Step | Hyp | Ref
| Expression |
1 | | cvmlift3lem6.q |
. . . . 5
β’ (π β π β (II Cn πΎ)) |
2 | | cvmlift3.k |
. . . . . . . 8
β’ (π β πΎ β SConn) |
3 | | sconntop 34207 |
. . . . . . . 8
β’ (πΎ β SConn β πΎ β Top) |
4 | 2, 3 | syl 17 |
. . . . . . 7
β’ (π β πΎ β Top) |
5 | | cnrest2r 22782 |
. . . . . . 7
β’ (πΎ β Top β (II Cn (πΎ βΎt π)) β (II Cn πΎ)) |
6 | 4, 5 | syl 17 |
. . . . . 6
β’ (π β (II Cn (πΎ βΎt π)) β (II Cn πΎ)) |
7 | | cvmlift3lem6.n |
. . . . . 6
β’ (π β π β (II Cn (πΎ βΎt π))) |
8 | 6, 7 | sseldd 3982 |
. . . . 5
β’ (π β π β (II Cn πΎ)) |
9 | | cvmlift3lem6.1 |
. . . . . . 7
β’ (π β ((πβ0) = π β§ (πβ1) = π β§ (π
β1) = (π»βπ))) |
10 | 9 | simp2d 1143 |
. . . . . 6
β’ (π β (πβ1) = π) |
11 | | cvmlift3lem6.2 |
. . . . . . 7
β’ (π β ((πβ0) = π β§ (πβ1) = π)) |
12 | 11 | simpld 495 |
. . . . . 6
β’ (π β (πβ0) = π) |
13 | 10, 12 | eqtr4d 2775 |
. . . . 5
β’ (π β (πβ1) = (πβ0)) |
14 | 1, 8, 13 | pcocn 24524 |
. . . 4
β’ (π β (π(*πβπΎ)π) β (II Cn πΎ)) |
15 | 1, 8 | pco0 24521 |
. . . . 5
β’ (π β ((π(*πβπΎ)π)β0) = (πβ0)) |
16 | 9 | simp1d 1142 |
. . . . 5
β’ (π β (πβ0) = π) |
17 | 15, 16 | eqtrd 2772 |
. . . 4
β’ (π β ((π(*πβπΎ)π)β0) = π) |
18 | 1, 8 | pco1 24522 |
. . . . 5
β’ (π β ((π(*πβπΎ)π)β1) = (πβ1)) |
19 | 11 | simprd 496 |
. . . . 5
β’ (π β (πβ1) = π) |
20 | 18, 19 | eqtrd 2772 |
. . . 4
β’ (π β ((π(*πβπΎ)π)β1) = π) |
21 | | cvmlift3.b |
. . . . . . . . . . 11
β’ π΅ = βͺ
πΆ |
22 | | cvmlift3lem6.r |
. . . . . . . . . . 11
β’ π
= (β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π)) |
23 | | cvmlift3.f |
. . . . . . . . . . 11
β’ (π β πΉ β (πΆ CovMap π½)) |
24 | | cvmlift3.g |
. . . . . . . . . . . 12
β’ (π β πΊ β (πΎ Cn π½)) |
25 | | cnco 22761 |
. . . . . . . . . . . 12
β’ ((π β (II Cn πΎ) β§ πΊ β (πΎ Cn π½)) β (πΊ β π) β (II Cn π½)) |
26 | 1, 24, 25 | syl2anc 584 |
. . . . . . . . . . 11
β’ (π β (πΊ β π) β (II Cn π½)) |
27 | | cvmlift3.p |
. . . . . . . . . . 11
β’ (π β π β π΅) |
28 | 16 | fveq2d 6892 |
. . . . . . . . . . . 12
β’ (π β (πΊβ(πβ0)) = (πΊβπ)) |
29 | | iiuni 24388 |
. . . . . . . . . . . . . . 15
β’ (0[,]1) =
βͺ II |
30 | | cvmlift3.y |
. . . . . . . . . . . . . . 15
β’ π = βͺ
πΎ |
31 | 29, 30 | cnf 22741 |
. . . . . . . . . . . . . 14
β’ (π β (II Cn πΎ) β π:(0[,]1)βΆπ) |
32 | 1, 31 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π:(0[,]1)βΆπ) |
33 | | 0elunit 13442 |
. . . . . . . . . . . . 13
β’ 0 β
(0[,]1) |
34 | | fvco3 6987 |
. . . . . . . . . . . . 13
β’ ((π:(0[,]1)βΆπ β§ 0 β (0[,]1)) β
((πΊ β π)β0) = (πΊβ(πβ0))) |
35 | 32, 33, 34 | sylancl 586 |
. . . . . . . . . . . 12
β’ (π β ((πΊ β π)β0) = (πΊβ(πβ0))) |
36 | | cvmlift3.e |
. . . . . . . . . . . 12
β’ (π β (πΉβπ) = (πΊβπ)) |
37 | 28, 35, 36 | 3eqtr4rd 2783 |
. . . . . . . . . . 11
β’ (π β (πΉβπ) = ((πΊ β π)β0)) |
38 | 21, 22, 23, 26, 27, 37 | cvmliftiota 34280 |
. . . . . . . . . 10
β’ (π β (π
β (II Cn πΆ) β§ (πΉ β π
) = (πΊ β π) β§ (π
β0) = π)) |
39 | 38 | simp2d 1143 |
. . . . . . . . 9
β’ (π β (πΉ β π
) = (πΊ β π)) |
40 | | cvmlift3lem6.i |
. . . . . . . . . . 11
β’ πΌ = (β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = (π»βπ))) |
41 | | cnco 22761 |
. . . . . . . . . . . 12
β’ ((π β (II Cn πΎ) β§ πΊ β (πΎ Cn π½)) β (πΊ β π) β (II Cn π½)) |
42 | 8, 24, 41 | syl2anc 584 |
. . . . . . . . . . 11
β’ (π β (πΊ β π) β (II Cn π½)) |
43 | | cvmlift3.l |
. . . . . . . . . . . . 13
β’ (π β πΎ β π-Locally
PConn) |
44 | | cvmlift3.o |
. . . . . . . . . . . . 13
β’ (π β π β π) |
45 | | cvmlift3.h |
. . . . . . . . . . . . 13
β’ π» = (π₯ β π β¦ (β©π§ β π΅ βπ β (II Cn πΎ)((πβ0) = π β§ (πβ1) = π₯ β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = π§))) |
46 | 21, 30, 23, 2, 43, 44, 24, 27, 36, 45 | cvmlift3lem3 34300 |
. . . . . . . . . . . 12
β’ (π β π»:πβΆπ΅) |
47 | | cvmlift3lem7.3 |
. . . . . . . . . . . . . 14
β’ (π β π β (β‘πΊ β π΄)) |
48 | | cnvimass 6077 |
. . . . . . . . . . . . . . 15
β’ (β‘πΊ β π΄) β dom πΊ |
49 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’ βͺ π½ =
βͺ π½ |
50 | 30, 49 | cnf 22741 |
. . . . . . . . . . . . . . . 16
β’ (πΊ β (πΎ Cn π½) β πΊ:πβΆβͺ π½) |
51 | 24, 50 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β πΊ:πβΆβͺ π½) |
52 | 48, 51 | fssdm 6734 |
. . . . . . . . . . . . . 14
β’ (π β (β‘πΊ β π΄) β π) |
53 | 47, 52 | sstrd 3991 |
. . . . . . . . . . . . 13
β’ (π β π β π) |
54 | | cvmlift3lem6.x |
. . . . . . . . . . . . 13
β’ (π β π β π) |
55 | 53, 54 | sseldd 3982 |
. . . . . . . . . . . 12
β’ (π β π β π) |
56 | 46, 55 | ffvelcdmd 7084 |
. . . . . . . . . . 11
β’ (π β (π»βπ) β π΅) |
57 | 12 | fveq2d 6892 |
. . . . . . . . . . . 12
β’ (π β (πΊβ(πβ0)) = (πΊβπ)) |
58 | 29, 30 | cnf 22741 |
. . . . . . . . . . . . . 14
β’ (π β (II Cn πΎ) β π:(0[,]1)βΆπ) |
59 | 8, 58 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π:(0[,]1)βΆπ) |
60 | | fvco3 6987 |
. . . . . . . . . . . . 13
β’ ((π:(0[,]1)βΆπ β§ 0 β (0[,]1)) β
((πΊ β π)β0) = (πΊβ(πβ0))) |
61 | 59, 33, 60 | sylancl 586 |
. . . . . . . . . . . 12
β’ (π β ((πΊ β π)β0) = (πΊβ(πβ0))) |
62 | | fvco3 6987 |
. . . . . . . . . . . . . 14
β’ ((π»:πβΆπ΅ β§ π β π) β ((πΉ β π»)βπ) = (πΉβ(π»βπ))) |
63 | 46, 55, 62 | syl2anc 584 |
. . . . . . . . . . . . 13
β’ (π β ((πΉ β π»)βπ) = (πΉβ(π»βπ))) |
64 | 21, 30, 23, 2, 43, 44, 24, 27, 36, 45 | cvmlift3lem5 34302 |
. . . . . . . . . . . . . 14
β’ (π β (πΉ β π») = πΊ) |
65 | 64 | fveq1d 6890 |
. . . . . . . . . . . . 13
β’ (π β ((πΉ β π»)βπ) = (πΊβπ)) |
66 | 63, 65 | eqtr3d 2774 |
. . . . . . . . . . . 12
β’ (π β (πΉβ(π»βπ)) = (πΊβπ)) |
67 | 57, 61, 66 | 3eqtr4rd 2783 |
. . . . . . . . . . 11
β’ (π β (πΉβ(π»βπ)) = ((πΊ β π)β0)) |
68 | 21, 40, 23, 42, 56, 67 | cvmliftiota 34280 |
. . . . . . . . . 10
β’ (π β (πΌ β (II Cn πΆ) β§ (πΉ β πΌ) = (πΊ β π) β§ (πΌβ0) = (π»βπ))) |
69 | 68 | simp2d 1143 |
. . . . . . . . 9
β’ (π β (πΉ β πΌ) = (πΊ β π)) |
70 | 39, 69 | oveq12d 7423 |
. . . . . . . 8
β’ (π β ((πΉ β π
)(*πβπ½)(πΉ β πΌ)) = ((πΊ β π)(*πβπ½)(πΊ β π))) |
71 | 38 | simp1d 1142 |
. . . . . . . . 9
β’ (π β π
β (II Cn πΆ)) |
72 | 68 | simp1d 1142 |
. . . . . . . . 9
β’ (π β πΌ β (II Cn πΆ)) |
73 | 9 | simp3d 1144 |
. . . . . . . . . 10
β’ (π β (π
β1) = (π»βπ)) |
74 | 68 | simp3d 1144 |
. . . . . . . . . 10
β’ (π β (πΌβ0) = (π»βπ)) |
75 | 73, 74 | eqtr4d 2775 |
. . . . . . . . 9
β’ (π β (π
β1) = (πΌβ0)) |
76 | | cvmcn 34241 |
. . . . . . . . . 10
β’ (πΉ β (πΆ CovMap π½) β πΉ β (πΆ Cn π½)) |
77 | 23, 76 | syl 17 |
. . . . . . . . 9
β’ (π β πΉ β (πΆ Cn π½)) |
78 | 71, 72, 75, 77 | copco 24525 |
. . . . . . . 8
β’ (π β (πΉ β (π
(*πβπΆ)πΌ)) = ((πΉ β π
)(*πβπ½)(πΉ β πΌ))) |
79 | 1, 8, 13, 24 | copco 24525 |
. . . . . . . 8
β’ (π β (πΊ β (π(*πβπΎ)π)) = ((πΊ β π)(*πβπ½)(πΊ β π))) |
80 | 70, 78, 79 | 3eqtr4d 2782 |
. . . . . . 7
β’ (π β (πΉ β (π
(*πβπΆ)πΌ)) = (πΊ β (π(*πβπΎ)π))) |
81 | 71, 72 | pco0 24521 |
. . . . . . . 8
β’ (π β ((π
(*πβπΆ)πΌ)β0) = (π
β0)) |
82 | 38 | simp3d 1144 |
. . . . . . . 8
β’ (π β (π
β0) = π) |
83 | 81, 82 | eqtrd 2772 |
. . . . . . 7
β’ (π β ((π
(*πβπΆ)πΌ)β0) = π) |
84 | 71, 72, 75 | pcocn 24524 |
. . . . . . . 8
β’ (π β (π
(*πβπΆ)πΌ) β (II Cn πΆ)) |
85 | | cnco 22761 |
. . . . . . . . . 10
β’ (((π(*πβπΎ)π) β (II Cn πΎ) β§ πΊ β (πΎ Cn π½)) β (πΊ β (π(*πβπΎ)π)) β (II Cn π½)) |
86 | 14, 24, 85 | syl2anc 584 |
. . . . . . . . 9
β’ (π β (πΊ β (π(*πβπΎ)π)) β (II Cn π½)) |
87 | 17 | fveq2d 6892 |
. . . . . . . . . 10
β’ (π β (πΊβ((π(*πβπΎ)π)β0)) = (πΊβπ)) |
88 | 29, 30 | cnf 22741 |
. . . . . . . . . . . 12
β’ ((π(*πβπΎ)π) β (II Cn πΎ) β (π(*πβπΎ)π):(0[,]1)βΆπ) |
89 | 14, 88 | syl 17 |
. . . . . . . . . . 11
β’ (π β (π(*πβπΎ)π):(0[,]1)βΆπ) |
90 | | fvco3 6987 |
. . . . . . . . . . 11
β’ (((π(*πβπΎ)π):(0[,]1)βΆπ β§ 0 β (0[,]1)) β ((πΊ β (π(*πβπΎ)π))β0) = (πΊβ((π(*πβπΎ)π)β0))) |
91 | 89, 33, 90 | sylancl 586 |
. . . . . . . . . 10
β’ (π β ((πΊ β (π(*πβπΎ)π))β0) = (πΊβ((π(*πβπΎ)π)β0))) |
92 | 87, 91, 36 | 3eqtr4rd 2783 |
. . . . . . . . 9
β’ (π β (πΉβπ) = ((πΊ β (π(*πβπΎ)π))β0)) |
93 | 21 | cvmlift 34278 |
. . . . . . . . 9
β’ (((πΉ β (πΆ CovMap π½) β§ (πΊ β (π(*πβπΎ)π)) β (II Cn π½)) β§ (π β π΅ β§ (πΉβπ) = ((πΊ β (π(*πβπΎ)π))β0))) β β!π β (II Cn πΆ)((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β§ (πβ0) = π)) |
94 | 23, 86, 27, 92, 93 | syl22anc 837 |
. . . . . . . 8
β’ (π β β!π β (II Cn πΆ)((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β§ (πβ0) = π)) |
95 | | coeq2 5856 |
. . . . . . . . . . 11
β’ (π = (π
(*πβπΆ)πΌ) β (πΉ β π) = (πΉ β (π
(*πβπΆ)πΌ))) |
96 | 95 | eqeq1d 2734 |
. . . . . . . . . 10
β’ (π = (π
(*πβπΆ)πΌ) β ((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β (πΉ β (π
(*πβπΆ)πΌ)) = (πΊ β (π(*πβπΎ)π)))) |
97 | | fveq1 6887 |
. . . . . . . . . . 11
β’ (π = (π
(*πβπΆ)πΌ) β (πβ0) = ((π
(*πβπΆ)πΌ)β0)) |
98 | 97 | eqeq1d 2734 |
. . . . . . . . . 10
β’ (π = (π
(*πβπΆ)πΌ) β ((πβ0) = π β ((π
(*πβπΆ)πΌ)β0) = π)) |
99 | 96, 98 | anbi12d 631 |
. . . . . . . . 9
β’ (π = (π
(*πβπΆ)πΌ) β (((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β§ (πβ0) = π) β ((πΉ β (π
(*πβπΆ)πΌ)) = (πΊ β (π(*πβπΎ)π)) β§ ((π
(*πβπΆ)πΌ)β0) = π))) |
100 | 99 | riota2 7387 |
. . . . . . . 8
β’ (((π
(*πβπΆ)πΌ) β (II Cn πΆ) β§ β!π β (II Cn πΆ)((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β§ (πβ0) = π)) β (((πΉ β (π
(*πβπΆ)πΌ)) = (πΊ β (π(*πβπΎ)π)) β§ ((π
(*πβπΆ)πΌ)β0) = π) β (β©π β (II Cn πΆ)((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β§ (πβ0) = π)) = (π
(*πβπΆ)πΌ))) |
101 | 84, 94, 100 | syl2anc 584 |
. . . . . . 7
β’ (π β (((πΉ β (π
(*πβπΆ)πΌ)) = (πΊ β (π(*πβπΎ)π)) β§ ((π
(*πβπΆ)πΌ)β0) = π) β (β©π β (II Cn πΆ)((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β§ (πβ0) = π)) = (π
(*πβπΆ)πΌ))) |
102 | 80, 83, 101 | mpbi2and 710 |
. . . . . 6
β’ (π β (β©π β (II Cn πΆ)((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β§ (πβ0) = π)) = (π
(*πβπΆ)πΌ)) |
103 | 102 | fveq1d 6890 |
. . . . 5
β’ (π β ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β§ (πβ0) = π))β1) = ((π
(*πβπΆ)πΌ)β1)) |
104 | 71, 72 | pco1 24522 |
. . . . 5
β’ (π β ((π
(*πβπΆ)πΌ)β1) = (πΌβ1)) |
105 | 103, 104 | eqtrd 2772 |
. . . 4
β’ (π β ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β§ (πβ0) = π))β1) = (πΌβ1)) |
106 | | fveq1 6887 |
. . . . . . 7
β’ (π = (π(*πβπΎ)π) β (πβ0) = ((π(*πβπΎ)π)β0)) |
107 | 106 | eqeq1d 2734 |
. . . . . 6
β’ (π = (π(*πβπΎ)π) β ((πβ0) = π β ((π(*πβπΎ)π)β0) = π)) |
108 | | fveq1 6887 |
. . . . . . 7
β’ (π = (π(*πβπΎ)π) β (πβ1) = ((π(*πβπΎ)π)β1)) |
109 | 108 | eqeq1d 2734 |
. . . . . 6
β’ (π = (π(*πβπΎ)π) β ((πβ1) = π β ((π(*πβπΎ)π)β1) = π)) |
110 | | coeq2 5856 |
. . . . . . . . . . 11
β’ (π = (π(*πβπΎ)π) β (πΊ β π) = (πΊ β (π(*πβπΎ)π))) |
111 | 110 | eqeq2d 2743 |
. . . . . . . . . 10
β’ (π = (π(*πβπΎ)π) β ((πΉ β π) = (πΊ β π) β (πΉ β π) = (πΊ β (π(*πβπΎ)π)))) |
112 | 111 | anbi1d 630 |
. . . . . . . . 9
β’ (π = (π(*πβπΎ)π) β (((πΉ β π) = (πΊ β π) β§ (πβ0) = π) β ((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β§ (πβ0) = π))) |
113 | 112 | riotabidv 7363 |
. . . . . . . 8
β’ (π = (π(*πβπΎ)π) β (β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π)) = (β©π β (II Cn πΆ)((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β§ (πβ0) = π))) |
114 | 113 | fveq1d 6890 |
. . . . . . 7
β’ (π = (π(*πβπΎ)π) β ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β§ (πβ0) = π))β1)) |
115 | 114 | eqeq1d 2734 |
. . . . . 6
β’ (π = (π(*πβπΎ)π) β (((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = (πΌβ1) β ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β§ (πβ0) = π))β1) = (πΌβ1))) |
116 | 107, 109,
115 | 3anbi123d 1436 |
. . . . 5
β’ (π = (π(*πβπΎ)π) β (((πβ0) = π β§ (πβ1) = π β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = (πΌβ1)) β (((π(*πβπΎ)π)β0) = π β§ ((π(*πβπΎ)π)β1) = π β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β§ (πβ0) = π))β1) = (πΌβ1)))) |
117 | 116 | rspcev 3612 |
. . . 4
β’ (((π(*πβπΎ)π) β (II Cn πΎ) β§ (((π(*πβπΎ)π)β0) = π β§ ((π(*πβπΎ)π)β1) = π β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β (π(*πβπΎ)π)) β§ (πβ0) = π))β1) = (πΌβ1))) β βπ β (II Cn πΎ)((πβ0) = π β§ (πβ1) = π β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = (πΌβ1))) |
118 | 14, 17, 20, 105, 117 | syl13anc 1372 |
. . 3
β’ (π β βπ β (II Cn πΎ)((πβ0) = π β§ (πβ1) = π β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = (πΌβ1))) |
119 | | cvmlift3lem6.z |
. . . . 5
β’ (π β π β π) |
120 | 53, 119 | sseldd 3982 |
. . . 4
β’ (π β π β π) |
121 | 21, 30, 23, 2, 43, 44, 24, 27, 36, 45 | cvmlift3lem4 34301 |
. . . 4
β’ ((π β§ π β π) β ((π»βπ) = (πΌβ1) β βπ β (II Cn πΎ)((πβ0) = π β§ (πβ1) = π β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = (πΌβ1)))) |
122 | 120, 121 | mpdan 685 |
. . 3
β’ (π β ((π»βπ) = (πΌβ1) β βπ β (II Cn πΎ)((πβ0) = π β§ (πβ1) = π β§ ((β©π β (II Cn πΆ)((πΉ β π) = (πΊ β π) β§ (πβ0) = π))β1) = (πΌβ1)))) |
123 | 118, 122 | mpbird 256 |
. 2
β’ (π β (π»βπ) = (πΌβ1)) |
124 | | iiconn 24394 |
. . . . 5
β’ II β
Conn |
125 | 124 | a1i 11 |
. . . 4
β’ (π β II β
Conn) |
126 | | cvmtop1 34239 |
. . . . . . . 8
β’ (πΉ β (πΆ CovMap π½) β πΆ β Top) |
127 | 23, 126 | syl 17 |
. . . . . . 7
β’ (π β πΆ β Top) |
128 | 21 | toptopon 22410 |
. . . . . . 7
β’ (πΆ β Top β πΆ β (TopOnβπ΅)) |
129 | 127, 128 | sylib 217 |
. . . . . 6
β’ (π β πΆ β (TopOnβπ΅)) |
130 | 69 | rneqd 5935 |
. . . . . . . . 9
β’ (π β ran (πΉ β πΌ) = ran (πΊ β π)) |
131 | | rnco2 6249 |
. . . . . . . . 9
β’ ran
(πΉ β πΌ) = (πΉ β ran πΌ) |
132 | | rnco2 6249 |
. . . . . . . . 9
β’ ran
(πΊ β π) = (πΊ β ran π) |
133 | 130, 131,
132 | 3eqtr3g 2795 |
. . . . . . . 8
β’ (π β (πΉ β ran πΌ) = (πΊ β ran π)) |
134 | | iitopon 24386 |
. . . . . . . . . . . . 13
β’ II β
(TopOnβ(0[,]1)) |
135 | 134 | a1i 11 |
. . . . . . . . . . . 12
β’ (π β II β
(TopOnβ(0[,]1))) |
136 | 30 | toptopon 22410 |
. . . . . . . . . . . . . 14
β’ (πΎ β Top β πΎ β (TopOnβπ)) |
137 | 4, 136 | sylib 217 |
. . . . . . . . . . . . 13
β’ (π β πΎ β (TopOnβπ)) |
138 | | resttopon 22656 |
. . . . . . . . . . . . 13
β’ ((πΎ β (TopOnβπ) β§ π β π) β (πΎ βΎt π) β (TopOnβπ)) |
139 | 137, 53, 138 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (π β (πΎ βΎt π) β (TopOnβπ)) |
140 | | cnf2 22744 |
. . . . . . . . . . . 12
β’ ((II
β (TopOnβ(0[,]1)) β§ (πΎ βΎt π) β (TopOnβπ) β§ π β (II Cn (πΎ βΎt π))) β π:(0[,]1)βΆπ) |
141 | 135, 139,
7, 140 | syl3anc 1371 |
. . . . . . . . . . 11
β’ (π β π:(0[,]1)βΆπ) |
142 | 141 | frnd 6722 |
. . . . . . . . . 10
β’ (π β ran π β π) |
143 | 142, 47 | sstrd 3991 |
. . . . . . . . 9
β’ (π β ran π β (β‘πΊ β π΄)) |
144 | 51 | ffund 6718 |
. . . . . . . . . 10
β’ (π β Fun πΊ) |
145 | 143, 48 | sstrdi 3993 |
. . . . . . . . . 10
β’ (π β ran π β dom πΊ) |
146 | | funimass3 7052 |
. . . . . . . . . 10
β’ ((Fun
πΊ β§ ran π β dom πΊ) β ((πΊ β ran π) β π΄ β ran π β (β‘πΊ β π΄))) |
147 | 144, 145,
146 | syl2anc 584 |
. . . . . . . . 9
β’ (π β ((πΊ β ran π) β π΄ β ran π β (β‘πΊ β π΄))) |
148 | 143, 147 | mpbird 256 |
. . . . . . . 8
β’ (π β (πΊ β ran π) β π΄) |
149 | 133, 148 | eqsstrd 4019 |
. . . . . . 7
β’ (π β (πΉ β ran πΌ) β π΄) |
150 | 21, 49 | cnf 22741 |
. . . . . . . . . 10
β’ (πΉ β (πΆ Cn π½) β πΉ:π΅βΆβͺ π½) |
151 | 77, 150 | syl 17 |
. . . . . . . . 9
β’ (π β πΉ:π΅βΆβͺ π½) |
152 | 151 | ffund 6718 |
. . . . . . . 8
β’ (π β Fun πΉ) |
153 | 29, 21 | cnf 22741 |
. . . . . . . . . . 11
β’ (πΌ β (II Cn πΆ) β πΌ:(0[,]1)βΆπ΅) |
154 | 72, 153 | syl 17 |
. . . . . . . . . 10
β’ (π β πΌ:(0[,]1)βΆπ΅) |
155 | 154 | frnd 6722 |
. . . . . . . . 9
β’ (π β ran πΌ β π΅) |
156 | 151 | fdmd 6725 |
. . . . . . . . 9
β’ (π β dom πΉ = π΅) |
157 | 155, 156 | sseqtrrd 4022 |
. . . . . . . 8
β’ (π β ran πΌ β dom πΉ) |
158 | | funimass3 7052 |
. . . . . . . 8
β’ ((Fun
πΉ β§ ran πΌ β dom πΉ) β ((πΉ β ran πΌ) β π΄ β ran πΌ β (β‘πΉ β π΄))) |
159 | 152, 157,
158 | syl2anc 584 |
. . . . . . 7
β’ (π β ((πΉ β ran πΌ) β π΄ β ran πΌ β (β‘πΉ β π΄))) |
160 | 149, 159 | mpbid 231 |
. . . . . 6
β’ (π β ran πΌ β (β‘πΉ β π΄)) |
161 | | cnvimass 6077 |
. . . . . . 7
β’ (β‘πΉ β π΄) β dom πΉ |
162 | 161, 151 | fssdm 6734 |
. . . . . 6
β’ (π β (β‘πΉ β π΄) β π΅) |
163 | | cnrest2 22781 |
. . . . . 6
β’ ((πΆ β (TopOnβπ΅) β§ ran πΌ β (β‘πΉ β π΄) β§ (β‘πΉ β π΄) β π΅) β (πΌ β (II Cn πΆ) β πΌ β (II Cn (πΆ βΎt (β‘πΉ β π΄))))) |
164 | 129, 160,
162, 163 | syl3anc 1371 |
. . . . 5
β’ (π β (πΌ β (II Cn πΆ) β πΌ β (II Cn (πΆ βΎt (β‘πΉ β π΄))))) |
165 | 72, 164 | mpbid 231 |
. . . 4
β’ (π β πΌ β (II Cn (πΆ βΎt (β‘πΉ β π΄)))) |
166 | | cvmlift3lem7.2 |
. . . . . . 7
β’ (π β π β (πβπ΄)) |
167 | | cvmlift3lem7.s |
. . . . . . . 8
β’ π = (π β π½ β¦ {π β (π« πΆ β {β
}) β£ (βͺ π =
(β‘πΉ β π) β§ βπ β π (βπ β (π β {π})(π β© π) = β
β§ (πΉ βΎ π) β ((πΆ βΎt π)Homeo(π½ βΎt π))))}) |
168 | 167 | cvmsss 34246 |
. . . . . . 7
β’ (π β (πβπ΄) β π β πΆ) |
169 | 166, 168 | syl 17 |
. . . . . 6
β’ (π β π β πΆ) |
170 | | cvmlift3lem7.1 |
. . . . . . . . 9
β’ (π β (πΊβπ) β π΄) |
171 | 66, 170 | eqeltrd 2833 |
. . . . . . . 8
β’ (π β (πΉβ(π»βπ)) β π΄) |
172 | | cvmlift3lem7.w |
. . . . . . . . 9
β’ π = (β©π β π (π»βπ) β π) |
173 | 167, 21, 172 | cvmsiota 34256 |
. . . . . . . 8
β’ ((πΉ β (πΆ CovMap π½) β§ (π β (πβπ΄) β§ (π»βπ) β π΅ β§ (πΉβ(π»βπ)) β π΄)) β (π β π β§ (π»βπ) β π)) |
174 | 23, 166, 56, 171, 173 | syl13anc 1372 |
. . . . . . 7
β’ (π β (π β π β§ (π»βπ) β π)) |
175 | 174 | simpld 495 |
. . . . . 6
β’ (π β π β π) |
176 | 169, 175 | sseldd 3982 |
. . . . 5
β’ (π β π β πΆ) |
177 | | elssuni 4940 |
. . . . . . 7
β’ (π β π β π β βͺ π) |
178 | 175, 177 | syl 17 |
. . . . . 6
β’ (π β π β βͺ π) |
179 | 167 | cvmsuni 34248 |
. . . . . . 7
β’ (π β (πβπ΄) β βͺ π = (β‘πΉ β π΄)) |
180 | 166, 179 | syl 17 |
. . . . . 6
β’ (π β βͺ π =
(β‘πΉ β π΄)) |
181 | 178, 180 | sseqtrd 4021 |
. . . . 5
β’ (π β π β (β‘πΉ β π΄)) |
182 | 167 | cvmsrcl 34243 |
. . . . . . . 8
β’ (π β (πβπ΄) β π΄ β π½) |
183 | 166, 182 | syl 17 |
. . . . . . 7
β’ (π β π΄ β π½) |
184 | | cnima 22760 |
. . . . . . 7
β’ ((πΉ β (πΆ Cn π½) β§ π΄ β π½) β (β‘πΉ β π΄) β πΆ) |
185 | 77, 183, 184 | syl2anc 584 |
. . . . . 6
β’ (π β (β‘πΉ β π΄) β πΆ) |
186 | | restopn2 22672 |
. . . . . 6
β’ ((πΆ β Top β§ (β‘πΉ β π΄) β πΆ) β (π β (πΆ βΎt (β‘πΉ β π΄)) β (π β πΆ β§ π β (β‘πΉ β π΄)))) |
187 | 127, 185,
186 | syl2anc 584 |
. . . . 5
β’ (π β (π β (πΆ βΎt (β‘πΉ β π΄)) β (π β πΆ β§ π β (β‘πΉ β π΄)))) |
188 | 176, 181,
187 | mpbir2and 711 |
. . . 4
β’ (π β π β (πΆ βΎt (β‘πΉ β π΄))) |
189 | 167 | cvmscld 34252 |
. . . . 5
β’ ((πΉ β (πΆ CovMap π½) β§ π β (πβπ΄) β§ π β π) β π β (Clsdβ(πΆ βΎt (β‘πΉ β π΄)))) |
190 | 23, 166, 175, 189 | syl3anc 1371 |
. . . 4
β’ (π β π β (Clsdβ(πΆ βΎt (β‘πΉ β π΄)))) |
191 | 33 | a1i 11 |
. . . 4
β’ (π β 0 β
(0[,]1)) |
192 | 174 | simprd 496 |
. . . . 5
β’ (π β (π»βπ) β π) |
193 | 74, 192 | eqeltrd 2833 |
. . . 4
β’ (π β (πΌβ0) β π) |
194 | 29, 125, 165, 188, 190, 191, 193 | conncn 22921 |
. . 3
β’ (π β πΌ:(0[,]1)βΆπ) |
195 | | 1elunit 13443 |
. . 3
β’ 1 β
(0[,]1) |
196 | | ffvelcdm 7080 |
. . 3
β’ ((πΌ:(0[,]1)βΆπ β§ 1 β (0[,]1)) β
(πΌβ1) β π) |
197 | 194, 195,
196 | sylancl 586 |
. 2
β’ (π β (πΌβ1) β π) |
198 | 123, 197 | eqeltrd 2833 |
1
β’ (π β (π»βπ) β π) |