Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem7 Structured version   Visualization version   GIF version

Theorem cvmlift3lem7 34311
Description: Lemma for cvmlift3 34314. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐡 = βˆͺ 𝐢
cvmlift3.y π‘Œ = βˆͺ 𝐾
cvmlift3.f (πœ‘ β†’ 𝐹 ∈ (𝐢 CovMap 𝐽))
cvmlift3.k (πœ‘ β†’ 𝐾 ∈ SConn)
cvmlift3.l (πœ‘ β†’ 𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (πœ‘ β†’ 𝑂 ∈ π‘Œ)
cvmlift3.g (πœ‘ β†’ 𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (πœ‘ β†’ 𝑃 ∈ 𝐡)
cvmlift3.e (πœ‘ β†’ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘‚))
cvmlift3.h 𝐻 = (π‘₯ ∈ π‘Œ ↦ (℩𝑧 ∈ 𝐡 βˆƒπ‘“ ∈ (II Cn 𝐾)((π‘“β€˜0) = 𝑂 ∧ (π‘“β€˜1) = π‘₯ ∧ ((℩𝑔 ∈ (II Cn 𝐢)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (π‘”β€˜0) = 𝑃))β€˜1) = 𝑧)))
cvmlift3lem7.s 𝑆 = (π‘˜ ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐢 βˆ– {βˆ…}) ∣ (βˆͺ 𝑠 = (◑𝐹 β€œ π‘˜) ∧ βˆ€π‘ ∈ 𝑠 (βˆ€π‘‘ ∈ (𝑠 βˆ– {𝑐})(𝑐 ∩ 𝑑) = βˆ… ∧ (𝐹 β†Ύ 𝑐) ∈ ((𝐢 β†Ύt 𝑐)Homeo(𝐽 β†Ύt π‘˜))))})
cvmlift3lem7.1 (πœ‘ β†’ (πΊβ€˜π‘‹) ∈ 𝐴)
cvmlift3lem7.2 (πœ‘ β†’ 𝑇 ∈ (π‘†β€˜π΄))
cvmlift3lem7.3 (πœ‘ β†’ 𝑀 βŠ† (◑𝐺 β€œ 𝐴))
cvmlift3lem7.w π‘Š = (℩𝑏 ∈ 𝑇 (π»β€˜π‘‹) ∈ 𝑏)
cvmlift3lem7.7 (πœ‘ β†’ (𝐾 β†Ύt 𝑀) ∈ PConn)
cvmlift3lem7.4 (πœ‘ β†’ 𝑉 ∈ 𝐾)
cvmlift3lem7.5 (πœ‘ β†’ 𝑉 βŠ† 𝑀)
cvmlift3lem7.6 (πœ‘ β†’ 𝑋 ∈ 𝑉)
Assertion
Ref Expression
cvmlift3lem7 (πœ‘ β†’ 𝐻 ∈ ((𝐾 CnP 𝐢)β€˜π‘‹))
Distinct variable groups:   𝑏,𝑐,𝑑,𝑓,π‘˜,𝑠,𝑧,𝐴   𝑓,𝑔,𝑧,𝑏,π‘₯   𝐽,𝑏   𝑔,𝑐,π‘₯,𝐽,𝑑,𝑓,π‘˜,𝑠   𝐹,𝑏,𝑐,𝑑,𝑓,𝑔,π‘˜,𝑠   π‘₯,𝑧,𝐹   𝑓,𝑀,𝑔,π‘₯   𝐻,𝑏,𝑐,𝑑,𝑓,𝑔,π‘₯,𝑧   𝑆,𝑏,𝑓,π‘₯   𝐡,𝑏,𝑑,𝑓,𝑔,π‘₯,𝑧   𝑋,𝑏,𝑐,𝑑,𝑓,𝑔,π‘₯,𝑧   𝐺,𝑏,𝑐,𝑑,𝑓,𝑔,π‘˜,π‘₯,𝑧   𝑇,𝑏,𝑐,𝑑,𝑠   𝐢,𝑏,𝑐,𝑑,𝑓,𝑔,π‘˜,𝑠,π‘₯,𝑧   πœ‘,𝑓,π‘₯   𝐾,𝑏,𝑐,𝑓,𝑔,π‘₯,𝑧   𝑃,𝑏,𝑐,𝑑,𝑓,𝑔,π‘₯,𝑧   𝑂,𝑏,𝑐,𝑓,𝑔,π‘₯,𝑧   𝑓,π‘Œ,𝑔,π‘₯,𝑧   π‘Š,𝑐,𝑑,𝑓,π‘₯
Allowed substitution hints:   πœ‘(𝑧,𝑔,π‘˜,𝑠,𝑏,𝑐,𝑑)   𝐴(π‘₯,𝑔)   𝐡(π‘˜,𝑠,𝑐)   𝑃(π‘˜,𝑠)   𝑆(𝑧,𝑔,π‘˜,𝑠,𝑐,𝑑)   𝑇(π‘₯,𝑧,𝑓,𝑔,π‘˜)   𝐺(𝑠)   𝐻(π‘˜,𝑠)   𝐽(𝑧)   𝐾(π‘˜,𝑠,𝑑)   𝑀(𝑧,π‘˜,𝑠,𝑏,𝑐,𝑑)   𝑂(π‘˜,𝑠,𝑑)   𝑉(π‘₯,𝑧,𝑓,𝑔,π‘˜,𝑠,𝑏,𝑐,𝑑)   π‘Š(𝑧,𝑔,π‘˜,𝑠,𝑏)   𝑋(π‘˜,𝑠)   π‘Œ(π‘˜,𝑠,𝑏,𝑐,𝑑)

Proof of Theorem cvmlift3lem7
Dummy variables π‘Ž 𝑦 β„Ž 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.b . . . 4 𝐡 = βˆͺ 𝐢
2 cvmlift3.y . . . 4 π‘Œ = βˆͺ 𝐾
3 cvmlift3lem7.s . . . 4 𝑆 = (π‘˜ ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐢 βˆ– {βˆ…}) ∣ (βˆͺ 𝑠 = (◑𝐹 β€œ π‘˜) ∧ βˆ€π‘ ∈ 𝑠 (βˆ€π‘‘ ∈ (𝑠 βˆ– {𝑐})(𝑐 ∩ 𝑑) = βˆ… ∧ (𝐹 β†Ύ 𝑐) ∈ ((𝐢 β†Ύt 𝑐)Homeo(𝐽 β†Ύt π‘˜))))})
4 cvmlift3.f . . . 4 (πœ‘ β†’ 𝐹 ∈ (𝐢 CovMap 𝐽))
5 cvmlift3.k . . . . 5 (πœ‘ β†’ 𝐾 ∈ SConn)
6 cvmlift3.l . . . . 5 (πœ‘ β†’ 𝐾 ∈ 𝑛-Locally PConn)
7 cvmlift3.o . . . . 5 (πœ‘ β†’ 𝑂 ∈ π‘Œ)
8 cvmlift3.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ (𝐾 Cn 𝐽))
9 cvmlift3.p . . . . 5 (πœ‘ β†’ 𝑃 ∈ 𝐡)
10 cvmlift3.e . . . . 5 (πœ‘ β†’ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘‚))
11 cvmlift3.h . . . . 5 𝐻 = (π‘₯ ∈ π‘Œ ↦ (℩𝑧 ∈ 𝐡 βˆƒπ‘“ ∈ (II Cn 𝐾)((π‘“β€˜0) = 𝑂 ∧ (π‘“β€˜1) = π‘₯ ∧ ((℩𝑔 ∈ (II Cn 𝐢)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (π‘”β€˜0) = 𝑃))β€˜1) = 𝑧)))
121, 2, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem3 34307 . . . 4 (πœ‘ β†’ 𝐻:π‘ŒβŸΆπ΅)
131, 2, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem5 34309 . . . . 5 (πœ‘ β†’ (𝐹 ∘ 𝐻) = 𝐺)
1413, 8eqeltrd 2833 . . . 4 (πœ‘ β†’ (𝐹 ∘ 𝐻) ∈ (𝐾 Cn 𝐽))
15 sconntop 34214 . . . . 5 (𝐾 ∈ SConn β†’ 𝐾 ∈ Top)
165, 15syl 17 . . . 4 (πœ‘ β†’ 𝐾 ∈ Top)
17 cvmlift3lem7.3 . . . . . 6 (πœ‘ β†’ 𝑀 βŠ† (◑𝐺 β€œ 𝐴))
18 cnvimass 6080 . . . . . . 7 (◑𝐺 β€œ 𝐴) βŠ† dom 𝐺
19 eqid 2732 . . . . . . . . 9 βˆͺ 𝐽 = βˆͺ 𝐽
202, 19cnf 22749 . . . . . . . 8 (𝐺 ∈ (𝐾 Cn 𝐽) β†’ 𝐺:π‘ŒβŸΆβˆͺ 𝐽)
21 fdm 6726 . . . . . . . 8 (𝐺:π‘ŒβŸΆβˆͺ 𝐽 β†’ dom 𝐺 = π‘Œ)
228, 20, 213syl 18 . . . . . . 7 (πœ‘ β†’ dom 𝐺 = π‘Œ)
2318, 22sseqtrid 4034 . . . . . 6 (πœ‘ β†’ (◑𝐺 β€œ 𝐴) βŠ† π‘Œ)
2417, 23sstrd 3992 . . . . 5 (πœ‘ β†’ 𝑀 βŠ† π‘Œ)
25 cvmlift3lem7.5 . . . . . 6 (πœ‘ β†’ 𝑉 βŠ† 𝑀)
26 cvmlift3lem7.6 . . . . . 6 (πœ‘ β†’ 𝑋 ∈ 𝑉)
2725, 26sseldd 3983 . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝑀)
2824, 27sseldd 3983 . . . 4 (πœ‘ β†’ 𝑋 ∈ π‘Œ)
29 cvmlift3lem7.2 . . . 4 (πœ‘ β†’ 𝑇 ∈ (π‘†β€˜π΄))
3012, 28ffvelcdmd 7087 . . . . 5 (πœ‘ β†’ (π»β€˜π‘‹) ∈ 𝐡)
31 fvco3 6990 . . . . . . . 8 ((𝐻:π‘ŒβŸΆπ΅ ∧ 𝑋 ∈ π‘Œ) β†’ ((𝐹 ∘ 𝐻)β€˜π‘‹) = (πΉβ€˜(π»β€˜π‘‹)))
3212, 28, 31syl2anc 584 . . . . . . 7 (πœ‘ β†’ ((𝐹 ∘ 𝐻)β€˜π‘‹) = (πΉβ€˜(π»β€˜π‘‹)))
3313fveq1d 6893 . . . . . . 7 (πœ‘ β†’ ((𝐹 ∘ 𝐻)β€˜π‘‹) = (πΊβ€˜π‘‹))
3432, 33eqtr3d 2774 . . . . . 6 (πœ‘ β†’ (πΉβ€˜(π»β€˜π‘‹)) = (πΊβ€˜π‘‹))
35 cvmlift3lem7.1 . . . . . 6 (πœ‘ β†’ (πΊβ€˜π‘‹) ∈ 𝐴)
3634, 35eqeltrd 2833 . . . . 5 (πœ‘ β†’ (πΉβ€˜(π»β€˜π‘‹)) ∈ 𝐴)
37 cvmlift3lem7.w . . . . . 6 π‘Š = (℩𝑏 ∈ 𝑇 (π»β€˜π‘‹) ∈ 𝑏)
383, 1, 37cvmsiota 34263 . . . . 5 ((𝐹 ∈ (𝐢 CovMap 𝐽) ∧ (𝑇 ∈ (π‘†β€˜π΄) ∧ (π»β€˜π‘‹) ∈ 𝐡 ∧ (πΉβ€˜(π»β€˜π‘‹)) ∈ 𝐴)) β†’ (π‘Š ∈ 𝑇 ∧ (π»β€˜π‘‹) ∈ π‘Š))
394, 29, 30, 36, 38syl13anc 1372 . . . 4 (πœ‘ β†’ (π‘Š ∈ 𝑇 ∧ (π»β€˜π‘‹) ∈ π‘Š))
40 eqid 2732 . . . . . . . . . . 11 (π»β€˜π‘‹) = (π»β€˜π‘‹)
411, 2, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem4 34308 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑋 ∈ π‘Œ) β†’ ((π»β€˜π‘‹) = (π»β€˜π‘‹) ↔ βˆƒπ‘“ ∈ (II Cn 𝐾)((π‘“β€˜0) = 𝑂 ∧ (π‘“β€˜1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐢)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (π‘”β€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹))))
4240, 41mpbii 232 . . . . . . . . . 10 ((πœ‘ ∧ 𝑋 ∈ π‘Œ) β†’ βˆƒπ‘“ ∈ (II Cn 𝐾)((π‘“β€˜0) = 𝑂 ∧ (π‘“β€˜1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐢)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (π‘”β€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)))
4328, 42mpdan 685 . . . . . . . . 9 (πœ‘ β†’ βˆƒπ‘“ ∈ (II Cn 𝐾)((π‘“β€˜0) = 𝑂 ∧ (π‘“β€˜1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐢)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (π‘”β€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)))
4443adantr 481 . . . . . . . 8 ((πœ‘ ∧ 𝑦 ∈ 𝑀) β†’ βˆƒπ‘“ ∈ (II Cn 𝐾)((π‘“β€˜0) = 𝑂 ∧ (π‘“β€˜1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐢)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (π‘”β€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)))
45 fveq1 6890 . . . . . . . . . . 11 (𝑓 = β„Ž β†’ (π‘“β€˜0) = (β„Žβ€˜0))
4645eqeq1d 2734 . . . . . . . . . 10 (𝑓 = β„Ž β†’ ((π‘“β€˜0) = 𝑂 ↔ (β„Žβ€˜0) = 𝑂))
47 fveq1 6890 . . . . . . . . . . 11 (𝑓 = β„Ž β†’ (π‘“β€˜1) = (β„Žβ€˜1))
4847eqeq1d 2734 . . . . . . . . . 10 (𝑓 = β„Ž β†’ ((π‘“β€˜1) = 𝑋 ↔ (β„Žβ€˜1) = 𝑋))
49 coeq2 5858 . . . . . . . . . . . . . . . 16 (𝑓 = β„Ž β†’ (𝐺 ∘ 𝑓) = (𝐺 ∘ β„Ž))
5049eqeq2d 2743 . . . . . . . . . . . . . . 15 (𝑓 = β„Ž β†’ ((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ↔ (𝐹 ∘ 𝑔) = (𝐺 ∘ β„Ž)))
5150anbi1d 630 . . . . . . . . . . . . . 14 (𝑓 = β„Ž β†’ (((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (π‘”β€˜0) = 𝑃) ↔ ((𝐹 ∘ 𝑔) = (𝐺 ∘ β„Ž) ∧ (π‘”β€˜0) = 𝑃)))
5251riotabidv 7366 . . . . . . . . . . . . 13 (𝑓 = β„Ž β†’ (℩𝑔 ∈ (II Cn 𝐢)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (π‘”β€˜0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐢)((𝐹 ∘ 𝑔) = (𝐺 ∘ β„Ž) ∧ (π‘”β€˜0) = 𝑃)))
53 coeq2 5858 . . . . . . . . . . . . . . . 16 (π‘Ž = 𝑔 β†’ (𝐹 ∘ π‘Ž) = (𝐹 ∘ 𝑔))
5453eqeq1d 2734 . . . . . . . . . . . . . . 15 (π‘Ž = 𝑔 β†’ ((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ↔ (𝐹 ∘ 𝑔) = (𝐺 ∘ β„Ž)))
55 fveq1 6890 . . . . . . . . . . . . . . . 16 (π‘Ž = 𝑔 β†’ (π‘Žβ€˜0) = (π‘”β€˜0))
5655eqeq1d 2734 . . . . . . . . . . . . . . 15 (π‘Ž = 𝑔 β†’ ((π‘Žβ€˜0) = 𝑃 ↔ (π‘”β€˜0) = 𝑃))
5754, 56anbi12d 631 . . . . . . . . . . . . . 14 (π‘Ž = 𝑔 β†’ (((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃) ↔ ((𝐹 ∘ 𝑔) = (𝐺 ∘ β„Ž) ∧ (π‘”β€˜0) = 𝑃)))
5857cbvriotavw 7374 . . . . . . . . . . . . 13 (β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐢)((𝐹 ∘ 𝑔) = (𝐺 ∘ β„Ž) ∧ (π‘”β€˜0) = 𝑃))
5952, 58eqtr4di 2790 . . . . . . . . . . . 12 (𝑓 = β„Ž β†’ (℩𝑔 ∈ (II Cn 𝐢)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (π‘”β€˜0) = 𝑃)) = (β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃)))
6059fveq1d 6893 . . . . . . . . . . 11 (𝑓 = β„Ž β†’ ((℩𝑔 ∈ (II Cn 𝐢)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (π‘”β€˜0) = 𝑃))β€˜1) = ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1))
6160eqeq1d 2734 . . . . . . . . . 10 (𝑓 = β„Ž β†’ (((℩𝑔 ∈ (II Cn 𝐢)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (π‘”β€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹) ↔ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)))
6246, 48, 613anbi123d 1436 . . . . . . . . 9 (𝑓 = β„Ž β†’ (((π‘“β€˜0) = 𝑂 ∧ (π‘“β€˜1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐢)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (π‘”β€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ↔ ((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹))))
6362cbvrexvw 3235 . . . . . . . 8 (βˆƒπ‘“ ∈ (II Cn 𝐾)((π‘“β€˜0) = 𝑂 ∧ (π‘“β€˜1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐢)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (π‘”β€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ↔ βˆƒβ„Ž ∈ (II Cn 𝐾)((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)))
6444, 63sylib 217 . . . . . . 7 ((πœ‘ ∧ 𝑦 ∈ 𝑀) β†’ βˆƒβ„Ž ∈ (II Cn 𝐾)((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)))
65 cvmlift3lem7.7 . . . . . . . . 9 (πœ‘ β†’ (𝐾 β†Ύt 𝑀) ∈ PConn)
6665adantr 481 . . . . . . . 8 ((πœ‘ ∧ 𝑦 ∈ 𝑀) β†’ (𝐾 β†Ύt 𝑀) ∈ PConn)
672restuni 22665 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ 𝑀 βŠ† π‘Œ) β†’ 𝑀 = βˆͺ (𝐾 β†Ύt 𝑀))
6816, 24, 67syl2anc 584 . . . . . . . . . 10 (πœ‘ β†’ 𝑀 = βˆͺ (𝐾 β†Ύt 𝑀))
6927, 68eleqtrd 2835 . . . . . . . . 9 (πœ‘ β†’ 𝑋 ∈ βˆͺ (𝐾 β†Ύt 𝑀))
7069adantr 481 . . . . . . . 8 ((πœ‘ ∧ 𝑦 ∈ 𝑀) β†’ 𝑋 ∈ βˆͺ (𝐾 β†Ύt 𝑀))
7168eleq2d 2819 . . . . . . . . 9 (πœ‘ β†’ (𝑦 ∈ 𝑀 ↔ 𝑦 ∈ βˆͺ (𝐾 β†Ύt 𝑀)))
7271biimpa 477 . . . . . . . 8 ((πœ‘ ∧ 𝑦 ∈ 𝑀) β†’ 𝑦 ∈ βˆͺ (𝐾 β†Ύt 𝑀))
73 eqid 2732 . . . . . . . . 9 βˆͺ (𝐾 β†Ύt 𝑀) = βˆͺ (𝐾 β†Ύt 𝑀)
7473pconncn 34210 . . . . . . . 8 (((𝐾 β†Ύt 𝑀) ∈ PConn ∧ 𝑋 ∈ βˆͺ (𝐾 β†Ύt 𝑀) ∧ 𝑦 ∈ βˆͺ (𝐾 β†Ύt 𝑀)) β†’ βˆƒπ‘› ∈ (II Cn (𝐾 β†Ύt 𝑀))((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))
7566, 70, 72, 74syl3anc 1371 . . . . . . 7 ((πœ‘ ∧ 𝑦 ∈ 𝑀) β†’ βˆƒπ‘› ∈ (II Cn (𝐾 β†Ύt 𝑀))((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))
76 reeanv 3226 . . . . . . . 8 (βˆƒβ„Ž ∈ (II Cn 𝐾)βˆƒπ‘› ∈ (II Cn (𝐾 β†Ύt 𝑀))(((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦)) ↔ (βˆƒβ„Ž ∈ (II Cn 𝐾)((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ βˆƒπ‘› ∈ (II Cn (𝐾 β†Ύt 𝑀))((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦)))
774ad3antrrr 728 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ 𝐹 ∈ (𝐢 CovMap 𝐽))
785ad3antrrr 728 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ 𝐾 ∈ SConn)
796ad3antrrr 728 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ 𝐾 ∈ 𝑛-Locally PConn)
807ad3antrrr 728 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ 𝑂 ∈ π‘Œ)
818ad3antrrr 728 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ 𝐺 ∈ (𝐾 Cn 𝐽))
829ad3antrrr 728 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ 𝑃 ∈ 𝐡)
8310ad3antrrr 728 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘‚))
8435ad3antrrr 728 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ (πΊβ€˜π‘‹) ∈ 𝐴)
8529ad3antrrr 728 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ 𝑇 ∈ (π‘†β€˜π΄))
8617ad3antrrr 728 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ 𝑀 βŠ† (◑𝐺 β€œ 𝐴))
8727ad3antrrr 728 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ 𝑋 ∈ 𝑀)
88 simpllr 774 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ 𝑦 ∈ 𝑀)
89 simplrl 775 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ β„Ž ∈ (II Cn 𝐾))
90 simprl 769 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ ((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)))
91 simplrr 776 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))
92 simprr 771 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))
9353eqeq1d 2734 . . . . . . . . . . . . 13 (π‘Ž = 𝑔 β†’ ((𝐹 ∘ π‘Ž) = (𝐺 ∘ 𝑛) ↔ (𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑛)))
9455eqeq1d 2734 . . . . . . . . . . . . 13 (π‘Ž = 𝑔 β†’ ((π‘Žβ€˜0) = (π»β€˜π‘‹) ↔ (π‘”β€˜0) = (π»β€˜π‘‹)))
9593, 94anbi12d 631 . . . . . . . . . . . 12 (π‘Ž = 𝑔 β†’ (((𝐹 ∘ π‘Ž) = (𝐺 ∘ 𝑛) ∧ (π‘Žβ€˜0) = (π»β€˜π‘‹)) ↔ ((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑛) ∧ (π‘”β€˜0) = (π»β€˜π‘‹))))
9695cbvriotavw 7374 . . . . . . . . . . 11 (β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ 𝑛) ∧ (π‘Žβ€˜0) = (π»β€˜π‘‹))) = (℩𝑔 ∈ (II Cn 𝐢)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑛) ∧ (π‘”β€˜0) = (π»β€˜π‘‹)))
971, 2, 77, 78, 79, 80, 81, 82, 83, 11, 3, 84, 85, 86, 37, 87, 88, 89, 58, 90, 91, 92, 96cvmlift3lem6 34310 . . . . . . . . . 10 ((((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) ∧ (((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦))) β†’ (π»β€˜π‘¦) ∈ π‘Š)
9897ex 413 . . . . . . . . 9 (((πœ‘ ∧ 𝑦 ∈ 𝑀) ∧ (β„Ž ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 β†Ύt 𝑀)))) β†’ ((((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦)) β†’ (π»β€˜π‘¦) ∈ π‘Š))
9998rexlimdvva 3211 . . . . . . . 8 ((πœ‘ ∧ 𝑦 ∈ 𝑀) β†’ (βˆƒβ„Ž ∈ (II Cn 𝐾)βˆƒπ‘› ∈ (II Cn (𝐾 β†Ύt 𝑀))(((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ ((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦)) β†’ (π»β€˜π‘¦) ∈ π‘Š))
10076, 99biimtrrid 242 . . . . . . 7 ((πœ‘ ∧ 𝑦 ∈ 𝑀) β†’ ((βˆƒβ„Ž ∈ (II Cn 𝐾)((β„Žβ€˜0) = 𝑂 ∧ (β„Žβ€˜1) = 𝑋 ∧ ((β„©π‘Ž ∈ (II Cn 𝐢)((𝐹 ∘ π‘Ž) = (𝐺 ∘ β„Ž) ∧ (π‘Žβ€˜0) = 𝑃))β€˜1) = (π»β€˜π‘‹)) ∧ βˆƒπ‘› ∈ (II Cn (𝐾 β†Ύt 𝑀))((π‘›β€˜0) = 𝑋 ∧ (π‘›β€˜1) = 𝑦)) β†’ (π»β€˜π‘¦) ∈ π‘Š))
10164, 75, 100mp2and 697 . . . . . 6 ((πœ‘ ∧ 𝑦 ∈ 𝑀) β†’ (π»β€˜π‘¦) ∈ π‘Š)
102101ralrimiva 3146 . . . . 5 (πœ‘ β†’ βˆ€π‘¦ ∈ 𝑀 (π»β€˜π‘¦) ∈ π‘Š)
10312ffund 6721 . . . . . 6 (πœ‘ β†’ Fun 𝐻)
10412fdmd 6728 . . . . . . 7 (πœ‘ β†’ dom 𝐻 = π‘Œ)
10524, 104sseqtrrd 4023 . . . . . 6 (πœ‘ β†’ 𝑀 βŠ† dom 𝐻)
106 funimass4 6956 . . . . . 6 ((Fun 𝐻 ∧ 𝑀 βŠ† dom 𝐻) β†’ ((𝐻 β€œ 𝑀) βŠ† π‘Š ↔ βˆ€π‘¦ ∈ 𝑀 (π»β€˜π‘¦) ∈ π‘Š))
107103, 105, 106syl2anc 584 . . . . 5 (πœ‘ β†’ ((𝐻 β€œ 𝑀) βŠ† π‘Š ↔ βˆ€π‘¦ ∈ 𝑀 (π»β€˜π‘¦) ∈ π‘Š))
108102, 107mpbird 256 . . . 4 (πœ‘ β†’ (𝐻 β€œ 𝑀) βŠ† π‘Š)
1091, 2, 3, 4, 12, 14, 16, 28, 29, 39, 24, 108cvmlift2lem9a 34289 . . 3 (πœ‘ β†’ (𝐻 β†Ύ 𝑀) ∈ ((𝐾 β†Ύt 𝑀) Cn 𝐢))
11073cncnpi 22781 . . 3 (((𝐻 β†Ύ 𝑀) ∈ ((𝐾 β†Ύt 𝑀) Cn 𝐢) ∧ 𝑋 ∈ βˆͺ (𝐾 β†Ύt 𝑀)) β†’ (𝐻 β†Ύ 𝑀) ∈ (((𝐾 β†Ύt 𝑀) CnP 𝐢)β€˜π‘‹))
111109, 69, 110syl2anc 584 . 2 (πœ‘ β†’ (𝐻 β†Ύ 𝑀) ∈ (((𝐾 β†Ύt 𝑀) CnP 𝐢)β€˜π‘‹))
112 cvmlift3lem7.4 . . . . 5 (πœ‘ β†’ 𝑉 ∈ 𝐾)
1132ssntr 22561 . . . . 5 (((𝐾 ∈ Top ∧ 𝑀 βŠ† π‘Œ) ∧ (𝑉 ∈ 𝐾 ∧ 𝑉 βŠ† 𝑀)) β†’ 𝑉 βŠ† ((intβ€˜πΎ)β€˜π‘€))
11416, 24, 112, 25, 113syl22anc 837 . . . 4 (πœ‘ β†’ 𝑉 βŠ† ((intβ€˜πΎ)β€˜π‘€))
115114, 26sseldd 3983 . . 3 (πœ‘ β†’ 𝑋 ∈ ((intβ€˜πΎ)β€˜π‘€))
1162, 1cnprest 22792 . . 3 (((𝐾 ∈ Top ∧ 𝑀 βŠ† π‘Œ) ∧ (𝑋 ∈ ((intβ€˜πΎ)β€˜π‘€) ∧ 𝐻:π‘ŒβŸΆπ΅)) β†’ (𝐻 ∈ ((𝐾 CnP 𝐢)β€˜π‘‹) ↔ (𝐻 β†Ύ 𝑀) ∈ (((𝐾 β†Ύt 𝑀) CnP 𝐢)β€˜π‘‹)))
11716, 24, 115, 12, 116syl22anc 837 . 2 (πœ‘ β†’ (𝐻 ∈ ((𝐾 CnP 𝐢)β€˜π‘‹) ↔ (𝐻 β†Ύ 𝑀) ∈ (((𝐾 β†Ύt 𝑀) CnP 𝐢)β€˜π‘‹)))
118111, 117mpbird 256 1 (πœ‘ β†’ 𝐻 ∈ ((𝐾 CnP 𝐢)β€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432   βˆ– cdif 3945   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322  π’« cpw 4602  {csn 4628  βˆͺ cuni 4908   ↦ cmpt 5231  β—‘ccnv 5675  dom cdm 5676   β†Ύ cres 5678   β€œ cima 5679   ∘ ccom 5680  Fun wfun 6537  βŸΆwf 6539  β€˜cfv 6543  β„©crio 7363  (class class class)co 7408  0cc0 11109  1c1 11110   β†Ύt crest 17365  Topctop 22394  intcnt 22520   Cn ccn 22727   CnP ccnp 22728  π‘›-Locally cnlly 22968  Homeochmeo 23256  IIcii 24390  PConncpconn 34205  SConncsconn 34206   CovMap ccvm 34241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187  ax-addf 11188  ax-mulf 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-er 8702  df-ec 8704  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-fi 9405  df-sup 9436  df-inf 9437  df-oi 9504  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-q 12932  df-rp 12974  df-xneg 13091  df-xadd 13092  df-xmul 13093  df-ioo 13327  df-ico 13329  df-icc 13330  df-fz 13484  df-fzo 13627  df-fl 13756  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-sum 15632  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17367  df-topn 17368  df-0g 17386  df-gsum 17387  df-topgen 17388  df-pt 17389  df-prds 17392  df-xrs 17447  df-qtop 17452  df-imas 17453  df-xps 17455  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-submnd 18671  df-mulg 18950  df-cntz 19180  df-cmn 19649  df-psmet 20935  df-xmet 20936  df-met 20937  df-bl 20938  df-mopn 20939  df-cnfld 20944  df-top 22395  df-topon 22412  df-topsp 22434  df-bases 22448  df-cld 22522  df-ntr 22523  df-cls 22524  df-nei 22601  df-cn 22730  df-cnp 22731  df-cmp 22890  df-conn 22915  df-lly 22969  df-nlly 22970  df-tx 23065  df-hmeo 23258  df-xms 23825  df-ms 23826  df-tms 23827  df-ii 24392  df-htpy 24485  df-phtpy 24486  df-phtpc 24507  df-pco 24520  df-pconn 34207  df-sconn 34208  df-cvm 34242
This theorem is referenced by:  cvmlift3lem8  34312
  Copyright terms: Public domain W3C validator