Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem8 Structured version   Visualization version   GIF version

Theorem cvmlift3lem8 35353
Description: Lemma for cvmlift2 35343. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
cvmlift3lem7.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmlift3lem8 (𝜑𝐻 ∈ (𝐾 Cn 𝐶))
Distinct variable groups:   𝑐,𝑑,𝑓,𝑘,𝑠,𝑧,𝑔,𝑥   𝐽,𝑐   𝑔,𝑑,𝑥,𝐽,𝑓,𝑘,𝑠   𝐹,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠   𝑥,𝑧,𝐹   𝐻,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑆,𝑓,𝑥   𝐵,𝑑,𝑓,𝑔,𝑥,𝑧   𝐺,𝑐,𝑑,𝑓,𝑔,𝑘,𝑥,𝑧   𝐶,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠,𝑥,𝑧   𝜑,𝑓,𝑥   𝐾,𝑐,𝑓,𝑔,𝑥,𝑧   𝑃,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑂,𝑐,𝑓,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝐵(𝑘,𝑠,𝑐)   𝑃(𝑘,𝑠)   𝑆(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝐺(𝑠)   𝐻(𝑘,𝑠)   𝐽(𝑧)   𝐾(𝑘,𝑠,𝑑)   𝑂(𝑘,𝑠,𝑑)   𝑌(𝑘,𝑠,𝑐,𝑑)

Proof of Theorem cvmlift3lem8
Dummy variables 𝑏 𝑎 𝑣 𝑦 𝑚 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.b . . 3 𝐵 = 𝐶
2 cvmlift3.y . . 3 𝑌 = 𝐾
3 cvmlift3.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmlift3.k . . 3 (𝜑𝐾 ∈ SConn)
5 cvmlift3.l . . 3 (𝜑𝐾 ∈ 𝑛-Locally PConn)
6 cvmlift3.o . . 3 (𝜑𝑂𝑌)
7 cvmlift3.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
8 cvmlift3.p . . 3 (𝜑𝑃𝐵)
9 cvmlift3.e . . 3 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
10 cvmlift3.h . . 3 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem3 35348 . 2 (𝜑𝐻:𝑌𝐵)
123adantr 480 . . . . 5 ((𝜑𝑦𝑌) → 𝐹 ∈ (𝐶 CovMap 𝐽))
13 eqid 2736 . . . . . . . 8 𝐽 = 𝐽
142, 13cnf 23189 . . . . . . 7 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
157, 14syl 17 . . . . . 6 (𝜑𝐺:𝑌 𝐽)
1615ffvelcdmda 7079 . . . . 5 ((𝜑𝑦𝑌) → (𝐺𝑦) ∈ 𝐽)
17 cvmlift3lem7.s . . . . . 6 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
1817, 13cvmcov 35290 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺𝑦) ∈ 𝐽) → ∃𝑎𝐽 ((𝐺𝑦) ∈ 𝑎 ∧ (𝑆𝑎) ≠ ∅))
1912, 16, 18syl2anc 584 . . . 4 ((𝜑𝑦𝑌) → ∃𝑎𝐽 ((𝐺𝑦) ∈ 𝑎 ∧ (𝑆𝑎) ≠ ∅))
20 n0 4333 . . . . . . 7 ((𝑆𝑎) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ (𝑆𝑎))
215ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → 𝐾 ∈ 𝑛-Locally PConn)
227ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → 𝐺 ∈ (𝐾 Cn 𝐽))
23 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → 𝑡 ∈ (𝑆𝑎))
2417cvmsrcl 35291 . . . . . . . . . . . . 13 (𝑡 ∈ (𝑆𝑎) → 𝑎𝐽)
2523, 24syl 17 . . . . . . . . . . . 12 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → 𝑎𝐽)
26 cnima 23208 . . . . . . . . . . . 12 ((𝐺 ∈ (𝐾 Cn 𝐽) ∧ 𝑎𝐽) → (𝐺𝑎) ∈ 𝐾)
2722, 25, 26syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → (𝐺𝑎) ∈ 𝐾)
28 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → 𝑦𝑌)
29 simprl 770 . . . . . . . . . . . 12 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → (𝐺𝑦) ∈ 𝑎)
30 ffn 6711 . . . . . . . . . . . . 13 (𝐺:𝑌 𝐽𝐺 Fn 𝑌)
31 elpreima 7053 . . . . . . . . . . . . 13 (𝐺 Fn 𝑌 → (𝑦 ∈ (𝐺𝑎) ↔ (𝑦𝑌 ∧ (𝐺𝑦) ∈ 𝑎)))
3222, 14, 30, 314syl 19 . . . . . . . . . . . 12 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → (𝑦 ∈ (𝐺𝑎) ↔ (𝑦𝑌 ∧ (𝐺𝑦) ∈ 𝑎)))
3328, 29, 32mpbir2and 713 . . . . . . . . . . 11 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → 𝑦 ∈ (𝐺𝑎))
34 nlly2i 23419 . . . . . . . . . . 11 ((𝐾 ∈ 𝑛-Locally PConn ∧ (𝐺𝑎) ∈ 𝐾𝑦 ∈ (𝐺𝑎)) → ∃𝑚 ∈ 𝒫 (𝐺𝑎)∃𝑣𝐾 (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))
3521, 27, 33, 34syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → ∃𝑚 ∈ 𝒫 (𝐺𝑎)∃𝑣𝐾 (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))
363ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
374ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝐾 ∈ SConn)
385ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝐾 ∈ 𝑛-Locally PConn)
396ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑂𝑌)
407ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝐺 ∈ (𝐾 Cn 𝐽))
418ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑃𝐵)
429ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → (𝐹𝑃) = (𝐺𝑂))
4329adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → (𝐺𝑦) ∈ 𝑎)
4423adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑡 ∈ (𝑆𝑎))
45 simprll 778 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑚 ∈ 𝒫 (𝐺𝑎))
4645elpwid 4589 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑚 ⊆ (𝐺𝑎))
47 eqid 2736 . . . . . . . . . . . . 13 (𝑏𝑡 (𝐻𝑦) ∈ 𝑏) = (𝑏𝑡 (𝐻𝑦) ∈ 𝑏)
48 simprr3 1224 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → (𝐾t 𝑚) ∈ PConn)
49 simprlr 779 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑣𝐾)
50 simprr2 1223 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑣𝑚)
51 simprr1 1222 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑦𝑣)
521, 2, 36, 37, 38, 39, 40, 41, 42, 10, 17, 43, 44, 46, 47, 48, 49, 50, 51cvmlift3lem7 35352 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))
5352expr 456 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ (𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾)) → ((𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))
5453rexlimdvva 3202 . . . . . . . . . 10 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → (∃𝑚 ∈ 𝒫 (𝐺𝑎)∃𝑣𝐾 (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))
5535, 54mpd 15 . . . . . . . . 9 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))
5655expr 456 . . . . . . . 8 (((𝜑𝑦𝑌) ∧ (𝐺𝑦) ∈ 𝑎) → (𝑡 ∈ (𝑆𝑎) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))
5756exlimdv 1933 . . . . . . 7 (((𝜑𝑦𝑌) ∧ (𝐺𝑦) ∈ 𝑎) → (∃𝑡 𝑡 ∈ (𝑆𝑎) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))
5820, 57biimtrid 242 . . . . . 6 (((𝜑𝑦𝑌) ∧ (𝐺𝑦) ∈ 𝑎) → ((𝑆𝑎) ≠ ∅ → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))
5958expimpd 453 . . . . 5 ((𝜑𝑦𝑌) → (((𝐺𝑦) ∈ 𝑎 ∧ (𝑆𝑎) ≠ ∅) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))
6059rexlimdvw 3147 . . . 4 ((𝜑𝑦𝑌) → (∃𝑎𝐽 ((𝐺𝑦) ∈ 𝑎 ∧ (𝑆𝑎) ≠ ∅) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))
6119, 60mpd 15 . . 3 ((𝜑𝑦𝑌) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))
6261ralrimiva 3133 . 2 (𝜑 → ∀𝑦𝑌 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))
63 sconntop 35255 . . . . 5 (𝐾 ∈ SConn → 𝐾 ∈ Top)
644, 63syl 17 . . . 4 (𝜑𝐾 ∈ Top)
652toptopon 22860 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
6664, 65sylib 218 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
67 cvmtop1 35287 . . . . 5 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
683, 67syl 17 . . . 4 (𝜑𝐶 ∈ Top)
691toptopon 22860 . . . 4 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
7068, 69sylib 218 . . 3 (𝜑𝐶 ∈ (TopOn‘𝐵))
71 cncnp 23223 . . 3 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐶 ∈ (TopOn‘𝐵)) → (𝐻 ∈ (𝐾 Cn 𝐶) ↔ (𝐻:𝑌𝐵 ∧ ∀𝑦𝑌 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))))
7266, 70, 71syl2anc 584 . 2 (𝜑 → (𝐻 ∈ (𝐾 Cn 𝐶) ↔ (𝐻:𝑌𝐵 ∧ ∀𝑦𝑌 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))))
7311, 62, 72mpbir2and 713 1 (𝜑𝐻 ∈ (𝐾 Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  cdif 3928  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606   cuni 4888  cmpt 5206  ccnv 5658  cres 5661  cima 5662  ccom 5663   Fn wfn 6531  wf 6532  cfv 6536  crio 7366  (class class class)co 7410  0cc0 11134  1c1 11135  t crest 17439  Topctop 22836  TopOnctopon 22853   Cn ccn 23167   CnP ccnp 23168  𝑛-Locally cnlly 23408  Homeochmeo 23696  IIcii 24824  PConncpconn 35246  SConncsconn 35247   CovMap ccvm 35282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-ec 8726  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-cn 23170  df-cnp 23171  df-cmp 23330  df-conn 23355  df-lly 23409  df-nlly 23410  df-tx 23505  df-hmeo 23698  df-xms 24264  df-ms 24265  df-tms 24266  df-ii 24826  df-cncf 24827  df-htpy 24925  df-phtpy 24926  df-phtpc 24947  df-pco 24961  df-pconn 35248  df-sconn 35249  df-cvm 35283
This theorem is referenced by:  cvmlift3lem9  35354
  Copyright terms: Public domain W3C validator