𝑂))
79 fveq1 6755 . . . . . . 7 (𝑓 = ((0[,]1) × {𝑂}) → (𝑓‘1) = (((0[,]1) × {𝑂})‘1))
8079eqeq1d 2740 . . . . . 6 (𝑓 = ((0[,]1) × {𝑂}) → ((𝑓‘1) = 𝑂 ↔ (((0[,]1) × {𝑂})‘1) = 𝑂))
81 coeq2 5756 . . . . . . . . . . 11 (𝑓 = ((0[,]1) × {𝑂}) → (𝐺𝑓) = (𝐺 ∘ ((0[,]1) × {𝑂})))
8281eqeq2d 2749 . . . . . . . . . 10 (𝑓 = ((0[,]1) × {𝑂}) → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂}))))
8382anbi1d 629 . . . . . . . . 9 (𝑓 = ((0[,]1) × {𝑂}) → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)))
8483riotabidv 7214 . . . . . . . 8 (𝑓 = ((0[,]1) × {𝑂}) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)))
8584fveq1d 6758 . . . . . . 7 (𝑓 = ((0[,]1) × {𝑂}) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1))
8685eqeq1d 2740 . . . . . 6 (𝑓 = ((0[,]1) × {𝑂}) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃))
8778, 80, 863anbi123d 1434 . . . . 5 (𝑓 = ((0[,]1) × {𝑂}) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃) ↔ ((((0[,]1) × {𝑂})‘0) = 𝑂 ∧ (((0[,]1) × {𝑂})‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)))
8887rspcev 3552 . . . 4 ((((0[,]1) × {𝑂}) ∈ (II Cn 𝐾) ∧ ((((0[,]1) × {𝑂})‘0) = 𝑂 ∧ (((0[,]1) × {𝑂})‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃))
8921, 24, 27, 76, 88syl13anc 1370 . . 3 (𝜑 → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃))
901, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem4 33184 . . . 4 ((𝜑𝑂𝑌) → ((𝐻𝑂) = 𝑃 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)))
916, 90mpdan 683 . . 3 (𝜑 → ((𝐻𝑂) = 𝑃 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)))
9289, 91mpbird 256 . 2 (𝜑 → (𝐻𝑂) = 𝑃)
93 coeq2 5756 . . . . 5 (𝑓 = 𝐻 → (𝐹𝑓) = (𝐹𝐻))
9493eqeq1d 2740 . . . 4 (𝑓 = 𝐻 → ((𝐹𝑓) = 𝐺 ↔ (𝐹𝐻) = 𝐺))
95 fveq1 6755 . . . . 5 (𝑓 = 𝐻 → (𝑓𝑂) = (𝐻𝑂))
9695eqeq1d 2740 . . . 4 (𝑓 = 𝐻 → ((𝑓𝑂) = 𝑃 ↔ (𝐻𝑂) = 𝑃))
9794, 96anbi12d 630 . . 3 (𝑓 = 𝐻 → (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ↔ ((𝐹𝐻) = 𝐺 ∧ (𝐻𝑂) = 𝑃)))
9897rspcev 3552 . 2 ((𝐻 ∈ (𝐾 Cn 𝐶) ∧ ((𝐹𝐻) = 𝐺 ∧ (𝐻𝑂) = 𝑃)) → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
9912, 13, 92, 98syl12anc 833 1 (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  ∃!wreu 3065  {crab 3067  cdif 3880  cin 3882  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836  cmpt 5153   × cxp 5578  ccnv 5579  cres 5582  cima 5583  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  crio 7211  (class class class)co 7255  0cc0 10802  1c1 10803  [,]cicc 13011  t crest 17048  Topctop 21950  TopOnctopon 21967   Cn ccn 22283  𝑛-Locally cnlly 22524  Homeochmeo 22812  IIcii 23944  PConncpconn 33081  SConncsconn 33082   CovMap ccvm 33117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-ec 8458  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-cmp 22446  df-conn 22471  df-lly 22525  df-nlly 22526  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-ii 23946  df-htpy 24039  df-phtpy 24040  df-phtpc 24061  df-pco 24074  df-pconn 33083  df-sconn 33084  df-cvm 33118
This theorem is referenced by:  cvmlift3  33190
  Copyright terms: Public domain W3C validator