Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem7 Structured version   Visualization version   GIF version

Theorem cvmlift3lem7 35293
Description: Lemma for cvmlift3 35296. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
cvmlift3lem7.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift3lem7.1 (𝜑 → (𝐺𝑋) ∈ 𝐴)
cvmlift3lem7.2 (𝜑𝑇 ∈ (𝑆𝐴))
cvmlift3lem7.3 (𝜑𝑀 ⊆ (𝐺𝐴))
cvmlift3lem7.w 𝑊 = (𝑏𝑇 (𝐻𝑋) ∈ 𝑏)
cvmlift3lem7.7 (𝜑 → (𝐾t 𝑀) ∈ PConn)
cvmlift3lem7.4 (𝜑𝑉𝐾)
cvmlift3lem7.5 (𝜑𝑉𝑀)
cvmlift3lem7.6 (𝜑𝑋𝑉)
Assertion
Ref Expression
cvmlift3lem7 (𝜑𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋))
Distinct variable groups:   𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑧,𝐴   𝑓,𝑔,𝑧,𝑏,𝑥   𝐽,𝑏   𝑔,𝑐,𝑥,𝐽,𝑑,𝑓,𝑘,𝑠   𝐹,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠   𝑥,𝑧,𝐹   𝑓,𝑀,𝑔,𝑥   𝐻,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑆,𝑏,𝑓,𝑥   𝐵,𝑏,𝑑,𝑓,𝑔,𝑥,𝑧   𝑋,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝐺,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑥,𝑧   𝑇,𝑏,𝑐,𝑑,𝑠   𝐶,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠,𝑥,𝑧   𝜑,𝑓,𝑥   𝐾,𝑏,𝑐,𝑓,𝑔,𝑥,𝑧   𝑃,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑂,𝑏,𝑐,𝑓,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧   𝑊,𝑐,𝑑,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑔,𝑘,𝑠,𝑏,𝑐,𝑑)   𝐴(𝑥,𝑔)   𝐵(𝑘,𝑠,𝑐)   𝑃(𝑘,𝑠)   𝑆(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝑇(𝑥,𝑧,𝑓,𝑔,𝑘)   𝐺(𝑠)   𝐻(𝑘,𝑠)   𝐽(𝑧)   𝐾(𝑘,𝑠,𝑑)   𝑀(𝑧,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑂(𝑘,𝑠,𝑑)   𝑉(𝑥,𝑧,𝑓,𝑔,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑊(𝑧,𝑔,𝑘,𝑠,𝑏)   𝑋(𝑘,𝑠)   𝑌(𝑘,𝑠,𝑏,𝑐,𝑑)

Proof of Theorem cvmlift3lem7
Dummy variables 𝑎 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.b . . . 4 𝐵 = 𝐶
2 cvmlift3.y . . . 4 𝑌 = 𝐾
3 cvmlift3lem7.s . . . 4 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
4 cvmlift3.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmlift3.k . . . . 5 (𝜑𝐾 ∈ SConn)
6 cvmlift3.l . . . . 5 (𝜑𝐾 ∈ 𝑛-Locally PConn)
7 cvmlift3.o . . . . 5 (𝜑𝑂𝑌)
8 cvmlift3.g . . . . 5 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
9 cvmlift3.p . . . . 5 (𝜑𝑃𝐵)
10 cvmlift3.e . . . . 5 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
11 cvmlift3.h . . . . 5 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
121, 2, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem3 35289 . . . 4 (𝜑𝐻:𝑌𝐵)
131, 2, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem5 35291 . . . . 5 (𝜑 → (𝐹𝐻) = 𝐺)
1413, 8eqeltrd 2844 . . . 4 (𝜑 → (𝐹𝐻) ∈ (𝐾 Cn 𝐽))
15 sconntop 35196 . . . . 5 (𝐾 ∈ SConn → 𝐾 ∈ Top)
165, 15syl 17 . . . 4 (𝜑𝐾 ∈ Top)
17 cvmlift3lem7.3 . . . . . 6 (𝜑𝑀 ⊆ (𝐺𝐴))
18 cnvimass 6111 . . . . . . 7 (𝐺𝐴) ⊆ dom 𝐺
19 eqid 2740 . . . . . . . . 9 𝐽 = 𝐽
202, 19cnf 23275 . . . . . . . 8 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
21 fdm 6756 . . . . . . . 8 (𝐺:𝑌 𝐽 → dom 𝐺 = 𝑌)
228, 20, 213syl 18 . . . . . . 7 (𝜑 → dom 𝐺 = 𝑌)
2318, 22sseqtrid 4061 . . . . . 6 (𝜑 → (𝐺𝐴) ⊆ 𝑌)
2417, 23sstrd 4019 . . . . 5 (𝜑𝑀𝑌)
25 cvmlift3lem7.5 . . . . . 6 (𝜑𝑉𝑀)
26 cvmlift3lem7.6 . . . . . 6 (𝜑𝑋𝑉)
2725, 26sseldd 4009 . . . . 5 (𝜑𝑋𝑀)
2824, 27sseldd 4009 . . . 4 (𝜑𝑋𝑌)
29 cvmlift3lem7.2 . . . 4 (𝜑𝑇 ∈ (𝑆𝐴))
3012, 28ffvelcdmd 7119 . . . . 5 (𝜑 → (𝐻𝑋) ∈ 𝐵)
31 fvco3 7021 . . . . . . . 8 ((𝐻:𝑌𝐵𝑋𝑌) → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
3212, 28, 31syl2anc 583 . . . . . . 7 (𝜑 → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
3313fveq1d 6922 . . . . . . 7 (𝜑 → ((𝐹𝐻)‘𝑋) = (𝐺𝑋))
3432, 33eqtr3d 2782 . . . . . 6 (𝜑 → (𝐹‘(𝐻𝑋)) = (𝐺𝑋))
35 cvmlift3lem7.1 . . . . . 6 (𝜑 → (𝐺𝑋) ∈ 𝐴)
3634, 35eqeltrd 2844 . . . . 5 (𝜑 → (𝐹‘(𝐻𝑋)) ∈ 𝐴)
37 cvmlift3lem7.w . . . . . 6 𝑊 = (𝑏𝑇 (𝐻𝑋) ∈ 𝑏)
383, 1, 37cvmsiota 35245 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝐴) ∧ (𝐻𝑋) ∈ 𝐵 ∧ (𝐹‘(𝐻𝑋)) ∈ 𝐴)) → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
394, 29, 30, 36, 38syl13anc 1372 . . . 4 (𝜑 → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
40 eqid 2740 . . . . . . . . . . 11 (𝐻𝑋) = (𝐻𝑋)
411, 2, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem4 35290 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ((𝐻𝑋) = (𝐻𝑋) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑋))))
4240, 41mpbii 233 . . . . . . . . . 10 ((𝜑𝑋𝑌) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑋)))
4328, 42mpdan 686 . . . . . . . . 9 (𝜑 → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑋)))
4443adantr 480 . . . . . . . 8 ((𝜑𝑦𝑀) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑋)))
45 fveq1 6919 . . . . . . . . . . 11 (𝑓 = → (𝑓‘0) = (‘0))
4645eqeq1d 2742 . . . . . . . . . 10 (𝑓 = → ((𝑓‘0) = 𝑂 ↔ (‘0) = 𝑂))
47 fveq1 6919 . . . . . . . . . . 11 (𝑓 = → (𝑓‘1) = (‘1))
4847eqeq1d 2742 . . . . . . . . . 10 (𝑓 = → ((𝑓‘1) = 𝑋 ↔ (‘1) = 𝑋))
49 coeq2 5883 . . . . . . . . . . . . . . . 16 (𝑓 = → (𝐺𝑓) = (𝐺))
5049eqeq2d 2751 . . . . . . . . . . . . . . 15 (𝑓 = → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺)))
5150anbi1d 630 . . . . . . . . . . . . . 14 (𝑓 = → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
5251riotabidv 7406 . . . . . . . . . . . . 13 (𝑓 = → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
53 coeq2 5883 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑔 → (𝐹𝑎) = (𝐹𝑔))
5453eqeq1d 2742 . . . . . . . . . . . . . . 15 (𝑎 = 𝑔 → ((𝐹𝑎) = (𝐺) ↔ (𝐹𝑔) = (𝐺)))
55 fveq1 6919 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑔 → (𝑎‘0) = (𝑔‘0))
5655eqeq1d 2742 . . . . . . . . . . . . . . 15 (𝑎 = 𝑔 → ((𝑎‘0) = 𝑃 ↔ (𝑔‘0) = 𝑃))
5754, 56anbi12d 631 . . . . . . . . . . . . . 14 (𝑎 = 𝑔 → (((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
5857cbvriotavw 7414 . . . . . . . . . . . . 13 (𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))
5952, 58eqtr4di 2798 . . . . . . . . . . . 12 (𝑓 = → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃)))
6059fveq1d 6922 . . . . . . . . . . 11 (𝑓 = → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1))
6160eqeq1d 2742 . . . . . . . . . 10 (𝑓 = → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑋) ↔ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)))
6246, 48, 613anbi123d 1436 . . . . . . . . 9 (𝑓 = → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑋)) ↔ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋))))
6362cbvrexvw 3244 . . . . . . . 8 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑋)) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)))
6444, 63sylib 218 . . . . . . 7 ((𝜑𝑦𝑀) → ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)))
65 cvmlift3lem7.7 . . . . . . . . 9 (𝜑 → (𝐾t 𝑀) ∈ PConn)
6665adantr 480 . . . . . . . 8 ((𝜑𝑦𝑀) → (𝐾t 𝑀) ∈ PConn)
672restuni 23191 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ 𝑀𝑌) → 𝑀 = (𝐾t 𝑀))
6816, 24, 67syl2anc 583 . . . . . . . . . 10 (𝜑𝑀 = (𝐾t 𝑀))
6927, 68eleqtrd 2846 . . . . . . . . 9 (𝜑𝑋 (𝐾t 𝑀))
7069adantr 480 . . . . . . . 8 ((𝜑𝑦𝑀) → 𝑋 (𝐾t 𝑀))
7168eleq2d 2830 . . . . . . . . 9 (𝜑 → (𝑦𝑀𝑦 (𝐾t 𝑀)))
7271biimpa 476 . . . . . . . 8 ((𝜑𝑦𝑀) → 𝑦 (𝐾t 𝑀))
73 eqid 2740 . . . . . . . . 9 (𝐾t 𝑀) = (𝐾t 𝑀)
7473pconncn 35192 . . . . . . . 8 (((𝐾t 𝑀) ∈ PConn ∧ 𝑋 (𝐾t 𝑀) ∧ 𝑦 (𝐾t 𝑀)) → ∃𝑛 ∈ (II Cn (𝐾t 𝑀))((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))
7566, 70, 72, 74syl3anc 1371 . . . . . . 7 ((𝜑𝑦𝑀) → ∃𝑛 ∈ (II Cn (𝐾t 𝑀))((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))
76 reeanv 3235 . . . . . . . 8 (∃ ∈ (II Cn 𝐾)∃𝑛 ∈ (II Cn (𝐾t 𝑀))(((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)) ↔ (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ∃𝑛 ∈ (II Cn (𝐾t 𝑀))((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)))
774ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
785ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝐾 ∈ SConn)
796ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝐾 ∈ 𝑛-Locally PConn)
807ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑂𝑌)
818ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝐺 ∈ (𝐾 Cn 𝐽))
829ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑃𝐵)
8310ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → (𝐹𝑃) = (𝐺𝑂))
8435ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → (𝐺𝑋) ∈ 𝐴)
8529ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑇 ∈ (𝑆𝐴))
8617ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑀 ⊆ (𝐺𝐴))
8727ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑋𝑀)
88 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑦𝑀)
89 simplrl 776 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → ∈ (II Cn 𝐾))
90 simprl 770 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)))
91 simplrr 777 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑛 ∈ (II Cn (𝐾t 𝑀)))
92 simprr 772 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))
9353eqeq1d 2742 . . . . . . . . . . . . 13 (𝑎 = 𝑔 → ((𝐹𝑎) = (𝐺𝑛) ↔ (𝐹𝑔) = (𝐺𝑛)))
9455eqeq1d 2742 . . . . . . . . . . . . 13 (𝑎 = 𝑔 → ((𝑎‘0) = (𝐻𝑋) ↔ (𝑔‘0) = (𝐻𝑋)))
9593, 94anbi12d 631 . . . . . . . . . . . 12 (𝑎 = 𝑔 → (((𝐹𝑎) = (𝐺𝑛) ∧ (𝑎‘0) = (𝐻𝑋)) ↔ ((𝐹𝑔) = (𝐺𝑛) ∧ (𝑔‘0) = (𝐻𝑋))))
9695cbvriotavw 7414 . . . . . . . . . . 11 (𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺𝑛) ∧ (𝑎‘0) = (𝐻𝑋))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑛) ∧ (𝑔‘0) = (𝐻𝑋)))
971, 2, 77, 78, 79, 80, 81, 82, 83, 11, 3, 84, 85, 86, 37, 87, 88, 89, 58, 90, 91, 92, 96cvmlift3lem6 35292 . . . . . . . . . 10 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → (𝐻𝑦) ∈ 𝑊)
9897ex 412 . . . . . . . . 9 (((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) → ((((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)) → (𝐻𝑦) ∈ 𝑊))
9998rexlimdvva 3219 . . . . . . . 8 ((𝜑𝑦𝑀) → (∃ ∈ (II Cn 𝐾)∃𝑛 ∈ (II Cn (𝐾t 𝑀))(((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)) → (𝐻𝑦) ∈ 𝑊))
10076, 99biimtrrid 243 . . . . . . 7 ((𝜑𝑦𝑀) → ((∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ∃𝑛 ∈ (II Cn (𝐾t 𝑀))((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)) → (𝐻𝑦) ∈ 𝑊))
10164, 75, 100mp2and 698 . . . . . 6 ((𝜑𝑦𝑀) → (𝐻𝑦) ∈ 𝑊)
102101ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑦𝑀 (𝐻𝑦) ∈ 𝑊)
10312ffund 6751 . . . . . 6 (𝜑 → Fun 𝐻)
10412fdmd 6757 . . . . . . 7 (𝜑 → dom 𝐻 = 𝑌)
10524, 104sseqtrrd 4050 . . . . . 6 (𝜑𝑀 ⊆ dom 𝐻)
106 funimass4 6986 . . . . . 6 ((Fun 𝐻𝑀 ⊆ dom 𝐻) → ((𝐻𝑀) ⊆ 𝑊 ↔ ∀𝑦𝑀 (𝐻𝑦) ∈ 𝑊))
107103, 105, 106syl2anc 583 . . . . 5 (𝜑 → ((𝐻𝑀) ⊆ 𝑊 ↔ ∀𝑦𝑀 (𝐻𝑦) ∈ 𝑊))
108102, 107mpbird 257 . . . 4 (𝜑 → (𝐻𝑀) ⊆ 𝑊)
1091, 2, 3, 4, 12, 14, 16, 28, 29, 39, 24, 108cvmlift2lem9a 35271 . . 3 (𝜑 → (𝐻𝑀) ∈ ((𝐾t 𝑀) Cn 𝐶))
11073cncnpi 23307 . . 3 (((𝐻𝑀) ∈ ((𝐾t 𝑀) Cn 𝐶) ∧ 𝑋 (𝐾t 𝑀)) → (𝐻𝑀) ∈ (((𝐾t 𝑀) CnP 𝐶)‘𝑋))
111109, 69, 110syl2anc 583 . 2 (𝜑 → (𝐻𝑀) ∈ (((𝐾t 𝑀) CnP 𝐶)‘𝑋))
112 cvmlift3lem7.4 . . . . 5 (𝜑𝑉𝐾)
1132ssntr 23087 . . . . 5 (((𝐾 ∈ Top ∧ 𝑀𝑌) ∧ (𝑉𝐾𝑉𝑀)) → 𝑉 ⊆ ((int‘𝐾)‘𝑀))
11416, 24, 112, 25, 113syl22anc 838 . . . 4 (𝜑𝑉 ⊆ ((int‘𝐾)‘𝑀))
115114, 26sseldd 4009 . . 3 (𝜑𝑋 ∈ ((int‘𝐾)‘𝑀))
1162, 1cnprest 23318 . . 3 (((𝐾 ∈ Top ∧ 𝑀𝑌) ∧ (𝑋 ∈ ((int‘𝐾)‘𝑀) ∧ 𝐻:𝑌𝐵)) → (𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋) ↔ (𝐻𝑀) ∈ (((𝐾t 𝑀) CnP 𝐶)‘𝑋)))
11716, 24, 115, 12, 116syl22anc 838 . 2 (𝜑 → (𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋) ↔ (𝐻𝑀) ∈ (((𝐾t 𝑀) CnP 𝐶)‘𝑋)))
118111, 117mpbird 257 1 (𝜑𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  cdif 3973  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  dom cdm 5700  cres 5702  cima 5703  ccom 5704  Fun wfun 6567  wf 6569  cfv 6573  crio 7403  (class class class)co 7448  0cc0 11184  1c1 11185  t crest 17480  Topctop 22920  intcnt 23046   Cn ccn 23253   CnP ccnp 23254  𝑛-Locally cnlly 23494  Homeochmeo 23782  IIcii 24920  PConncpconn 35187  SConncsconn 35188   CovMap ccvm 35223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-cmp 23416  df-conn 23441  df-lly 23495  df-nlly 23496  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-ii 24922  df-cncf 24923  df-htpy 25021  df-phtpy 25022  df-phtpc 25043  df-pco 25057  df-pconn 35189  df-sconn 35190  df-cvm 35224
This theorem is referenced by:  cvmlift3lem8  35294
  Copyright terms: Public domain W3C validator