| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cvmlift3.b | . . 3
⊢ 𝐵 = ∪
𝐶 | 
| 2 |  | cvmlift3.y | . . 3
⊢ 𝑌 = ∪
𝐾 | 
| 3 |  | cvmlift3.f | . . 3
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | 
| 4 |  | cvmlift3.k | . . 3
⊢ (𝜑 → 𝐾 ∈ SConn) | 
| 5 |  | cvmlift3.l | . . 3
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
PConn) | 
| 6 |  | cvmlift3.o | . . 3
⊢ (𝜑 → 𝑂 ∈ 𝑌) | 
| 7 |  | cvmlift3.g | . . 3
⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) | 
| 8 |  | cvmlift3.p | . . 3
⊢ (𝜑 → 𝑃 ∈ 𝐵) | 
| 9 |  | cvmlift3.e | . . 3
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) | 
| 10 |  | cvmlift3.h | . . 3
⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) | 
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cvmlift3lem3 35326 | . 2
⊢ (𝜑 → 𝐻:𝑌⟶𝐵) | 
| 12 | 3 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐹 ∈ (𝐶 CovMap 𝐽)) | 
| 13 |  | eqid 2737 | . . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 14 | 2, 13 | cnf 23254 | . . . . . . 7
⊢ (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌⟶∪ 𝐽) | 
| 15 | 7, 14 | syl 17 | . . . . . 6
⊢ (𝜑 → 𝐺:𝑌⟶∪ 𝐽) | 
| 16 | 15 | ffvelcdmda 7104 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝐺‘𝑦) ∈ ∪ 𝐽) | 
| 17 |  | cvmlift3lem7.s | . . . . . 6
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) | 
| 18 | 17, 13 | cvmcov 35268 | . . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺‘𝑦) ∈ ∪ 𝐽) → ∃𝑎 ∈ 𝐽 ((𝐺‘𝑦) ∈ 𝑎 ∧ (𝑆‘𝑎) ≠ ∅)) | 
| 19 | 12, 16, 18 | syl2anc 584 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ∃𝑎 ∈ 𝐽 ((𝐺‘𝑦) ∈ 𝑎 ∧ (𝑆‘𝑎) ≠ ∅)) | 
| 20 |  | n0 4353 | . . . . . . 7
⊢ ((𝑆‘𝑎) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ (𝑆‘𝑎)) | 
| 21 | 5 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) → 𝐾 ∈ 𝑛-Locally
PConn) | 
| 22 | 7 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) → 𝐺 ∈ (𝐾 Cn 𝐽)) | 
| 23 |  | simprr 773 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) → 𝑡 ∈ (𝑆‘𝑎)) | 
| 24 | 17 | cvmsrcl 35269 | . . . . . . . . . . . . 13
⊢ (𝑡 ∈ (𝑆‘𝑎) → 𝑎 ∈ 𝐽) | 
| 25 | 23, 24 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) → 𝑎 ∈ 𝐽) | 
| 26 |  | cnima 23273 | . . . . . . . . . . . 12
⊢ ((𝐺 ∈ (𝐾 Cn 𝐽) ∧ 𝑎 ∈ 𝐽) → (◡𝐺 “ 𝑎) ∈ 𝐾) | 
| 27 | 22, 25, 26 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) → (◡𝐺 “ 𝑎) ∈ 𝐾) | 
| 28 |  | simplr 769 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) → 𝑦 ∈ 𝑌) | 
| 29 |  | simprl 771 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) → (𝐺‘𝑦) ∈ 𝑎) | 
| 30 |  | ffn 6736 | . . . . . . . . . . . . 13
⊢ (𝐺:𝑌⟶∪ 𝐽 → 𝐺 Fn 𝑌) | 
| 31 |  | elpreima 7078 | . . . . . . . . . . . . 13
⊢ (𝐺 Fn 𝑌 → (𝑦 ∈ (◡𝐺 “ 𝑎) ↔ (𝑦 ∈ 𝑌 ∧ (𝐺‘𝑦) ∈ 𝑎))) | 
| 32 | 22, 14, 30, 31 | 4syl 19 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) → (𝑦 ∈ (◡𝐺 “ 𝑎) ↔ (𝑦 ∈ 𝑌 ∧ (𝐺‘𝑦) ∈ 𝑎))) | 
| 33 | 28, 29, 32 | mpbir2and 713 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) → 𝑦 ∈ (◡𝐺 “ 𝑎)) | 
| 34 |  | nlly2i 23484 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ 𝑛-Locally PConn
∧ (◡𝐺 “ 𝑎) ∈ 𝐾 ∧ 𝑦 ∈ (◡𝐺 “ 𝑎)) → ∃𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎)∃𝑣 ∈ 𝐾 (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn)) | 
| 35 | 21, 27, 33, 34 | syl3anc 1373 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) → ∃𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎)∃𝑣 ∈ 𝐾 (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn)) | 
| 36 | 3 | ad3antrrr 730 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) | 
| 37 | 4 | ad3antrrr 730 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → 𝐾 ∈ SConn) | 
| 38 | 5 | ad3antrrr 730 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → 𝐾 ∈ 𝑛-Locally
PConn) | 
| 39 | 6 | ad3antrrr 730 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → 𝑂 ∈ 𝑌) | 
| 40 | 7 | ad3antrrr 730 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → 𝐺 ∈ (𝐾 Cn 𝐽)) | 
| 41 | 8 | ad3antrrr 730 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → 𝑃 ∈ 𝐵) | 
| 42 | 9 | ad3antrrr 730 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → (𝐹‘𝑃) = (𝐺‘𝑂)) | 
| 43 | 29 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → (𝐺‘𝑦) ∈ 𝑎) | 
| 44 | 23 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → 𝑡 ∈ (𝑆‘𝑎)) | 
| 45 |  | simprll 779 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → 𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎)) | 
| 46 | 45 | elpwid 4609 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → 𝑚 ⊆ (◡𝐺 “ 𝑎)) | 
| 47 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢
(℩𝑏
∈ 𝑡 (𝐻‘𝑦) ∈ 𝑏) = (℩𝑏 ∈ 𝑡 (𝐻‘𝑦) ∈ 𝑏) | 
| 48 |  | simprr3 1224 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → (𝐾 ↾t 𝑚) ∈ PConn) | 
| 49 |  | simprlr 780 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → 𝑣 ∈ 𝐾) | 
| 50 |  | simprr2 1223 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → 𝑣 ⊆ 𝑚) | 
| 51 |  | simprr1 1222 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → 𝑦 ∈ 𝑣) | 
| 52 | 1, 2, 36, 37, 38, 39, 40, 41, 42, 10, 17, 43, 44, 46, 47, 48, 49, 50, 51 | cvmlift3lem7 35330 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ ((𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾) ∧ (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn))) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)) | 
| 53 | 52 | expr 456 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) ∧ (𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎) ∧ 𝑣 ∈ 𝐾)) → ((𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))) | 
| 54 | 53 | rexlimdvva 3213 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) → (∃𝑚 ∈ 𝒫 (◡𝐺 “ 𝑎)∃𝑣 ∈ 𝐾 (𝑦 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑚 ∧ (𝐾 ↾t 𝑚) ∈ PConn) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))) | 
| 55 | 35, 54 | mpd 15 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ ((𝐺‘𝑦) ∈ 𝑎 ∧ 𝑡 ∈ (𝑆‘𝑎))) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)) | 
| 56 | 55 | expr 456 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ (𝐺‘𝑦) ∈ 𝑎) → (𝑡 ∈ (𝑆‘𝑎) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))) | 
| 57 | 56 | exlimdv 1933 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ (𝐺‘𝑦) ∈ 𝑎) → (∃𝑡 𝑡 ∈ (𝑆‘𝑎) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))) | 
| 58 | 20, 57 | biimtrid 242 | . . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑌) ∧ (𝐺‘𝑦) ∈ 𝑎) → ((𝑆‘𝑎) ≠ ∅ → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))) | 
| 59 | 58 | expimpd 453 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (((𝐺‘𝑦) ∈ 𝑎 ∧ (𝑆‘𝑎) ≠ ∅) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))) | 
| 60 | 59 | rexlimdvw 3160 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (∃𝑎 ∈ 𝐽 ((𝐺‘𝑦) ∈ 𝑎 ∧ (𝑆‘𝑎) ≠ ∅) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))) | 
| 61 | 19, 60 | mpd 15 | . . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)) | 
| 62 | 61 | ralrimiva 3146 | . 2
⊢ (𝜑 → ∀𝑦 ∈ 𝑌 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)) | 
| 63 |  | sconntop 35233 | . . . . 5
⊢ (𝐾 ∈ SConn → 𝐾 ∈ Top) | 
| 64 | 4, 63 | syl 17 | . . . 4
⊢ (𝜑 → 𝐾 ∈ Top) | 
| 65 | 2 | toptopon 22923 | . . . 4
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) | 
| 66 | 64, 65 | sylib 218 | . . 3
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | 
| 67 |  | cvmtop1 35265 | . . . . 5
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) | 
| 68 | 3, 67 | syl 17 | . . . 4
⊢ (𝜑 → 𝐶 ∈ Top) | 
| 69 | 1 | toptopon 22923 | . . . 4
⊢ (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵)) | 
| 70 | 68, 69 | sylib 218 | . . 3
⊢ (𝜑 → 𝐶 ∈ (TopOn‘𝐵)) | 
| 71 |  | cncnp 23288 | . . 3
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐶 ∈ (TopOn‘𝐵)) → (𝐻 ∈ (𝐾 Cn 𝐶) ↔ (𝐻:𝑌⟶𝐵 ∧ ∀𝑦 ∈ 𝑌 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))) | 
| 72 | 66, 70, 71 | syl2anc 584 | . 2
⊢ (𝜑 → (𝐻 ∈ (𝐾 Cn 𝐶) ↔ (𝐻:𝑌⟶𝐵 ∧ ∀𝑦 ∈ 𝑌 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))) | 
| 73 | 11, 62, 72 | mpbir2and 713 | 1
⊢ (𝜑 → 𝐻 ∈ (𝐾 Cn 𝐶)) |