Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem6 Structured version   Visualization version   GIF version

Theorem cvmlift3lem6 35296
Description: Lemma for cvmlift3 35300. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
cvmlift3lem7.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift3lem7.1 (𝜑 → (𝐺𝑋) ∈ 𝐴)
cvmlift3lem7.2 (𝜑𝑇 ∈ (𝑆𝐴))
cvmlift3lem7.3 (𝜑𝑀 ⊆ (𝐺𝐴))
cvmlift3lem7.w 𝑊 = (𝑏𝑇 (𝐻𝑋) ∈ 𝑏)
cvmlift3lem6.x (𝜑𝑋𝑀)
cvmlift3lem6.z (𝜑𝑍𝑀)
cvmlift3lem6.q (𝜑𝑄 ∈ (II Cn 𝐾))
cvmlift3lem6.r 𝑅 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑄) ∧ (𝑔‘0) = 𝑃))
cvmlift3lem6.1 (𝜑 → ((𝑄‘0) = 𝑂 ∧ (𝑄‘1) = 𝑋 ∧ (𝑅‘1) = (𝐻𝑋)))
cvmlift3lem6.n (𝜑𝑁 ∈ (II Cn (𝐾t 𝑀)))
cvmlift3lem6.2 (𝜑 → ((𝑁‘0) = 𝑋 ∧ (𝑁‘1) = 𝑍))
cvmlift3lem6.i 𝐼 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = (𝐻𝑋)))
Assertion
Ref Expression
cvmlift3lem6 (𝜑 → (𝐻𝑍) ∈ 𝑊)
Distinct variable groups:   𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑧,𝐴   𝑓,𝑔,𝐼,𝑧   𝑔,𝑏,𝑥,𝐽,𝑐,𝑑,𝑓,𝑘,𝑠   𝐹,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠   𝑥,𝑧,𝐹   𝑓,𝑀,𝑔,𝑥   𝑓,𝑁,𝑔   𝐻,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑄,𝑓,𝑔   𝑆,𝑏,𝑓,𝑥   𝐵,𝑏,𝑑,𝑓,𝑔,𝑥,𝑧   𝑅,𝑔   𝑋,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝐺,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑥,𝑧   𝑇,𝑏,𝑐,𝑑,𝑠   𝑓,𝑍,𝑔,𝑥,𝑧   𝐶,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠,𝑥,𝑧   𝜑,𝑓,𝑥   𝐾,𝑏,𝑐,𝑓,𝑔,𝑥,𝑧   𝑃,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑂,𝑏,𝑐,𝑓,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧   𝑊,𝑐,𝑑,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑔,𝑘,𝑠,𝑏,𝑐,𝑑)   𝐴(𝑥,𝑔)   𝐵(𝑘,𝑠,𝑐)   𝑃(𝑘,𝑠)   𝑄(𝑥,𝑧,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑅(𝑥,𝑧,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑆(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝑇(𝑥,𝑧,𝑓,𝑔,𝑘)   𝐺(𝑠)   𝐻(𝑘,𝑠)   𝐼(𝑥,𝑘,𝑠,𝑏,𝑐,𝑑)   𝐽(𝑧)   𝐾(𝑘,𝑠,𝑑)   𝑀(𝑧,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑁(𝑥,𝑧,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑂(𝑘,𝑠,𝑑)   𝑊(𝑧,𝑔,𝑘,𝑠,𝑏)   𝑋(𝑘,𝑠)   𝑌(𝑘,𝑠,𝑏,𝑐,𝑑)   𝑍(𝑘,𝑠,𝑏,𝑐,𝑑)

Proof of Theorem cvmlift3lem6
StepHypRef Expression
1 cvmlift3lem6.q . . . . 5 (𝜑𝑄 ∈ (II Cn 𝐾))
2 cvmlift3.k . . . . . . . 8 (𝜑𝐾 ∈ SConn)
3 sconntop 35200 . . . . . . . 8 (𝐾 ∈ SConn → 𝐾 ∈ Top)
42, 3syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
5 cnrest2r 23190 . . . . . . 7 (𝐾 ∈ Top → (II Cn (𝐾t 𝑀)) ⊆ (II Cn 𝐾))
64, 5syl 17 . . . . . 6 (𝜑 → (II Cn (𝐾t 𝑀)) ⊆ (II Cn 𝐾))
7 cvmlift3lem6.n . . . . . 6 (𝜑𝑁 ∈ (II Cn (𝐾t 𝑀)))
86, 7sseldd 3938 . . . . 5 (𝜑𝑁 ∈ (II Cn 𝐾))
9 cvmlift3lem6.1 . . . . . . 7 (𝜑 → ((𝑄‘0) = 𝑂 ∧ (𝑄‘1) = 𝑋 ∧ (𝑅‘1) = (𝐻𝑋)))
109simp2d 1143 . . . . . 6 (𝜑 → (𝑄‘1) = 𝑋)
11 cvmlift3lem6.2 . . . . . . 7 (𝜑 → ((𝑁‘0) = 𝑋 ∧ (𝑁‘1) = 𝑍))
1211simpld 494 . . . . . 6 (𝜑 → (𝑁‘0) = 𝑋)
1310, 12eqtr4d 2767 . . . . 5 (𝜑 → (𝑄‘1) = (𝑁‘0))
141, 8, 13pcocn 24933 . . . 4 (𝜑 → (𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾))
151, 8pco0 24930 . . . . 5 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘0) = (𝑄‘0))
169simp1d 1142 . . . . 5 (𝜑 → (𝑄‘0) = 𝑂)
1715, 16eqtrd 2764 . . . 4 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂)
181, 8pco1 24931 . . . . 5 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘1) = (𝑁‘1))
1911simprd 495 . . . . 5 (𝜑 → (𝑁‘1) = 𝑍)
2018, 19eqtrd 2764 . . . 4 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍)
21 cvmlift3.b . . . . . . . . . . 11 𝐵 = 𝐶
22 cvmlift3lem6.r . . . . . . . . . . 11 𝑅 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑄) ∧ (𝑔‘0) = 𝑃))
23 cvmlift3.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
24 cvmlift3.g . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
25 cnco 23169 . . . . . . . . . . . 12 ((𝑄 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑄) ∈ (II Cn 𝐽))
261, 24, 25syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐺𝑄) ∈ (II Cn 𝐽))
27 cvmlift3.p . . . . . . . . . . 11 (𝜑𝑃𝐵)
2816fveq2d 6830 . . . . . . . . . . . 12 (𝜑 → (𝐺‘(𝑄‘0)) = (𝐺𝑂))
29 iiuni 24790 . . . . . . . . . . . . . . 15 (0[,]1) = II
30 cvmlift3.y . . . . . . . . . . . . . . 15 𝑌 = 𝐾
3129, 30cnf 23149 . . . . . . . . . . . . . 14 (𝑄 ∈ (II Cn 𝐾) → 𝑄:(0[,]1)⟶𝑌)
321, 31syl 17 . . . . . . . . . . . . 13 (𝜑𝑄:(0[,]1)⟶𝑌)
33 0elunit 13390 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
34 fvco3 6926 . . . . . . . . . . . . 13 ((𝑄:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑄)‘0) = (𝐺‘(𝑄‘0)))
3532, 33, 34sylancl 586 . . . . . . . . . . . 12 (𝜑 → ((𝐺𝑄)‘0) = (𝐺‘(𝑄‘0)))
36 cvmlift3.e . . . . . . . . . . . 12 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
3728, 35, 363eqtr4rd 2775 . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = ((𝐺𝑄)‘0))
3821, 22, 23, 26, 27, 37cvmliftiota 35273 . . . . . . . . . 10 (𝜑 → (𝑅 ∈ (II Cn 𝐶) ∧ (𝐹𝑅) = (𝐺𝑄) ∧ (𝑅‘0) = 𝑃))
3938simp2d 1143 . . . . . . . . 9 (𝜑 → (𝐹𝑅) = (𝐺𝑄))
40 cvmlift3lem6.i . . . . . . . . . . 11 𝐼 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = (𝐻𝑋)))
41 cnco 23169 . . . . . . . . . . . 12 ((𝑁 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑁) ∈ (II Cn 𝐽))
428, 24, 41syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐺𝑁) ∈ (II Cn 𝐽))
43 cvmlift3.l . . . . . . . . . . . . 13 (𝜑𝐾 ∈ 𝑛-Locally PConn)
44 cvmlift3.o . . . . . . . . . . . . 13 (𝜑𝑂𝑌)
45 cvmlift3.h . . . . . . . . . . . . 13 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
4621, 30, 23, 2, 43, 44, 24, 27, 36, 45cvmlift3lem3 35293 . . . . . . . . . . . 12 (𝜑𝐻:𝑌𝐵)
47 cvmlift3lem7.3 . . . . . . . . . . . . . 14 (𝜑𝑀 ⊆ (𝐺𝐴))
48 cnvimass 6037 . . . . . . . . . . . . . . 15 (𝐺𝐴) ⊆ dom 𝐺
49 eqid 2729 . . . . . . . . . . . . . . . . 17 𝐽 = 𝐽
5030, 49cnf 23149 . . . . . . . . . . . . . . . 16 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
5124, 50syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝑌 𝐽)
5248, 51fssdm 6675 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝐴) ⊆ 𝑌)
5347, 52sstrd 3948 . . . . . . . . . . . . 13 (𝜑𝑀𝑌)
54 cvmlift3lem6.x . . . . . . . . . . . . 13 (𝜑𝑋𝑀)
5553, 54sseldd 3938 . . . . . . . . . . . 12 (𝜑𝑋𝑌)
5646, 55ffvelcdmd 7023 . . . . . . . . . . 11 (𝜑 → (𝐻𝑋) ∈ 𝐵)
5712fveq2d 6830 . . . . . . . . . . . 12 (𝜑 → (𝐺‘(𝑁‘0)) = (𝐺𝑋))
5829, 30cnf 23149 . . . . . . . . . . . . . 14 (𝑁 ∈ (II Cn 𝐾) → 𝑁:(0[,]1)⟶𝑌)
598, 58syl 17 . . . . . . . . . . . . 13 (𝜑𝑁:(0[,]1)⟶𝑌)
60 fvco3 6926 . . . . . . . . . . . . 13 ((𝑁:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑁)‘0) = (𝐺‘(𝑁‘0)))
6159, 33, 60sylancl 586 . . . . . . . . . . . 12 (𝜑 → ((𝐺𝑁)‘0) = (𝐺‘(𝑁‘0)))
62 fvco3 6926 . . . . . . . . . . . . . 14 ((𝐻:𝑌𝐵𝑋𝑌) → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
6346, 55, 62syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
6421, 30, 23, 2, 43, 44, 24, 27, 36, 45cvmlift3lem5 35295 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐻) = 𝐺)
6564fveq1d 6828 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐻)‘𝑋) = (𝐺𝑋))
6663, 65eqtr3d 2766 . . . . . . . . . . . 12 (𝜑 → (𝐹‘(𝐻𝑋)) = (𝐺𝑋))
6757, 61, 663eqtr4rd 2775 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝐻𝑋)) = ((𝐺𝑁)‘0))
6821, 40, 23, 42, 56, 67cvmliftiota 35273 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ (II Cn 𝐶) ∧ (𝐹𝐼) = (𝐺𝑁) ∧ (𝐼‘0) = (𝐻𝑋)))
6968simp2d 1143 . . . . . . . . 9 (𝜑 → (𝐹𝐼) = (𝐺𝑁))
7039, 69oveq12d 7371 . . . . . . . 8 (𝜑 → ((𝐹𝑅)(*𝑝𝐽)(𝐹𝐼)) = ((𝐺𝑄)(*𝑝𝐽)(𝐺𝑁)))
7138simp1d 1142 . . . . . . . . 9 (𝜑𝑅 ∈ (II Cn 𝐶))
7268simp1d 1142 . . . . . . . . 9 (𝜑𝐼 ∈ (II Cn 𝐶))
739simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝑅‘1) = (𝐻𝑋))
7468simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝐼‘0) = (𝐻𝑋))
7573, 74eqtr4d 2767 . . . . . . . . 9 (𝜑 → (𝑅‘1) = (𝐼‘0))
76 cvmcn 35234 . . . . . . . . . 10 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
7723, 76syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
7871, 72, 75, 77copco 24934 . . . . . . . 8 (𝜑 → (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = ((𝐹𝑅)(*𝑝𝐽)(𝐹𝐼)))
791, 8, 13, 24copco 24934 . . . . . . . 8 (𝜑 → (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) = ((𝐺𝑄)(*𝑝𝐽)(𝐺𝑁)))
8070, 78, 793eqtr4d 2774 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)))
8171, 72pco0 24930 . . . . . . . 8 (𝜑 → ((𝑅(*𝑝𝐶)𝐼)‘0) = (𝑅‘0))
8238simp3d 1144 . . . . . . . 8 (𝜑 → (𝑅‘0) = 𝑃)
8381, 82eqtrd 2764 . . . . . . 7 (𝜑 → ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃)
8471, 72, 75pcocn 24933 . . . . . . . 8 (𝜑 → (𝑅(*𝑝𝐶)𝐼) ∈ (II Cn 𝐶))
85 cnco 23169 . . . . . . . . . 10 (((𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∈ (II Cn 𝐽))
8614, 24, 85syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∈ (II Cn 𝐽))
8717fveq2d 6830 . . . . . . . . . 10 (𝜑 → (𝐺‘((𝑄(*𝑝𝐾)𝑁)‘0)) = (𝐺𝑂))
8829, 30cnf 23149 . . . . . . . . . . . 12 ((𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾) → (𝑄(*𝑝𝐾)𝑁):(0[,]1)⟶𝑌)
8914, 88syl 17 . . . . . . . . . . 11 (𝜑 → (𝑄(*𝑝𝐾)𝑁):(0[,]1)⟶𝑌)
90 fvco3 6926 . . . . . . . . . . 11 (((𝑄(*𝑝𝐾)𝑁):(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0) = (𝐺‘((𝑄(*𝑝𝐾)𝑁)‘0)))
9189, 33, 90sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0) = (𝐺‘((𝑄(*𝑝𝐾)𝑁)‘0)))
9287, 91, 363eqtr4rd 2775 . . . . . . . . 9 (𝜑 → (𝐹𝑃) = ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0))
9321cvmlift 35271 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0))) → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))
9423, 86, 27, 92, 93syl22anc 838 . . . . . . . 8 (𝜑 → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))
95 coeq2 5805 . . . . . . . . . . 11 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → (𝐹𝑔) = (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)))
9695eqeq1d 2731 . . . . . . . . . 10 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → ((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ↔ (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))))
97 fveq1 6825 . . . . . . . . . . 11 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → (𝑔‘0) = ((𝑅(*𝑝𝐶)𝐼)‘0))
9897eqeq1d 2731 . . . . . . . . . 10 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → ((𝑔‘0) = 𝑃 ↔ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃))
9996, 98anbi12d 632 . . . . . . . . 9 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → (((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃)))
10099riota2 7335 . . . . . . . 8 (((𝑅(*𝑝𝐶)𝐼) ∈ (II Cn 𝐶) ∧ ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) → (((𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) = (𝑅(*𝑝𝐶)𝐼)))
10184, 94, 100syl2anc 584 . . . . . . 7 (𝜑 → (((𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) = (𝑅(*𝑝𝐶)𝐼)))
10280, 83, 101mpbi2and 712 . . . . . 6 (𝜑 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) = (𝑅(*𝑝𝐶)𝐼))
103102fveq1d 6828 . . . . 5 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑅(*𝑝𝐶)𝐼)‘1))
10471, 72pco1 24931 . . . . 5 (𝜑 → ((𝑅(*𝑝𝐶)𝐼)‘1) = (𝐼‘1))
105103, 104eqtrd 2764 . . . 4 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))
106 fveq1 6825 . . . . . . 7 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝑓‘0) = ((𝑄(*𝑝𝐾)𝑁)‘0))
107106eqeq1d 2731 . . . . . 6 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝑓‘0) = 𝑂 ↔ ((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂))
108 fveq1 6825 . . . . . . 7 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝑓‘1) = ((𝑄(*𝑝𝐾)𝑁)‘1))
109108eqeq1d 2731 . . . . . 6 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝑓‘1) = 𝑍 ↔ ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍))
110 coeq2 5805 . . . . . . . . . . 11 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝐺𝑓) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)))
111110eqeq2d 2740 . . . . . . . . . 10 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))))
112111anbi1d 631 . . . . . . . . 9 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)))
113112riotabidv 7312 . . . . . . . 8 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)))
114113fveq1d 6828 . . . . . . 7 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1))
115114eqeq1d 2731 . . . . . 6 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1) ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)))
116107, 109, 1153anbi123d 1438 . . . . 5 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)) ↔ (((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂 ∧ ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))))
117116rspcev 3579 . . . 4 (((𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾) ∧ (((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂 ∧ ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)))
11814, 17, 20, 105, 117syl13anc 1374 . . 3 (𝜑 → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)))
119 cvmlift3lem6.z . . . . 5 (𝜑𝑍𝑀)
12053, 119sseldd 3938 . . . 4 (𝜑𝑍𝑌)
12121, 30, 23, 2, 43, 44, 24, 27, 36, 45cvmlift3lem4 35294 . . . 4 ((𝜑𝑍𝑌) → ((𝐻𝑍) = (𝐼‘1) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))))
122120, 121mpdan 687 . . 3 (𝜑 → ((𝐻𝑍) = (𝐼‘1) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))))
123118, 122mpbird 257 . 2 (𝜑 → (𝐻𝑍) = (𝐼‘1))
124 iiconn 24796 . . . . 5 II ∈ Conn
125124a1i 11 . . . 4 (𝜑 → II ∈ Conn)
126 cvmtop1 35232 . . . . . . . 8 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
12723, 126syl 17 . . . . . . 7 (𝜑𝐶 ∈ Top)
12821toptopon 22820 . . . . . . 7 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
129127, 128sylib 218 . . . . . 6 (𝜑𝐶 ∈ (TopOn‘𝐵))
13069rneqd 5884 . . . . . . . . 9 (𝜑 → ran (𝐹𝐼) = ran (𝐺𝑁))
131 rnco2 6206 . . . . . . . . 9 ran (𝐹𝐼) = (𝐹 “ ran 𝐼)
132 rnco2 6206 . . . . . . . . 9 ran (𝐺𝑁) = (𝐺 “ ran 𝑁)
133130, 131, 1323eqtr3g 2787 . . . . . . . 8 (𝜑 → (𝐹 “ ran 𝐼) = (𝐺 “ ran 𝑁))
134 iitopon 24788 . . . . . . . . . . . . 13 II ∈ (TopOn‘(0[,]1))
135134a1i 11 . . . . . . . . . . . 12 (𝜑 → II ∈ (TopOn‘(0[,]1)))
13630toptopon 22820 . . . . . . . . . . . . . 14 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
1374, 136sylib 218 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (TopOn‘𝑌))
138 resttopon 23064 . . . . . . . . . . . . 13 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑀𝑌) → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
139137, 53, 138syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
140 cnf2 23152 . . . . . . . . . . . 12 ((II ∈ (TopOn‘(0[,]1)) ∧ (𝐾t 𝑀) ∈ (TopOn‘𝑀) ∧ 𝑁 ∈ (II Cn (𝐾t 𝑀))) → 𝑁:(0[,]1)⟶𝑀)
141135, 139, 7, 140syl3anc 1373 . . . . . . . . . . 11 (𝜑𝑁:(0[,]1)⟶𝑀)
142141frnd 6664 . . . . . . . . . 10 (𝜑 → ran 𝑁𝑀)
143142, 47sstrd 3948 . . . . . . . . 9 (𝜑 → ran 𝑁 ⊆ (𝐺𝐴))
14451ffund 6660 . . . . . . . . . 10 (𝜑 → Fun 𝐺)
145143, 48sstrdi 3950 . . . . . . . . . 10 (𝜑 → ran 𝑁 ⊆ dom 𝐺)
146 funimass3 6992 . . . . . . . . . 10 ((Fun 𝐺 ∧ ran 𝑁 ⊆ dom 𝐺) → ((𝐺 “ ran 𝑁) ⊆ 𝐴 ↔ ran 𝑁 ⊆ (𝐺𝐴)))
147144, 145, 146syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐺 “ ran 𝑁) ⊆ 𝐴 ↔ ran 𝑁 ⊆ (𝐺𝐴)))
148143, 147mpbird 257 . . . . . . . 8 (𝜑 → (𝐺 “ ran 𝑁) ⊆ 𝐴)
149133, 148eqsstrd 3972 . . . . . . 7 (𝜑 → (𝐹 “ ran 𝐼) ⊆ 𝐴)
15021, 49cnf 23149 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
15177, 150syl 17 . . . . . . . . 9 (𝜑𝐹:𝐵 𝐽)
152151ffund 6660 . . . . . . . 8 (𝜑 → Fun 𝐹)
15329, 21cnf 23149 . . . . . . . . . . 11 (𝐼 ∈ (II Cn 𝐶) → 𝐼:(0[,]1)⟶𝐵)
15472, 153syl 17 . . . . . . . . . 10 (𝜑𝐼:(0[,]1)⟶𝐵)
155154frnd 6664 . . . . . . . . 9 (𝜑 → ran 𝐼𝐵)
156151fdmd 6666 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐵)
157155, 156sseqtrrd 3975 . . . . . . . 8 (𝜑 → ran 𝐼 ⊆ dom 𝐹)
158 funimass3 6992 . . . . . . . 8 ((Fun 𝐹 ∧ ran 𝐼 ⊆ dom 𝐹) → ((𝐹 “ ran 𝐼) ⊆ 𝐴 ↔ ran 𝐼 ⊆ (𝐹𝐴)))
159152, 157, 158syl2anc 584 . . . . . . 7 (𝜑 → ((𝐹 “ ran 𝐼) ⊆ 𝐴 ↔ ran 𝐼 ⊆ (𝐹𝐴)))
160149, 159mpbid 232 . . . . . 6 (𝜑 → ran 𝐼 ⊆ (𝐹𝐴))
161 cnvimass 6037 . . . . . . 7 (𝐹𝐴) ⊆ dom 𝐹
162161, 151fssdm 6675 . . . . . 6 (𝜑 → (𝐹𝐴) ⊆ 𝐵)
163 cnrest2 23189 . . . . . 6 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran 𝐼 ⊆ (𝐹𝐴) ∧ (𝐹𝐴) ⊆ 𝐵) → (𝐼 ∈ (II Cn 𝐶) ↔ 𝐼 ∈ (II Cn (𝐶t (𝐹𝐴)))))
164129, 160, 162, 163syl3anc 1373 . . . . 5 (𝜑 → (𝐼 ∈ (II Cn 𝐶) ↔ 𝐼 ∈ (II Cn (𝐶t (𝐹𝐴)))))
16572, 164mpbid 232 . . . 4 (𝜑𝐼 ∈ (II Cn (𝐶t (𝐹𝐴))))
166 cvmlift3lem7.2 . . . . . . 7 (𝜑𝑇 ∈ (𝑆𝐴))
167 cvmlift3lem7.s . . . . . . . 8 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
168167cvmsss 35239 . . . . . . 7 (𝑇 ∈ (𝑆𝐴) → 𝑇𝐶)
169166, 168syl 17 . . . . . 6 (𝜑𝑇𝐶)
170 cvmlift3lem7.1 . . . . . . . . 9 (𝜑 → (𝐺𝑋) ∈ 𝐴)
17166, 170eqeltrd 2828 . . . . . . . 8 (𝜑 → (𝐹‘(𝐻𝑋)) ∈ 𝐴)
172 cvmlift3lem7.w . . . . . . . . 9 𝑊 = (𝑏𝑇 (𝐻𝑋) ∈ 𝑏)
173167, 21, 172cvmsiota 35249 . . . . . . . 8 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝐴) ∧ (𝐻𝑋) ∈ 𝐵 ∧ (𝐹‘(𝐻𝑋)) ∈ 𝐴)) → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
17423, 166, 56, 171, 173syl13anc 1374 . . . . . . 7 (𝜑 → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
175174simpld 494 . . . . . 6 (𝜑𝑊𝑇)
176169, 175sseldd 3938 . . . . 5 (𝜑𝑊𝐶)
177 elssuni 4891 . . . . . . 7 (𝑊𝑇𝑊 𝑇)
178175, 177syl 17 . . . . . 6 (𝜑𝑊 𝑇)
179167cvmsuni 35241 . . . . . . 7 (𝑇 ∈ (𝑆𝐴) → 𝑇 = (𝐹𝐴))
180166, 179syl 17 . . . . . 6 (𝜑 𝑇 = (𝐹𝐴))
181178, 180sseqtrd 3974 . . . . 5 (𝜑𝑊 ⊆ (𝐹𝐴))
182167cvmsrcl 35236 . . . . . . . 8 (𝑇 ∈ (𝑆𝐴) → 𝐴𝐽)
183166, 182syl 17 . . . . . . 7 (𝜑𝐴𝐽)
184 cnima 23168 . . . . . . 7 ((𝐹 ∈ (𝐶 Cn 𝐽) ∧ 𝐴𝐽) → (𝐹𝐴) ∈ 𝐶)
18577, 183, 184syl2anc 584 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ 𝐶)
186 restopn2 23080 . . . . . 6 ((𝐶 ∈ Top ∧ (𝐹𝐴) ∈ 𝐶) → (𝑊 ∈ (𝐶t (𝐹𝐴)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝐴))))
187127, 185, 186syl2anc 584 . . . . 5 (𝜑 → (𝑊 ∈ (𝐶t (𝐹𝐴)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝐴))))
188176, 181, 187mpbir2and 713 . . . 4 (𝜑𝑊 ∈ (𝐶t (𝐹𝐴)))
189167cvmscld 35245 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝐴) ∧ 𝑊𝑇) → 𝑊 ∈ (Clsd‘(𝐶t (𝐹𝐴))))
19023, 166, 175, 189syl3anc 1373 . . . 4 (𝜑𝑊 ∈ (Clsd‘(𝐶t (𝐹𝐴))))
19133a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]1))
192174simprd 495 . . . . 5 (𝜑 → (𝐻𝑋) ∈ 𝑊)
19374, 192eqeltrd 2828 . . . 4 (𝜑 → (𝐼‘0) ∈ 𝑊)
19429, 125, 165, 188, 190, 191, 193conncn 23329 . . 3 (𝜑𝐼:(0[,]1)⟶𝑊)
195 1elunit 13391 . . 3 1 ∈ (0[,]1)
196 ffvelcdm 7019 . . 3 ((𝐼:(0[,]1)⟶𝑊 ∧ 1 ∈ (0[,]1)) → (𝐼‘1) ∈ 𝑊)
197194, 195, 196sylancl 586 . 2 (𝜑 → (𝐼‘1) ∈ 𝑊)
198123, 197eqeltrd 2828 1 (𝜑 → (𝐻𝑍) ∈ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3343  {crab 3396  cdif 3902  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553  {csn 4579   cuni 4861  cmpt 5176  ccnv 5622  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  ccom 5627  Fun wfun 6480  wf 6482  cfv 6486  crio 7309  (class class class)co 7353  0cc0 11028  1c1 11029  [,]cicc 13269  t crest 17342  Topctop 22796  TopOnctopon 22813  Clsdccld 22919   Cn ccn 23127  Conncconn 23314  𝑛-Locally cnlly 23368  Homeochmeo 23656  IIcii 24784  *𝑝cpco 24916  PConncpconn 35191  SConncsconn 35192   CovMap ccvm 35227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-ec 8634  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-cn 23130  df-cnp 23131  df-cmp 23290  df-conn 23315  df-lly 23369  df-nlly 23370  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226  df-ii 24786  df-cncf 24787  df-htpy 24885  df-phtpy 24886  df-phtpc 24907  df-pco 24921  df-pconn 35193  df-sconn 35194  df-cvm 35228
This theorem is referenced by:  cvmlift3lem7  35297
  Copyright terms: Public domain W3C validator