Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem6 Structured version   Visualization version   GIF version

Theorem cvmlift3lem6 35351
Description: Lemma for cvmlift3 35355. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
cvmlift3lem7.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift3lem7.1 (𝜑 → (𝐺𝑋) ∈ 𝐴)
cvmlift3lem7.2 (𝜑𝑇 ∈ (𝑆𝐴))
cvmlift3lem7.3 (𝜑𝑀 ⊆ (𝐺𝐴))
cvmlift3lem7.w 𝑊 = (𝑏𝑇 (𝐻𝑋) ∈ 𝑏)
cvmlift3lem6.x (𝜑𝑋𝑀)
cvmlift3lem6.z (𝜑𝑍𝑀)
cvmlift3lem6.q (𝜑𝑄 ∈ (II Cn 𝐾))
cvmlift3lem6.r 𝑅 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑄) ∧ (𝑔‘0) = 𝑃))
cvmlift3lem6.1 (𝜑 → ((𝑄‘0) = 𝑂 ∧ (𝑄‘1) = 𝑋 ∧ (𝑅‘1) = (𝐻𝑋)))
cvmlift3lem6.n (𝜑𝑁 ∈ (II Cn (𝐾t 𝑀)))
cvmlift3lem6.2 (𝜑 → ((𝑁‘0) = 𝑋 ∧ (𝑁‘1) = 𝑍))
cvmlift3lem6.i 𝐼 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = (𝐻𝑋)))
Assertion
Ref Expression
cvmlift3lem6 (𝜑 → (𝐻𝑍) ∈ 𝑊)
Distinct variable groups:   𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑧,𝐴   𝑓,𝑔,𝐼,𝑧   𝑔,𝑏,𝑥,𝐽,𝑐,𝑑,𝑓,𝑘,𝑠   𝐹,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠   𝑥,𝑧,𝐹   𝑓,𝑀,𝑔,𝑥   𝑓,𝑁,𝑔   𝐻,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑄,𝑓,𝑔   𝑆,𝑏,𝑓,𝑥   𝐵,𝑏,𝑑,𝑓,𝑔,𝑥,𝑧   𝑅,𝑔   𝑋,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝐺,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑥,𝑧   𝑇,𝑏,𝑐,𝑑,𝑠   𝑓,𝑍,𝑔,𝑥,𝑧   𝐶,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠,𝑥,𝑧   𝜑,𝑓,𝑥   𝐾,𝑏,𝑐,𝑓,𝑔,𝑥,𝑧   𝑃,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑂,𝑏,𝑐,𝑓,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧   𝑊,𝑐,𝑑,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑔,𝑘,𝑠,𝑏,𝑐,𝑑)   𝐴(𝑥,𝑔)   𝐵(𝑘,𝑠,𝑐)   𝑃(𝑘,𝑠)   𝑄(𝑥,𝑧,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑅(𝑥,𝑧,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑆(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝑇(𝑥,𝑧,𝑓,𝑔,𝑘)   𝐺(𝑠)   𝐻(𝑘,𝑠)   𝐼(𝑥,𝑘,𝑠,𝑏,𝑐,𝑑)   𝐽(𝑧)   𝐾(𝑘,𝑠,𝑑)   𝑀(𝑧,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑁(𝑥,𝑧,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑂(𝑘,𝑠,𝑑)   𝑊(𝑧,𝑔,𝑘,𝑠,𝑏)   𝑋(𝑘,𝑠)   𝑌(𝑘,𝑠,𝑏,𝑐,𝑑)   𝑍(𝑘,𝑠,𝑏,𝑐,𝑑)

Proof of Theorem cvmlift3lem6
StepHypRef Expression
1 cvmlift3lem6.q . . . . 5 (𝜑𝑄 ∈ (II Cn 𝐾))
2 cvmlift3.k . . . . . . . 8 (𝜑𝐾 ∈ SConn)
3 sconntop 35255 . . . . . . . 8 (𝐾 ∈ SConn → 𝐾 ∈ Top)
42, 3syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
5 cnrest2r 23230 . . . . . . 7 (𝐾 ∈ Top → (II Cn (𝐾t 𝑀)) ⊆ (II Cn 𝐾))
64, 5syl 17 . . . . . 6 (𝜑 → (II Cn (𝐾t 𝑀)) ⊆ (II Cn 𝐾))
7 cvmlift3lem6.n . . . . . 6 (𝜑𝑁 ∈ (II Cn (𝐾t 𝑀)))
86, 7sseldd 3964 . . . . 5 (𝜑𝑁 ∈ (II Cn 𝐾))
9 cvmlift3lem6.1 . . . . . . 7 (𝜑 → ((𝑄‘0) = 𝑂 ∧ (𝑄‘1) = 𝑋 ∧ (𝑅‘1) = (𝐻𝑋)))
109simp2d 1143 . . . . . 6 (𝜑 → (𝑄‘1) = 𝑋)
11 cvmlift3lem6.2 . . . . . . 7 (𝜑 → ((𝑁‘0) = 𝑋 ∧ (𝑁‘1) = 𝑍))
1211simpld 494 . . . . . 6 (𝜑 → (𝑁‘0) = 𝑋)
1310, 12eqtr4d 2774 . . . . 5 (𝜑 → (𝑄‘1) = (𝑁‘0))
141, 8, 13pcocn 24973 . . . 4 (𝜑 → (𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾))
151, 8pco0 24970 . . . . 5 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘0) = (𝑄‘0))
169simp1d 1142 . . . . 5 (𝜑 → (𝑄‘0) = 𝑂)
1715, 16eqtrd 2771 . . . 4 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂)
181, 8pco1 24971 . . . . 5 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘1) = (𝑁‘1))
1911simprd 495 . . . . 5 (𝜑 → (𝑁‘1) = 𝑍)
2018, 19eqtrd 2771 . . . 4 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍)
21 cvmlift3.b . . . . . . . . . . 11 𝐵 = 𝐶
22 cvmlift3lem6.r . . . . . . . . . . 11 𝑅 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑄) ∧ (𝑔‘0) = 𝑃))
23 cvmlift3.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
24 cvmlift3.g . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
25 cnco 23209 . . . . . . . . . . . 12 ((𝑄 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑄) ∈ (II Cn 𝐽))
261, 24, 25syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐺𝑄) ∈ (II Cn 𝐽))
27 cvmlift3.p . . . . . . . . . . 11 (𝜑𝑃𝐵)
2816fveq2d 6885 . . . . . . . . . . . 12 (𝜑 → (𝐺‘(𝑄‘0)) = (𝐺𝑂))
29 iiuni 24830 . . . . . . . . . . . . . . 15 (0[,]1) = II
30 cvmlift3.y . . . . . . . . . . . . . . 15 𝑌 = 𝐾
3129, 30cnf 23189 . . . . . . . . . . . . . 14 (𝑄 ∈ (II Cn 𝐾) → 𝑄:(0[,]1)⟶𝑌)
321, 31syl 17 . . . . . . . . . . . . 13 (𝜑𝑄:(0[,]1)⟶𝑌)
33 0elunit 13491 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
34 fvco3 6983 . . . . . . . . . . . . 13 ((𝑄:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑄)‘0) = (𝐺‘(𝑄‘0)))
3532, 33, 34sylancl 586 . . . . . . . . . . . 12 (𝜑 → ((𝐺𝑄)‘0) = (𝐺‘(𝑄‘0)))
36 cvmlift3.e . . . . . . . . . . . 12 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
3728, 35, 363eqtr4rd 2782 . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = ((𝐺𝑄)‘0))
3821, 22, 23, 26, 27, 37cvmliftiota 35328 . . . . . . . . . 10 (𝜑 → (𝑅 ∈ (II Cn 𝐶) ∧ (𝐹𝑅) = (𝐺𝑄) ∧ (𝑅‘0) = 𝑃))
3938simp2d 1143 . . . . . . . . 9 (𝜑 → (𝐹𝑅) = (𝐺𝑄))
40 cvmlift3lem6.i . . . . . . . . . . 11 𝐼 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = (𝐻𝑋)))
41 cnco 23209 . . . . . . . . . . . 12 ((𝑁 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑁) ∈ (II Cn 𝐽))
428, 24, 41syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐺𝑁) ∈ (II Cn 𝐽))
43 cvmlift3.l . . . . . . . . . . . . 13 (𝜑𝐾 ∈ 𝑛-Locally PConn)
44 cvmlift3.o . . . . . . . . . . . . 13 (𝜑𝑂𝑌)
45 cvmlift3.h . . . . . . . . . . . . 13 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
4621, 30, 23, 2, 43, 44, 24, 27, 36, 45cvmlift3lem3 35348 . . . . . . . . . . . 12 (𝜑𝐻:𝑌𝐵)
47 cvmlift3lem7.3 . . . . . . . . . . . . . 14 (𝜑𝑀 ⊆ (𝐺𝐴))
48 cnvimass 6074 . . . . . . . . . . . . . . 15 (𝐺𝐴) ⊆ dom 𝐺
49 eqid 2736 . . . . . . . . . . . . . . . . 17 𝐽 = 𝐽
5030, 49cnf 23189 . . . . . . . . . . . . . . . 16 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
5124, 50syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝑌 𝐽)
5248, 51fssdm 6730 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝐴) ⊆ 𝑌)
5347, 52sstrd 3974 . . . . . . . . . . . . 13 (𝜑𝑀𝑌)
54 cvmlift3lem6.x . . . . . . . . . . . . 13 (𝜑𝑋𝑀)
5553, 54sseldd 3964 . . . . . . . . . . . 12 (𝜑𝑋𝑌)
5646, 55ffvelcdmd 7080 . . . . . . . . . . 11 (𝜑 → (𝐻𝑋) ∈ 𝐵)
5712fveq2d 6885 . . . . . . . . . . . 12 (𝜑 → (𝐺‘(𝑁‘0)) = (𝐺𝑋))
5829, 30cnf 23189 . . . . . . . . . . . . . 14 (𝑁 ∈ (II Cn 𝐾) → 𝑁:(0[,]1)⟶𝑌)
598, 58syl 17 . . . . . . . . . . . . 13 (𝜑𝑁:(0[,]1)⟶𝑌)
60 fvco3 6983 . . . . . . . . . . . . 13 ((𝑁:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑁)‘0) = (𝐺‘(𝑁‘0)))
6159, 33, 60sylancl 586 . . . . . . . . . . . 12 (𝜑 → ((𝐺𝑁)‘0) = (𝐺‘(𝑁‘0)))
62 fvco3 6983 . . . . . . . . . . . . . 14 ((𝐻:𝑌𝐵𝑋𝑌) → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
6346, 55, 62syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
6421, 30, 23, 2, 43, 44, 24, 27, 36, 45cvmlift3lem5 35350 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐻) = 𝐺)
6564fveq1d 6883 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐻)‘𝑋) = (𝐺𝑋))
6663, 65eqtr3d 2773 . . . . . . . . . . . 12 (𝜑 → (𝐹‘(𝐻𝑋)) = (𝐺𝑋))
6757, 61, 663eqtr4rd 2782 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝐻𝑋)) = ((𝐺𝑁)‘0))
6821, 40, 23, 42, 56, 67cvmliftiota 35328 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ (II Cn 𝐶) ∧ (𝐹𝐼) = (𝐺𝑁) ∧ (𝐼‘0) = (𝐻𝑋)))
6968simp2d 1143 . . . . . . . . 9 (𝜑 → (𝐹𝐼) = (𝐺𝑁))
7039, 69oveq12d 7428 . . . . . . . 8 (𝜑 → ((𝐹𝑅)(*𝑝𝐽)(𝐹𝐼)) = ((𝐺𝑄)(*𝑝𝐽)(𝐺𝑁)))
7138simp1d 1142 . . . . . . . . 9 (𝜑𝑅 ∈ (II Cn 𝐶))
7268simp1d 1142 . . . . . . . . 9 (𝜑𝐼 ∈ (II Cn 𝐶))
739simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝑅‘1) = (𝐻𝑋))
7468simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝐼‘0) = (𝐻𝑋))
7573, 74eqtr4d 2774 . . . . . . . . 9 (𝜑 → (𝑅‘1) = (𝐼‘0))
76 cvmcn 35289 . . . . . . . . . 10 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
7723, 76syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
7871, 72, 75, 77copco 24974 . . . . . . . 8 (𝜑 → (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = ((𝐹𝑅)(*𝑝𝐽)(𝐹𝐼)))
791, 8, 13, 24copco 24974 . . . . . . . 8 (𝜑 → (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) = ((𝐺𝑄)(*𝑝𝐽)(𝐺𝑁)))
8070, 78, 793eqtr4d 2781 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)))
8171, 72pco0 24970 . . . . . . . 8 (𝜑 → ((𝑅(*𝑝𝐶)𝐼)‘0) = (𝑅‘0))
8238simp3d 1144 . . . . . . . 8 (𝜑 → (𝑅‘0) = 𝑃)
8381, 82eqtrd 2771 . . . . . . 7 (𝜑 → ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃)
8471, 72, 75pcocn 24973 . . . . . . . 8 (𝜑 → (𝑅(*𝑝𝐶)𝐼) ∈ (II Cn 𝐶))
85 cnco 23209 . . . . . . . . . 10 (((𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∈ (II Cn 𝐽))
8614, 24, 85syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∈ (II Cn 𝐽))
8717fveq2d 6885 . . . . . . . . . 10 (𝜑 → (𝐺‘((𝑄(*𝑝𝐾)𝑁)‘0)) = (𝐺𝑂))
8829, 30cnf 23189 . . . . . . . . . . . 12 ((𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾) → (𝑄(*𝑝𝐾)𝑁):(0[,]1)⟶𝑌)
8914, 88syl 17 . . . . . . . . . . 11 (𝜑 → (𝑄(*𝑝𝐾)𝑁):(0[,]1)⟶𝑌)
90 fvco3 6983 . . . . . . . . . . 11 (((𝑄(*𝑝𝐾)𝑁):(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0) = (𝐺‘((𝑄(*𝑝𝐾)𝑁)‘0)))
9189, 33, 90sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0) = (𝐺‘((𝑄(*𝑝𝐾)𝑁)‘0)))
9287, 91, 363eqtr4rd 2782 . . . . . . . . 9 (𝜑 → (𝐹𝑃) = ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0))
9321cvmlift 35326 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0))) → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))
9423, 86, 27, 92, 93syl22anc 838 . . . . . . . 8 (𝜑 → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))
95 coeq2 5843 . . . . . . . . . . 11 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → (𝐹𝑔) = (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)))
9695eqeq1d 2738 . . . . . . . . . 10 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → ((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ↔ (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))))
97 fveq1 6880 . . . . . . . . . . 11 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → (𝑔‘0) = ((𝑅(*𝑝𝐶)𝐼)‘0))
9897eqeq1d 2738 . . . . . . . . . 10 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → ((𝑔‘0) = 𝑃 ↔ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃))
9996, 98anbi12d 632 . . . . . . . . 9 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → (((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃)))
10099riota2 7392 . . . . . . . 8 (((𝑅(*𝑝𝐶)𝐼) ∈ (II Cn 𝐶) ∧ ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) → (((𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) = (𝑅(*𝑝𝐶)𝐼)))
10184, 94, 100syl2anc 584 . . . . . . 7 (𝜑 → (((𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) = (𝑅(*𝑝𝐶)𝐼)))
10280, 83, 101mpbi2and 712 . . . . . 6 (𝜑 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) = (𝑅(*𝑝𝐶)𝐼))
103102fveq1d 6883 . . . . 5 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑅(*𝑝𝐶)𝐼)‘1))
10471, 72pco1 24971 . . . . 5 (𝜑 → ((𝑅(*𝑝𝐶)𝐼)‘1) = (𝐼‘1))
105103, 104eqtrd 2771 . . . 4 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))
106 fveq1 6880 . . . . . . 7 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝑓‘0) = ((𝑄(*𝑝𝐾)𝑁)‘0))
107106eqeq1d 2738 . . . . . 6 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝑓‘0) = 𝑂 ↔ ((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂))
108 fveq1 6880 . . . . . . 7 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝑓‘1) = ((𝑄(*𝑝𝐾)𝑁)‘1))
109108eqeq1d 2738 . . . . . 6 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝑓‘1) = 𝑍 ↔ ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍))
110 coeq2 5843 . . . . . . . . . . 11 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝐺𝑓) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)))
111110eqeq2d 2747 . . . . . . . . . 10 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))))
112111anbi1d 631 . . . . . . . . 9 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)))
113112riotabidv 7369 . . . . . . . 8 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)))
114113fveq1d 6883 . . . . . . 7 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1))
115114eqeq1d 2738 . . . . . 6 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1) ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)))
116107, 109, 1153anbi123d 1438 . . . . 5 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)) ↔ (((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂 ∧ ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))))
117116rspcev 3606 . . . 4 (((𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾) ∧ (((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂 ∧ ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)))
11814, 17, 20, 105, 117syl13anc 1374 . . 3 (𝜑 → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)))
119 cvmlift3lem6.z . . . . 5 (𝜑𝑍𝑀)
12053, 119sseldd 3964 . . . 4 (𝜑𝑍𝑌)
12121, 30, 23, 2, 43, 44, 24, 27, 36, 45cvmlift3lem4 35349 . . . 4 ((𝜑𝑍𝑌) → ((𝐻𝑍) = (𝐼‘1) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))))
122120, 121mpdan 687 . . 3 (𝜑 → ((𝐻𝑍) = (𝐼‘1) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))))
123118, 122mpbird 257 . 2 (𝜑 → (𝐻𝑍) = (𝐼‘1))
124 iiconn 24836 . . . . 5 II ∈ Conn
125124a1i 11 . . . 4 (𝜑 → II ∈ Conn)
126 cvmtop1 35287 . . . . . . . 8 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
12723, 126syl 17 . . . . . . 7 (𝜑𝐶 ∈ Top)
12821toptopon 22860 . . . . . . 7 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
129127, 128sylib 218 . . . . . 6 (𝜑𝐶 ∈ (TopOn‘𝐵))
13069rneqd 5923 . . . . . . . . 9 (𝜑 → ran (𝐹𝐼) = ran (𝐺𝑁))
131 rnco2 6247 . . . . . . . . 9 ran (𝐹𝐼) = (𝐹 “ ran 𝐼)
132 rnco2 6247 . . . . . . . . 9 ran (𝐺𝑁) = (𝐺 “ ran 𝑁)
133130, 131, 1323eqtr3g 2794 . . . . . . . 8 (𝜑 → (𝐹 “ ran 𝐼) = (𝐺 “ ran 𝑁))
134 iitopon 24828 . . . . . . . . . . . . 13 II ∈ (TopOn‘(0[,]1))
135134a1i 11 . . . . . . . . . . . 12 (𝜑 → II ∈ (TopOn‘(0[,]1)))
13630toptopon 22860 . . . . . . . . . . . . . 14 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
1374, 136sylib 218 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (TopOn‘𝑌))
138 resttopon 23104 . . . . . . . . . . . . 13 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑀𝑌) → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
139137, 53, 138syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
140 cnf2 23192 . . . . . . . . . . . 12 ((II ∈ (TopOn‘(0[,]1)) ∧ (𝐾t 𝑀) ∈ (TopOn‘𝑀) ∧ 𝑁 ∈ (II Cn (𝐾t 𝑀))) → 𝑁:(0[,]1)⟶𝑀)
141135, 139, 7, 140syl3anc 1373 . . . . . . . . . . 11 (𝜑𝑁:(0[,]1)⟶𝑀)
142141frnd 6719 . . . . . . . . . 10 (𝜑 → ran 𝑁𝑀)
143142, 47sstrd 3974 . . . . . . . . 9 (𝜑 → ran 𝑁 ⊆ (𝐺𝐴))
14451ffund 6715 . . . . . . . . . 10 (𝜑 → Fun 𝐺)
145143, 48sstrdi 3976 . . . . . . . . . 10 (𝜑 → ran 𝑁 ⊆ dom 𝐺)
146 funimass3 7049 . . . . . . . . . 10 ((Fun 𝐺 ∧ ran 𝑁 ⊆ dom 𝐺) → ((𝐺 “ ran 𝑁) ⊆ 𝐴 ↔ ran 𝑁 ⊆ (𝐺𝐴)))
147144, 145, 146syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐺 “ ran 𝑁) ⊆ 𝐴 ↔ ran 𝑁 ⊆ (𝐺𝐴)))
148143, 147mpbird 257 . . . . . . . 8 (𝜑 → (𝐺 “ ran 𝑁) ⊆ 𝐴)
149133, 148eqsstrd 3998 . . . . . . 7 (𝜑 → (𝐹 “ ran 𝐼) ⊆ 𝐴)
15021, 49cnf 23189 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
15177, 150syl 17 . . . . . . . . 9 (𝜑𝐹:𝐵 𝐽)
152151ffund 6715 . . . . . . . 8 (𝜑 → Fun 𝐹)
15329, 21cnf 23189 . . . . . . . . . . 11 (𝐼 ∈ (II Cn 𝐶) → 𝐼:(0[,]1)⟶𝐵)
15472, 153syl 17 . . . . . . . . . 10 (𝜑𝐼:(0[,]1)⟶𝐵)
155154frnd 6719 . . . . . . . . 9 (𝜑 → ran 𝐼𝐵)
156151fdmd 6721 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐵)
157155, 156sseqtrrd 4001 . . . . . . . 8 (𝜑 → ran 𝐼 ⊆ dom 𝐹)
158 funimass3 7049 . . . . . . . 8 ((Fun 𝐹 ∧ ran 𝐼 ⊆ dom 𝐹) → ((𝐹 “ ran 𝐼) ⊆ 𝐴 ↔ ran 𝐼 ⊆ (𝐹𝐴)))
159152, 157, 158syl2anc 584 . . . . . . 7 (𝜑 → ((𝐹 “ ran 𝐼) ⊆ 𝐴 ↔ ran 𝐼 ⊆ (𝐹𝐴)))
160149, 159mpbid 232 . . . . . 6 (𝜑 → ran 𝐼 ⊆ (𝐹𝐴))
161 cnvimass 6074 . . . . . . 7 (𝐹𝐴) ⊆ dom 𝐹
162161, 151fssdm 6730 . . . . . 6 (𝜑 → (𝐹𝐴) ⊆ 𝐵)
163 cnrest2 23229 . . . . . 6 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran 𝐼 ⊆ (𝐹𝐴) ∧ (𝐹𝐴) ⊆ 𝐵) → (𝐼 ∈ (II Cn 𝐶) ↔ 𝐼 ∈ (II Cn (𝐶t (𝐹𝐴)))))
164129, 160, 162, 163syl3anc 1373 . . . . 5 (𝜑 → (𝐼 ∈ (II Cn 𝐶) ↔ 𝐼 ∈ (II Cn (𝐶t (𝐹𝐴)))))
16572, 164mpbid 232 . . . 4 (𝜑𝐼 ∈ (II Cn (𝐶t (𝐹𝐴))))
166 cvmlift3lem7.2 . . . . . . 7 (𝜑𝑇 ∈ (𝑆𝐴))
167 cvmlift3lem7.s . . . . . . . 8 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
168167cvmsss 35294 . . . . . . 7 (𝑇 ∈ (𝑆𝐴) → 𝑇𝐶)
169166, 168syl 17 . . . . . 6 (𝜑𝑇𝐶)
170 cvmlift3lem7.1 . . . . . . . . 9 (𝜑 → (𝐺𝑋) ∈ 𝐴)
17166, 170eqeltrd 2835 . . . . . . . 8 (𝜑 → (𝐹‘(𝐻𝑋)) ∈ 𝐴)
172 cvmlift3lem7.w . . . . . . . . 9 𝑊 = (𝑏𝑇 (𝐻𝑋) ∈ 𝑏)
173167, 21, 172cvmsiota 35304 . . . . . . . 8 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝐴) ∧ (𝐻𝑋) ∈ 𝐵 ∧ (𝐹‘(𝐻𝑋)) ∈ 𝐴)) → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
17423, 166, 56, 171, 173syl13anc 1374 . . . . . . 7 (𝜑 → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
175174simpld 494 . . . . . 6 (𝜑𝑊𝑇)
176169, 175sseldd 3964 . . . . 5 (𝜑𝑊𝐶)
177 elssuni 4918 . . . . . . 7 (𝑊𝑇𝑊 𝑇)
178175, 177syl 17 . . . . . 6 (𝜑𝑊 𝑇)
179167cvmsuni 35296 . . . . . . 7 (𝑇 ∈ (𝑆𝐴) → 𝑇 = (𝐹𝐴))
180166, 179syl 17 . . . . . 6 (𝜑 𝑇 = (𝐹𝐴))
181178, 180sseqtrd 4000 . . . . 5 (𝜑𝑊 ⊆ (𝐹𝐴))
182167cvmsrcl 35291 . . . . . . . 8 (𝑇 ∈ (𝑆𝐴) → 𝐴𝐽)
183166, 182syl 17 . . . . . . 7 (𝜑𝐴𝐽)
184 cnima 23208 . . . . . . 7 ((𝐹 ∈ (𝐶 Cn 𝐽) ∧ 𝐴𝐽) → (𝐹𝐴) ∈ 𝐶)
18577, 183, 184syl2anc 584 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ 𝐶)
186 restopn2 23120 . . . . . 6 ((𝐶 ∈ Top ∧ (𝐹𝐴) ∈ 𝐶) → (𝑊 ∈ (𝐶t (𝐹𝐴)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝐴))))
187127, 185, 186syl2anc 584 . . . . 5 (𝜑 → (𝑊 ∈ (𝐶t (𝐹𝐴)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝐴))))
188176, 181, 187mpbir2and 713 . . . 4 (𝜑𝑊 ∈ (𝐶t (𝐹𝐴)))
189167cvmscld 35300 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝐴) ∧ 𝑊𝑇) → 𝑊 ∈ (Clsd‘(𝐶t (𝐹𝐴))))
19023, 166, 175, 189syl3anc 1373 . . . 4 (𝜑𝑊 ∈ (Clsd‘(𝐶t (𝐹𝐴))))
19133a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]1))
192174simprd 495 . . . . 5 (𝜑 → (𝐻𝑋) ∈ 𝑊)
19374, 192eqeltrd 2835 . . . 4 (𝜑 → (𝐼‘0) ∈ 𝑊)
19429, 125, 165, 188, 190, 191, 193conncn 23369 . . 3 (𝜑𝐼:(0[,]1)⟶𝑊)
195 1elunit 13492 . . 3 1 ∈ (0[,]1)
196 ffvelcdm 7076 . . 3 ((𝐼:(0[,]1)⟶𝑊 ∧ 1 ∈ (0[,]1)) → (𝐼‘1) ∈ 𝑊)
197194, 195, 196sylancl 586 . 2 (𝜑 → (𝐼‘1) ∈ 𝑊)
198123, 197eqeltrd 2835 1 (𝜑 → (𝐻𝑍) ∈ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wrex 3061  ∃!wreu 3362  {crab 3420  cdif 3928  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606   cuni 4888  cmpt 5206  ccnv 5658  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  ccom 5663  Fun wfun 6530  wf 6532  cfv 6536  crio 7366  (class class class)co 7410  0cc0 11134  1c1 11135  [,]cicc 13370  t crest 17439  Topctop 22836  TopOnctopon 22853  Clsdccld 22959   Cn ccn 23167  Conncconn 23354  𝑛-Locally cnlly 23408  Homeochmeo 23696  IIcii 24824  *𝑝cpco 24956  PConncpconn 35246  SConncsconn 35247   CovMap ccvm 35282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-ec 8726  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-cn 23170  df-cnp 23171  df-cmp 23330  df-conn 23355  df-lly 23409  df-nlly 23410  df-tx 23505  df-hmeo 23698  df-xms 24264  df-ms 24265  df-tms 24266  df-ii 24826  df-cncf 24827  df-htpy 24925  df-phtpy 24926  df-phtpc 24947  df-pco 24961  df-pconn 35248  df-sconn 35249  df-cvm 35283
This theorem is referenced by:  cvmlift3lem7  35352
  Copyright terms: Public domain W3C validator