Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem6 Structured version   Visualization version   GIF version

Theorem cvmlift3lem6 35330
Description: Lemma for cvmlift3 35334. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
cvmlift3lem7.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift3lem7.1 (𝜑 → (𝐺𝑋) ∈ 𝐴)
cvmlift3lem7.2 (𝜑𝑇 ∈ (𝑆𝐴))
cvmlift3lem7.3 (𝜑𝑀 ⊆ (𝐺𝐴))
cvmlift3lem7.w 𝑊 = (𝑏𝑇 (𝐻𝑋) ∈ 𝑏)
cvmlift3lem6.x (𝜑𝑋𝑀)
cvmlift3lem6.z (𝜑𝑍𝑀)
cvmlift3lem6.q (𝜑𝑄 ∈ (II Cn 𝐾))
cvmlift3lem6.r 𝑅 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑄) ∧ (𝑔‘0) = 𝑃))
cvmlift3lem6.1 (𝜑 → ((𝑄‘0) = 𝑂 ∧ (𝑄‘1) = 𝑋 ∧ (𝑅‘1) = (𝐻𝑋)))
cvmlift3lem6.n (𝜑𝑁 ∈ (II Cn (𝐾t 𝑀)))
cvmlift3lem6.2 (𝜑 → ((𝑁‘0) = 𝑋 ∧ (𝑁‘1) = 𝑍))
cvmlift3lem6.i 𝐼 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = (𝐻𝑋)))
Assertion
Ref Expression
cvmlift3lem6 (𝜑 → (𝐻𝑍) ∈ 𝑊)
Distinct variable groups:   𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑧,𝐴   𝑓,𝑔,𝐼,𝑧   𝑔,𝑏,𝑥,𝐽,𝑐,𝑑,𝑓,𝑘,𝑠   𝐹,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠   𝑥,𝑧,𝐹   𝑓,𝑀,𝑔,𝑥   𝑓,𝑁,𝑔   𝐻,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑄,𝑓,𝑔   𝑆,𝑏,𝑓,𝑥   𝐵,𝑏,𝑑,𝑓,𝑔,𝑥,𝑧   𝑅,𝑔   𝑋,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝐺,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑥,𝑧   𝑇,𝑏,𝑐,𝑑,𝑠   𝑓,𝑍,𝑔,𝑥,𝑧   𝐶,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠,𝑥,𝑧   𝜑,𝑓,𝑥   𝐾,𝑏,𝑐,𝑓,𝑔,𝑥,𝑧   𝑃,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑂,𝑏,𝑐,𝑓,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧   𝑊,𝑐,𝑑,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑔,𝑘,𝑠,𝑏,𝑐,𝑑)   𝐴(𝑥,𝑔)   𝐵(𝑘,𝑠,𝑐)   𝑃(𝑘,𝑠)   𝑄(𝑥,𝑧,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑅(𝑥,𝑧,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑆(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝑇(𝑥,𝑧,𝑓,𝑔,𝑘)   𝐺(𝑠)   𝐻(𝑘,𝑠)   𝐼(𝑥,𝑘,𝑠,𝑏,𝑐,𝑑)   𝐽(𝑧)   𝐾(𝑘,𝑠,𝑑)   𝑀(𝑧,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑁(𝑥,𝑧,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑂(𝑘,𝑠,𝑑)   𝑊(𝑧,𝑔,𝑘,𝑠,𝑏)   𝑋(𝑘,𝑠)   𝑌(𝑘,𝑠,𝑏,𝑐,𝑑)   𝑍(𝑘,𝑠,𝑏,𝑐,𝑑)

Proof of Theorem cvmlift3lem6
StepHypRef Expression
1 cvmlift3lem6.q . . . . 5 (𝜑𝑄 ∈ (II Cn 𝐾))
2 cvmlift3.k . . . . . . . 8 (𝜑𝐾 ∈ SConn)
3 sconntop 35234 . . . . . . . 8 (𝐾 ∈ SConn → 𝐾 ∈ Top)
42, 3syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
5 cnrest2r 23296 . . . . . . 7 (𝐾 ∈ Top → (II Cn (𝐾t 𝑀)) ⊆ (II Cn 𝐾))
64, 5syl 17 . . . . . 6 (𝜑 → (II Cn (𝐾t 𝑀)) ⊆ (II Cn 𝐾))
7 cvmlift3lem6.n . . . . . 6 (𝜑𝑁 ∈ (II Cn (𝐾t 𝑀)))
86, 7sseldd 3983 . . . . 5 (𝜑𝑁 ∈ (II Cn 𝐾))
9 cvmlift3lem6.1 . . . . . . 7 (𝜑 → ((𝑄‘0) = 𝑂 ∧ (𝑄‘1) = 𝑋 ∧ (𝑅‘1) = (𝐻𝑋)))
109simp2d 1143 . . . . . 6 (𝜑 → (𝑄‘1) = 𝑋)
11 cvmlift3lem6.2 . . . . . . 7 (𝜑 → ((𝑁‘0) = 𝑋 ∧ (𝑁‘1) = 𝑍))
1211simpld 494 . . . . . 6 (𝜑 → (𝑁‘0) = 𝑋)
1310, 12eqtr4d 2779 . . . . 5 (𝜑 → (𝑄‘1) = (𝑁‘0))
141, 8, 13pcocn 25051 . . . 4 (𝜑 → (𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾))
151, 8pco0 25048 . . . . 5 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘0) = (𝑄‘0))
169simp1d 1142 . . . . 5 (𝜑 → (𝑄‘0) = 𝑂)
1715, 16eqtrd 2776 . . . 4 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂)
181, 8pco1 25049 . . . . 5 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘1) = (𝑁‘1))
1911simprd 495 . . . . 5 (𝜑 → (𝑁‘1) = 𝑍)
2018, 19eqtrd 2776 . . . 4 (𝜑 → ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍)
21 cvmlift3.b . . . . . . . . . . 11 𝐵 = 𝐶
22 cvmlift3lem6.r . . . . . . . . . . 11 𝑅 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑄) ∧ (𝑔‘0) = 𝑃))
23 cvmlift3.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
24 cvmlift3.g . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
25 cnco 23275 . . . . . . . . . . . 12 ((𝑄 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑄) ∈ (II Cn 𝐽))
261, 24, 25syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐺𝑄) ∈ (II Cn 𝐽))
27 cvmlift3.p . . . . . . . . . . 11 (𝜑𝑃𝐵)
2816fveq2d 6909 . . . . . . . . . . . 12 (𝜑 → (𝐺‘(𝑄‘0)) = (𝐺𝑂))
29 iiuni 24908 . . . . . . . . . . . . . . 15 (0[,]1) = II
30 cvmlift3.y . . . . . . . . . . . . . . 15 𝑌 = 𝐾
3129, 30cnf 23255 . . . . . . . . . . . . . 14 (𝑄 ∈ (II Cn 𝐾) → 𝑄:(0[,]1)⟶𝑌)
321, 31syl 17 . . . . . . . . . . . . 13 (𝜑𝑄:(0[,]1)⟶𝑌)
33 0elunit 13510 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
34 fvco3 7007 . . . . . . . . . . . . 13 ((𝑄:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑄)‘0) = (𝐺‘(𝑄‘0)))
3532, 33, 34sylancl 586 . . . . . . . . . . . 12 (𝜑 → ((𝐺𝑄)‘0) = (𝐺‘(𝑄‘0)))
36 cvmlift3.e . . . . . . . . . . . 12 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
3728, 35, 363eqtr4rd 2787 . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = ((𝐺𝑄)‘0))
3821, 22, 23, 26, 27, 37cvmliftiota 35307 . . . . . . . . . 10 (𝜑 → (𝑅 ∈ (II Cn 𝐶) ∧ (𝐹𝑅) = (𝐺𝑄) ∧ (𝑅‘0) = 𝑃))
3938simp2d 1143 . . . . . . . . 9 (𝜑 → (𝐹𝑅) = (𝐺𝑄))
40 cvmlift3lem6.i . . . . . . . . . . 11 𝐼 = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑁) ∧ (𝑔‘0) = (𝐻𝑋)))
41 cnco 23275 . . . . . . . . . . . 12 ((𝑁 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑁) ∈ (II Cn 𝐽))
428, 24, 41syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐺𝑁) ∈ (II Cn 𝐽))
43 cvmlift3.l . . . . . . . . . . . . 13 (𝜑𝐾 ∈ 𝑛-Locally PConn)
44 cvmlift3.o . . . . . . . . . . . . 13 (𝜑𝑂𝑌)
45 cvmlift3.h . . . . . . . . . . . . 13 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
4621, 30, 23, 2, 43, 44, 24, 27, 36, 45cvmlift3lem3 35327 . . . . . . . . . . . 12 (𝜑𝐻:𝑌𝐵)
47 cvmlift3lem7.3 . . . . . . . . . . . . . 14 (𝜑𝑀 ⊆ (𝐺𝐴))
48 cnvimass 6099 . . . . . . . . . . . . . . 15 (𝐺𝐴) ⊆ dom 𝐺
49 eqid 2736 . . . . . . . . . . . . . . . . 17 𝐽 = 𝐽
5030, 49cnf 23255 . . . . . . . . . . . . . . . 16 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
5124, 50syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝑌 𝐽)
5248, 51fssdm 6754 . . . . . . . . . . . . . 14 (𝜑 → (𝐺𝐴) ⊆ 𝑌)
5347, 52sstrd 3993 . . . . . . . . . . . . 13 (𝜑𝑀𝑌)
54 cvmlift3lem6.x . . . . . . . . . . . . 13 (𝜑𝑋𝑀)
5553, 54sseldd 3983 . . . . . . . . . . . 12 (𝜑𝑋𝑌)
5646, 55ffvelcdmd 7104 . . . . . . . . . . 11 (𝜑 → (𝐻𝑋) ∈ 𝐵)
5712fveq2d 6909 . . . . . . . . . . . 12 (𝜑 → (𝐺‘(𝑁‘0)) = (𝐺𝑋))
5829, 30cnf 23255 . . . . . . . . . . . . . 14 (𝑁 ∈ (II Cn 𝐾) → 𝑁:(0[,]1)⟶𝑌)
598, 58syl 17 . . . . . . . . . . . . 13 (𝜑𝑁:(0[,]1)⟶𝑌)
60 fvco3 7007 . . . . . . . . . . . . 13 ((𝑁:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑁)‘0) = (𝐺‘(𝑁‘0)))
6159, 33, 60sylancl 586 . . . . . . . . . . . 12 (𝜑 → ((𝐺𝑁)‘0) = (𝐺‘(𝑁‘0)))
62 fvco3 7007 . . . . . . . . . . . . . 14 ((𝐻:𝑌𝐵𝑋𝑌) → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
6346, 55, 62syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
6421, 30, 23, 2, 43, 44, 24, 27, 36, 45cvmlift3lem5 35329 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐻) = 𝐺)
6564fveq1d 6907 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐻)‘𝑋) = (𝐺𝑋))
6663, 65eqtr3d 2778 . . . . . . . . . . . 12 (𝜑 → (𝐹‘(𝐻𝑋)) = (𝐺𝑋))
6757, 61, 663eqtr4rd 2787 . . . . . . . . . . 11 (𝜑 → (𝐹‘(𝐻𝑋)) = ((𝐺𝑁)‘0))
6821, 40, 23, 42, 56, 67cvmliftiota 35307 . . . . . . . . . 10 (𝜑 → (𝐼 ∈ (II Cn 𝐶) ∧ (𝐹𝐼) = (𝐺𝑁) ∧ (𝐼‘0) = (𝐻𝑋)))
6968simp2d 1143 . . . . . . . . 9 (𝜑 → (𝐹𝐼) = (𝐺𝑁))
7039, 69oveq12d 7450 . . . . . . . 8 (𝜑 → ((𝐹𝑅)(*𝑝𝐽)(𝐹𝐼)) = ((𝐺𝑄)(*𝑝𝐽)(𝐺𝑁)))
7138simp1d 1142 . . . . . . . . 9 (𝜑𝑅 ∈ (II Cn 𝐶))
7268simp1d 1142 . . . . . . . . 9 (𝜑𝐼 ∈ (II Cn 𝐶))
739simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝑅‘1) = (𝐻𝑋))
7468simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝐼‘0) = (𝐻𝑋))
7573, 74eqtr4d 2779 . . . . . . . . 9 (𝜑 → (𝑅‘1) = (𝐼‘0))
76 cvmcn 35268 . . . . . . . . . 10 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
7723, 76syl 17 . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
7871, 72, 75, 77copco 25052 . . . . . . . 8 (𝜑 → (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = ((𝐹𝑅)(*𝑝𝐽)(𝐹𝐼)))
791, 8, 13, 24copco 25052 . . . . . . . 8 (𝜑 → (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) = ((𝐺𝑄)(*𝑝𝐽)(𝐺𝑁)))
8070, 78, 793eqtr4d 2786 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)))
8171, 72pco0 25048 . . . . . . . 8 (𝜑 → ((𝑅(*𝑝𝐶)𝐼)‘0) = (𝑅‘0))
8238simp3d 1144 . . . . . . . 8 (𝜑 → (𝑅‘0) = 𝑃)
8381, 82eqtrd 2776 . . . . . . 7 (𝜑 → ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃)
8471, 72, 75pcocn 25051 . . . . . . . 8 (𝜑 → (𝑅(*𝑝𝐶)𝐼) ∈ (II Cn 𝐶))
85 cnco 23275 . . . . . . . . . 10 (((𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∈ (II Cn 𝐽))
8614, 24, 85syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∈ (II Cn 𝐽))
8717fveq2d 6909 . . . . . . . . . 10 (𝜑 → (𝐺‘((𝑄(*𝑝𝐾)𝑁)‘0)) = (𝐺𝑂))
8829, 30cnf 23255 . . . . . . . . . . . 12 ((𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾) → (𝑄(*𝑝𝐾)𝑁):(0[,]1)⟶𝑌)
8914, 88syl 17 . . . . . . . . . . 11 (𝜑 → (𝑄(*𝑝𝐾)𝑁):(0[,]1)⟶𝑌)
90 fvco3 7007 . . . . . . . . . . 11 (((𝑄(*𝑝𝐾)𝑁):(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0) = (𝐺‘((𝑄(*𝑝𝐾)𝑁)‘0)))
9189, 33, 90sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0) = (𝐺‘((𝑄(*𝑝𝐾)𝑁)‘0)))
9287, 91, 363eqtr4rd 2787 . . . . . . . . 9 (𝜑 → (𝐹𝑃) = ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0))
9321cvmlift 35305 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = ((𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))‘0))) → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))
9423, 86, 27, 92, 93syl22anc 838 . . . . . . . 8 (𝜑 → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))
95 coeq2 5868 . . . . . . . . . . 11 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → (𝐹𝑔) = (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)))
9695eqeq1d 2738 . . . . . . . . . 10 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → ((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ↔ (𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))))
97 fveq1 6904 . . . . . . . . . . 11 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → (𝑔‘0) = ((𝑅(*𝑝𝐶)𝐼)‘0))
9897eqeq1d 2738 . . . . . . . . . 10 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → ((𝑔‘0) = 𝑃 ↔ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃))
9996, 98anbi12d 632 . . . . . . . . 9 (𝑔 = (𝑅(*𝑝𝐶)𝐼) → (((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃)))
10099riota2 7414 . . . . . . . 8 (((𝑅(*𝑝𝐶)𝐼) ∈ (II Cn 𝐶) ∧ ∃!𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) → (((𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) = (𝑅(*𝑝𝐶)𝐼)))
10184, 94, 100syl2anc 584 . . . . . . 7 (𝜑 → (((𝐹 ∘ (𝑅(*𝑝𝐶)𝐼)) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ ((𝑅(*𝑝𝐶)𝐼)‘0) = 𝑃) ↔ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) = (𝑅(*𝑝𝐶)𝐼)))
10280, 83, 101mpbi2and 712 . . . . . 6 (𝜑 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)) = (𝑅(*𝑝𝐶)𝐼))
103102fveq1d 6907 . . . . 5 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑅(*𝑝𝐶)𝐼)‘1))
10471, 72pco1 25049 . . . . 5 (𝜑 → ((𝑅(*𝑝𝐶)𝐼)‘1) = (𝐼‘1))
105103, 104eqtrd 2776 . . . 4 (𝜑 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))
106 fveq1 6904 . . . . . . 7 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝑓‘0) = ((𝑄(*𝑝𝐾)𝑁)‘0))
107106eqeq1d 2738 . . . . . 6 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝑓‘0) = 𝑂 ↔ ((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂))
108 fveq1 6904 . . . . . . 7 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝑓‘1) = ((𝑄(*𝑝𝐾)𝑁)‘1))
109108eqeq1d 2738 . . . . . 6 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝑓‘1) = 𝑍 ↔ ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍))
110 coeq2 5868 . . . . . . . . . . 11 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝐺𝑓) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)))
111110eqeq2d 2747 . . . . . . . . . 10 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁))))
112111anbi1d 631 . . . . . . . . 9 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)))
113112riotabidv 7391 . . . . . . . 8 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃)))
114113fveq1d 6907 . . . . . . 7 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1))
115114eqeq1d 2738 . . . . . 6 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1) ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)))
116107, 109, 1153anbi123d 1437 . . . . 5 (𝑓 = (𝑄(*𝑝𝐾)𝑁) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)) ↔ (((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂 ∧ ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))))
117116rspcev 3621 . . . 4 (((𝑄(*𝑝𝐾)𝑁) ∈ (II Cn 𝐾) ∧ (((𝑄(*𝑝𝐾)𝑁)‘0) = 𝑂 ∧ ((𝑄(*𝑝𝐾)𝑁)‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺 ∘ (𝑄(*𝑝𝐾)𝑁)) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)))
11814, 17, 20, 105, 117syl13anc 1373 . . 3 (𝜑 → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1)))
119 cvmlift3lem6.z . . . . 5 (𝜑𝑍𝑀)
12053, 119sseldd 3983 . . . 4 (𝜑𝑍𝑌)
12121, 30, 23, 2, 43, 44, 24, 27, 36, 45cvmlift3lem4 35328 . . . 4 ((𝜑𝑍𝑌) → ((𝐻𝑍) = (𝐼‘1) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))))
122120, 121mpdan 687 . . 3 (𝜑 → ((𝐻𝑍) = (𝐼‘1) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑍 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐼‘1))))
123118, 122mpbird 257 . 2 (𝜑 → (𝐻𝑍) = (𝐼‘1))
124 iiconn 24914 . . . . 5 II ∈ Conn
125124a1i 11 . . . 4 (𝜑 → II ∈ Conn)
126 cvmtop1 35266 . . . . . . . 8 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
12723, 126syl 17 . . . . . . 7 (𝜑𝐶 ∈ Top)
12821toptopon 22924 . . . . . . 7 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
129127, 128sylib 218 . . . . . 6 (𝜑𝐶 ∈ (TopOn‘𝐵))
13069rneqd 5948 . . . . . . . . 9 (𝜑 → ran (𝐹𝐼) = ran (𝐺𝑁))
131 rnco2 6272 . . . . . . . . 9 ran (𝐹𝐼) = (𝐹 “ ran 𝐼)
132 rnco2 6272 . . . . . . . . 9 ran (𝐺𝑁) = (𝐺 “ ran 𝑁)
133130, 131, 1323eqtr3g 2799 . . . . . . . 8 (𝜑 → (𝐹 “ ran 𝐼) = (𝐺 “ ran 𝑁))
134 iitopon 24906 . . . . . . . . . . . . 13 II ∈ (TopOn‘(0[,]1))
135134a1i 11 . . . . . . . . . . . 12 (𝜑 → II ∈ (TopOn‘(0[,]1)))
13630toptopon 22924 . . . . . . . . . . . . . 14 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
1374, 136sylib 218 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (TopOn‘𝑌))
138 resttopon 23170 . . . . . . . . . . . . 13 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑀𝑌) → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
139137, 53, 138syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
140 cnf2 23258 . . . . . . . . . . . 12 ((II ∈ (TopOn‘(0[,]1)) ∧ (𝐾t 𝑀) ∈ (TopOn‘𝑀) ∧ 𝑁 ∈ (II Cn (𝐾t 𝑀))) → 𝑁:(0[,]1)⟶𝑀)
141135, 139, 7, 140syl3anc 1372 . . . . . . . . . . 11 (𝜑𝑁:(0[,]1)⟶𝑀)
142141frnd 6743 . . . . . . . . . 10 (𝜑 → ran 𝑁𝑀)
143142, 47sstrd 3993 . . . . . . . . 9 (𝜑 → ran 𝑁 ⊆ (𝐺𝐴))
14451ffund 6739 . . . . . . . . . 10 (𝜑 → Fun 𝐺)
145143, 48sstrdi 3995 . . . . . . . . . 10 (𝜑 → ran 𝑁 ⊆ dom 𝐺)
146 funimass3 7073 . . . . . . . . . 10 ((Fun 𝐺 ∧ ran 𝑁 ⊆ dom 𝐺) → ((𝐺 “ ran 𝑁) ⊆ 𝐴 ↔ ran 𝑁 ⊆ (𝐺𝐴)))
147144, 145, 146syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐺 “ ran 𝑁) ⊆ 𝐴 ↔ ran 𝑁 ⊆ (𝐺𝐴)))
148143, 147mpbird 257 . . . . . . . 8 (𝜑 → (𝐺 “ ran 𝑁) ⊆ 𝐴)
149133, 148eqsstrd 4017 . . . . . . 7 (𝜑 → (𝐹 “ ran 𝐼) ⊆ 𝐴)
15021, 49cnf 23255 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
15177, 150syl 17 . . . . . . . . 9 (𝜑𝐹:𝐵 𝐽)
152151ffund 6739 . . . . . . . 8 (𝜑 → Fun 𝐹)
15329, 21cnf 23255 . . . . . . . . . . 11 (𝐼 ∈ (II Cn 𝐶) → 𝐼:(0[,]1)⟶𝐵)
15472, 153syl 17 . . . . . . . . . 10 (𝜑𝐼:(0[,]1)⟶𝐵)
155154frnd 6743 . . . . . . . . 9 (𝜑 → ran 𝐼𝐵)
156151fdmd 6745 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐵)
157155, 156sseqtrrd 4020 . . . . . . . 8 (𝜑 → ran 𝐼 ⊆ dom 𝐹)
158 funimass3 7073 . . . . . . . 8 ((Fun 𝐹 ∧ ran 𝐼 ⊆ dom 𝐹) → ((𝐹 “ ran 𝐼) ⊆ 𝐴 ↔ ran 𝐼 ⊆ (𝐹𝐴)))
159152, 157, 158syl2anc 584 . . . . . . 7 (𝜑 → ((𝐹 “ ran 𝐼) ⊆ 𝐴 ↔ ran 𝐼 ⊆ (𝐹𝐴)))
160149, 159mpbid 232 . . . . . 6 (𝜑 → ran 𝐼 ⊆ (𝐹𝐴))
161 cnvimass 6099 . . . . . . 7 (𝐹𝐴) ⊆ dom 𝐹
162161, 151fssdm 6754 . . . . . 6 (𝜑 → (𝐹𝐴) ⊆ 𝐵)
163 cnrest2 23295 . . . . . 6 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran 𝐼 ⊆ (𝐹𝐴) ∧ (𝐹𝐴) ⊆ 𝐵) → (𝐼 ∈ (II Cn 𝐶) ↔ 𝐼 ∈ (II Cn (𝐶t (𝐹𝐴)))))
164129, 160, 162, 163syl3anc 1372 . . . . 5 (𝜑 → (𝐼 ∈ (II Cn 𝐶) ↔ 𝐼 ∈ (II Cn (𝐶t (𝐹𝐴)))))
16572, 164mpbid 232 . . . 4 (𝜑𝐼 ∈ (II Cn (𝐶t (𝐹𝐴))))
166 cvmlift3lem7.2 . . . . . . 7 (𝜑𝑇 ∈ (𝑆𝐴))
167 cvmlift3lem7.s . . . . . . . 8 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
168167cvmsss 35273 . . . . . . 7 (𝑇 ∈ (𝑆𝐴) → 𝑇𝐶)
169166, 168syl 17 . . . . . 6 (𝜑𝑇𝐶)
170 cvmlift3lem7.1 . . . . . . . . 9 (𝜑 → (𝐺𝑋) ∈ 𝐴)
17166, 170eqeltrd 2840 . . . . . . . 8 (𝜑 → (𝐹‘(𝐻𝑋)) ∈ 𝐴)
172 cvmlift3lem7.w . . . . . . . . 9 𝑊 = (𝑏𝑇 (𝐻𝑋) ∈ 𝑏)
173167, 21, 172cvmsiota 35283 . . . . . . . 8 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝐴) ∧ (𝐻𝑋) ∈ 𝐵 ∧ (𝐹‘(𝐻𝑋)) ∈ 𝐴)) → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
17423, 166, 56, 171, 173syl13anc 1373 . . . . . . 7 (𝜑 → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
175174simpld 494 . . . . . 6 (𝜑𝑊𝑇)
176169, 175sseldd 3983 . . . . 5 (𝜑𝑊𝐶)
177 elssuni 4936 . . . . . . 7 (𝑊𝑇𝑊 𝑇)
178175, 177syl 17 . . . . . 6 (𝜑𝑊 𝑇)
179167cvmsuni 35275 . . . . . . 7 (𝑇 ∈ (𝑆𝐴) → 𝑇 = (𝐹𝐴))
180166, 179syl 17 . . . . . 6 (𝜑 𝑇 = (𝐹𝐴))
181178, 180sseqtrd 4019 . . . . 5 (𝜑𝑊 ⊆ (𝐹𝐴))
182167cvmsrcl 35270 . . . . . . . 8 (𝑇 ∈ (𝑆𝐴) → 𝐴𝐽)
183166, 182syl 17 . . . . . . 7 (𝜑𝐴𝐽)
184 cnima 23274 . . . . . . 7 ((𝐹 ∈ (𝐶 Cn 𝐽) ∧ 𝐴𝐽) → (𝐹𝐴) ∈ 𝐶)
18577, 183, 184syl2anc 584 . . . . . 6 (𝜑 → (𝐹𝐴) ∈ 𝐶)
186 restopn2 23186 . . . . . 6 ((𝐶 ∈ Top ∧ (𝐹𝐴) ∈ 𝐶) → (𝑊 ∈ (𝐶t (𝐹𝐴)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝐴))))
187127, 185, 186syl2anc 584 . . . . 5 (𝜑 → (𝑊 ∈ (𝐶t (𝐹𝐴)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝐴))))
188176, 181, 187mpbir2and 713 . . . 4 (𝜑𝑊 ∈ (𝐶t (𝐹𝐴)))
189167cvmscld 35279 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝐴) ∧ 𝑊𝑇) → 𝑊 ∈ (Clsd‘(𝐶t (𝐹𝐴))))
19023, 166, 175, 189syl3anc 1372 . . . 4 (𝜑𝑊 ∈ (Clsd‘(𝐶t (𝐹𝐴))))
19133a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]1))
192174simprd 495 . . . . 5 (𝜑 → (𝐻𝑋) ∈ 𝑊)
19374, 192eqeltrd 2840 . . . 4 (𝜑 → (𝐼‘0) ∈ 𝑊)
19429, 125, 165, 188, 190, 191, 193conncn 23435 . . 3 (𝜑𝐼:(0[,]1)⟶𝑊)
195 1elunit 13511 . . 3 1 ∈ (0[,]1)
196 ffvelcdm 7100 . . 3 ((𝐼:(0[,]1)⟶𝑊 ∧ 1 ∈ (0[,]1)) → (𝐼‘1) ∈ 𝑊)
197194, 195, 196sylancl 586 . 2 (𝜑 → (𝐼‘1) ∈ 𝑊)
198123, 197eqeltrd 2840 1 (𝜑 → (𝐻𝑍) ∈ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  wrex 3069  ∃!wreu 3377  {crab 3435  cdif 3947  cin 3949  wss 3950  c0 4332  𝒫 cpw 4599  {csn 4625   cuni 4906  cmpt 5224  ccnv 5683  dom cdm 5684  ran crn 5685  cres 5686  cima 5687  ccom 5688  Fun wfun 6554  wf 6556  cfv 6560  crio 7388  (class class class)co 7432  0cc0 11156  1c1 11157  [,]cicc 13391  t crest 17466  Topctop 22900  TopOnctopon 22917  Clsdccld 23025   Cn ccn 23233  Conncconn 23420  𝑛-Locally cnlly 23474  Homeochmeo 23762  IIcii 24902  *𝑝cpco 25034  PConncpconn 35225  SConncsconn 35226   CovMap ccvm 35261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-ec 8748  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-cn 23236  df-cnp 23237  df-cmp 23396  df-conn 23421  df-lly 23475  df-nlly 23476  df-tx 23571  df-hmeo 23764  df-xms 24331  df-ms 24332  df-tms 24333  df-ii 24904  df-cncf 24905  df-htpy 25003  df-phtpy 25004  df-phtpc 25025  df-pco 25039  df-pconn 35227  df-sconn 35228  df-cvm 35262
This theorem is referenced by:  cvmlift3lem7  35331
  Copyright terms: Public domain W3C validator