Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem9 Structured version   Visualization version   GIF version

Theorem cvmlift3lem9 35359
Description: Lemma for cvmlift2 35348. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
cvmlift3lem7.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmlift3lem9 (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Distinct variable groups:   𝑐,𝑑,𝑓,𝑘,𝑠,𝑧,𝑔,𝑥   𝐽,𝑐   𝑔,𝑑,𝑥,𝐽,𝑓,𝑘,𝑠   𝐹,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠   𝑥,𝑧,𝐹   𝐻,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑆,𝑓,𝑥   𝐵,𝑑,𝑓,𝑔,𝑥,𝑧   𝐺,𝑐,𝑑,𝑓,𝑔,𝑘,𝑥,𝑧   𝐶,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠,𝑥,𝑧   𝜑,𝑓,𝑥   𝐾,𝑐,𝑓,𝑔,𝑥,𝑧   𝑃,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑂,𝑐,𝑓,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝐵(𝑘,𝑠,𝑐)   𝑃(𝑘,𝑠)   𝑆(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝐺(𝑠)   𝐻(𝑘,𝑠)   𝐽(𝑧)   𝐾(𝑘,𝑠,𝑑)   𝑂(𝑘,𝑠,𝑑)   𝑌(𝑘,𝑠,𝑐,𝑑)

Proof of Theorem cvmlift3lem9
StepHypRef Expression
1 cvmlift3.b . . 3 𝐵 = 𝐶
2 cvmlift3.y . . 3 𝑌 = 𝐾
3 cvmlift3.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmlift3.k . . 3 (𝜑𝐾 ∈ SConn)
5 cvmlift3.l . . 3 (𝜑𝐾 ∈ 𝑛-Locally PConn)
6 cvmlift3.o . . 3 (𝜑𝑂𝑌)
7 cvmlift3.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
8 cvmlift3.p . . 3 (𝜑𝑃𝐵)
9 cvmlift3.e . . 3 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
10 cvmlift3.h . . 3 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
11 cvmlift3lem7.s . . 3 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem8 35358 . 2 (𝜑𝐻 ∈ (𝐾 Cn 𝐶))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem5 35355 . 2 (𝜑 → (𝐹𝐻) = 𝐺)
14 iitopon 24797 . . . . . 6 II ∈ (TopOn‘(0[,]1))
1514a1i 11 . . . . 5 (𝜑 → II ∈ (TopOn‘(0[,]1)))
16 sconntop 35260 . . . . . . 7 (𝐾 ∈ SConn → 𝐾 ∈ Top)
174, 16syl 17 . . . . . 6 (𝜑𝐾 ∈ Top)
182toptopon 22830 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
1917, 18sylib 218 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
20 cnconst2 23196 . . . . 5 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑂𝑌) → ((0[,]1) × {𝑂}) ∈ (II Cn 𝐾))
2115, 19, 6, 20syl3anc 1373 . . . 4 (𝜑 → ((0[,]1) × {𝑂}) ∈ (II Cn 𝐾))
22 0elunit 13366 . . . . 5 0 ∈ (0[,]1)
23 fvconst2g 7136 . . . . 5 ((𝑂𝑌 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {𝑂})‘0) = 𝑂)
246, 22, 23sylancl 586 . . . 4 (𝜑 → (((0[,]1) × {𝑂})‘0) = 𝑂)
25 1elunit 13367 . . . . 5 1 ∈ (0[,]1)
26 fvconst2g 7136 . . . . 5 ((𝑂𝑌 ∧ 1 ∈ (0[,]1)) → (((0[,]1) × {𝑂})‘1) = 𝑂)
276, 25, 26sylancl 586 . . . 4 (𝜑 → (((0[,]1) × {𝑂})‘1) = 𝑂)
289sneqd 4588 . . . . . . . . 9 (𝜑 → {(𝐹𝑃)} = {(𝐺𝑂)})
2928xpeq2d 5646 . . . . . . . 8 (𝜑 → ((0[,]1) × {(𝐹𝑃)}) = ((0[,]1) × {(𝐺𝑂)}))
30 cvmcn 35294 . . . . . . . . . 10 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
31 eqid 2731 . . . . . . . . . . 11 𝐽 = 𝐽
321, 31cnf 23159 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
33 ffn 6651 . . . . . . . . . 10 (𝐹:𝐵 𝐽𝐹 Fn 𝐵)
343, 30, 32, 334syl 19 . . . . . . . . 9 (𝜑𝐹 Fn 𝐵)
35 fcoconst 7067 . . . . . . . . 9 ((𝐹 Fn 𝐵𝑃𝐵) → (𝐹 ∘ ((0[,]1) × {𝑃})) = ((0[,]1) × {(𝐹𝑃)}))
3634, 8, 35syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹 ∘ ((0[,]1) × {𝑃})) = ((0[,]1) × {(𝐹𝑃)}))
372, 31cnf 23159 . . . . . . . . . . 11 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
387, 37syl 17 . . . . . . . . . 10 (𝜑𝐺:𝑌 𝐽)
3938ffnd 6652 . . . . . . . . 9 (𝜑𝐺 Fn 𝑌)
40 fcoconst 7067 . . . . . . . . 9 ((𝐺 Fn 𝑌𝑂𝑌) → (𝐺 ∘ ((0[,]1) × {𝑂})) = ((0[,]1) × {(𝐺𝑂)}))
4139, 6, 40syl2anc 584 . . . . . . . 8 (𝜑 → (𝐺 ∘ ((0[,]1) × {𝑂})) = ((0[,]1) × {(𝐺𝑂)}))
4229, 36, 413eqtr4d 2776 . . . . . . 7 (𝜑 → (𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})))
43 fvconst2g 7136 . . . . . . . 8 ((𝑃𝐵 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {𝑃})‘0) = 𝑃)
448, 22, 43sylancl 586 . . . . . . 7 (𝜑 → (((0[,]1) × {𝑃})‘0) = 𝑃)
45 cvmtop1 35292 . . . . . . . . . . 11 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
463, 45syl 17 . . . . . . . . . 10 (𝜑𝐶 ∈ Top)
471toptopon 22830 . . . . . . . . . 10 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
4846, 47sylib 218 . . . . . . . . 9 (𝜑𝐶 ∈ (TopOn‘𝐵))
49 cnconst2 23196 . . . . . . . . 9 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐶 ∈ (TopOn‘𝐵) ∧ 𝑃𝐵) → ((0[,]1) × {𝑃}) ∈ (II Cn 𝐶))
5015, 48, 8, 49syl3anc 1373 . . . . . . . 8 (𝜑 → ((0[,]1) × {𝑃}) ∈ (II Cn 𝐶))
51 cvmtop2 35293 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
523, 51syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
5331toptopon 22830 . . . . . . . . . . . 12 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
5452, 53sylib 218 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
5538, 6ffvelcdmd 7018 . . . . . . . . . . 11 (𝜑 → (𝐺𝑂) ∈ 𝐽)
56 cnconst2 23196 . . . . . . . . . . 11 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘ 𝐽) ∧ (𝐺𝑂) ∈ 𝐽) → ((0[,]1) × {(𝐺𝑂)}) ∈ (II Cn 𝐽))
5715, 54, 55, 56syl3anc 1373 . . . . . . . . . 10 (𝜑 → ((0[,]1) × {(𝐺𝑂)}) ∈ (II Cn 𝐽))
5841, 57eqeltrd 2831 . . . . . . . . 9 (𝜑 → (𝐺 ∘ ((0[,]1) × {𝑂})) ∈ (II Cn 𝐽))
59 fvconst2g 7136 . . . . . . . . . . 11 (((𝐺𝑂) ∈ 𝐽 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {(𝐺𝑂)})‘0) = (𝐺𝑂))
6055, 22, 59sylancl 586 . . . . . . . . . 10 (𝜑 → (((0[,]1) × {(𝐺𝑂)})‘0) = (𝐺𝑂))
6141fveq1d 6824 . . . . . . . . . 10 (𝜑 → ((𝐺 ∘ ((0[,]1) × {𝑂}))‘0) = (((0[,]1) × {(𝐺𝑂)})‘0))
6260, 61, 93eqtr4rd 2777 . . . . . . . . 9 (𝜑 → (𝐹𝑃) = ((𝐺 ∘ ((0[,]1) × {𝑂}))‘0))
631cvmlift 35331 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺 ∘ ((0[,]1) × {𝑂})) ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = ((𝐺 ∘ ((0[,]1) × {𝑂}))‘0))) → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))
643, 58, 8, 62, 63syl22anc 838 . . . . . . . 8 (𝜑 → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))
65 coeq2 5798 . . . . . . . . . . 11 (𝑔 = ((0[,]1) × {𝑃}) → (𝐹𝑔) = (𝐹 ∘ ((0[,]1) × {𝑃})))
6665eqeq1d 2733 . . . . . . . . . 10 (𝑔 = ((0[,]1) × {𝑃}) → ((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ↔ (𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂}))))
67 fveq1 6821 . . . . . . . . . . 11 (𝑔 = ((0[,]1) × {𝑃}) → (𝑔‘0) = (((0[,]1) × {𝑃})‘0))
6867eqeq1d 2733 . . . . . . . . . 10 (𝑔 = ((0[,]1) × {𝑃}) → ((𝑔‘0) = 𝑃 ↔ (((0[,]1) × {𝑃})‘0) = 𝑃))
6966, 68anbi12d 632 . . . . . . . . 9 (𝑔 = ((0[,]1) × {𝑃}) → (((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (((0[,]1) × {𝑃})‘0) = 𝑃)))
7069riota2 7328 . . . . . . . 8 ((((0[,]1) × {𝑃}) ∈ (II Cn 𝐶) ∧ ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) → (((𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (((0[,]1) × {𝑃})‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) = ((0[,]1) × {𝑃})))
7150, 64, 70syl2anc 584 . . . . . . 7 (𝜑 → (((𝐹 ∘ ((0[,]1) × {𝑃})) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (((0[,]1) × {𝑃})‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) = ((0[,]1) × {𝑃})))
7242, 44, 71mpbi2and 712 . . . . . 6 (𝜑 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)) = ((0[,]1) × {𝑃}))
7372fveq1d 6824 . . . . 5 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = (((0[,]1) × {𝑃})‘1))
74 fvconst2g 7136 . . . . . 6 ((𝑃𝐵 ∧ 1 ∈ (0[,]1)) → (((0[,]1) × {𝑃})‘1) = 𝑃)
758, 25, 74sylancl 586 . . . . 5 (𝜑 → (((0[,]1) × {𝑃})‘1) = 𝑃)
7673, 75eqtrd 2766 . . . 4 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)
77 fveq1 6821 . . . . . . 7 (𝑓 = ((0[,]1) × {𝑂}) → (𝑓‘0) = (((0[,]1) × {𝑂})‘0))
7877eqeq1d 2733 . . . . . 6 (𝑓 = ((0[,]1) × {𝑂}) → ((𝑓‘0) = 𝑂 ↔ (((0[,]1) × {𝑂})‘0) = 𝑂))
79 fveq1 6821 . . . . . . 7 (𝑓 = ((0[,]1) × {𝑂}) → (𝑓‘1) = (((0[,]1) × {𝑂})‘1))
8079eqeq1d 2733 . . . . . 6 (𝑓 = ((0[,]1) × {𝑂}) → ((𝑓‘1) = 𝑂 ↔ (((0[,]1) × {𝑂})‘1) = 𝑂))
81 coeq2 5798 . . . . . . . . . . 11 (𝑓 = ((0[,]1) × {𝑂}) → (𝐺𝑓) = (𝐺 ∘ ((0[,]1) × {𝑂})))
8281eqeq2d 2742 . . . . . . . . . 10 (𝑓 = ((0[,]1) × {𝑂}) → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂}))))
8382anbi1d 631 . . . . . . . . 9 (𝑓 = ((0[,]1) × {𝑂}) → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)))
8483riotabidv 7305 . . . . . . . 8 (𝑓 = ((0[,]1) × {𝑂}) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃)))
8584fveq1d 6824 . . . . . . 7 (𝑓 = ((0[,]1) × {𝑂}) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1))
8685eqeq1d 2733 . . . . . 6 (𝑓 = ((0[,]1) × {𝑂}) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃))
8778, 80, 863anbi123d 1438 . . . . 5 (𝑓 = ((0[,]1) × {𝑂}) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃) ↔ ((((0[,]1) × {𝑂})‘0) = 𝑂 ∧ (((0[,]1) × {𝑂})‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)))
8887rspcev 3577 . . . 4 ((((0[,]1) × {𝑂}) ∈ (II Cn 𝐾) ∧ ((((0[,]1) × {𝑂})‘0) = 𝑂 ∧ (((0[,]1) × {𝑂})‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ ((0[,]1) × {𝑂})) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃))
8921, 24, 27, 76, 88syl13anc 1374 . . 3 (𝜑 → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃))
901, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem4 35354 . . . 4 ((𝜑𝑂𝑌) → ((𝐻𝑂) = 𝑃 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)))
916, 90mpdan 687 . . 3 (𝜑 → ((𝐻𝑂) = 𝑃 ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑂 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑃)))
9289, 91mpbird 257 . 2 (𝜑 → (𝐻𝑂) = 𝑃)
93 coeq2 5798 . . . . 5 (𝑓 = 𝐻 → (𝐹𝑓) = (𝐹𝐻))
9493eqeq1d 2733 . . . 4 (𝑓 = 𝐻 → ((𝐹𝑓) = 𝐺 ↔ (𝐹𝐻) = 𝐺))
95 fveq1 6821 . . . . 5 (𝑓 = 𝐻 → (𝑓𝑂) = (𝐻𝑂))
9695eqeq1d 2733 . . . 4 (𝑓 = 𝐻 → ((𝑓𝑂) = 𝑃 ↔ (𝐻𝑂) = 𝑃))
9794, 96anbi12d 632 . . 3 (𝑓 = 𝐻 → (((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ↔ ((𝐹𝐻) = 𝐺 ∧ (𝐻𝑂) = 𝑃)))
9897rspcev 3577 . 2 ((𝐻 ∈ (𝐾 Cn 𝐶) ∧ ((𝐹𝐻) = 𝐺 ∧ (𝐻𝑂) = 𝑃)) → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
9912, 13, 92, 98syl12anc 836 1 (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  {crab 3395  cdif 3899  cin 3901  c0 4283  𝒫 cpw 4550  {csn 4576   cuni 4859  cmpt 5172   × cxp 5614  ccnv 5615  cres 5618  cima 5619  ccom 5620   Fn wfn 6476  wf 6477  cfv 6481  crio 7302  (class class class)co 7346  0cc0 11003  1c1 11004  [,]cicc 13245  t crest 17321  Topctop 22806  TopOnctopon 22823   Cn ccn 23137  𝑛-Locally cnlly 23378  Homeochmeo 23666  IIcii 24793  PConncpconn 35251  SConncsconn 35252   CovMap ccvm 35287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-ec 8624  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-sum 15591  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-cn 23140  df-cnp 23141  df-cmp 23300  df-conn 23325  df-lly 23379  df-nlly 23380  df-tx 23475  df-hmeo 23668  df-xms 24233  df-ms 24234  df-tms 24235  df-ii 24795  df-cncf 24796  df-htpy 24894  df-phtpy 24895  df-phtpc 24916  df-pco 24930  df-pconn 35253  df-sconn 35254  df-cvm 35288
This theorem is referenced by:  cvmlift3  35360
  Copyright terms: Public domain W3C validator