Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem7 Structured version   Visualization version   GIF version

Theorem cvmlift3lem7 32803
 Description: Lemma for cvmlift3 32806. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
cvmlift3lem7.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift3lem7.1 (𝜑 → (𝐺𝑋) ∈ 𝐴)
cvmlift3lem7.2 (𝜑𝑇 ∈ (𝑆𝐴))
cvmlift3lem7.3 (𝜑𝑀 ⊆ (𝐺𝐴))
cvmlift3lem7.w 𝑊 = (𝑏𝑇 (𝐻𝑋) ∈ 𝑏)
cvmlift3lem7.7 (𝜑 → (𝐾t 𝑀) ∈ PConn)
cvmlift3lem7.4 (𝜑𝑉𝐾)
cvmlift3lem7.5 (𝜑𝑉𝑀)
cvmlift3lem7.6 (𝜑𝑋𝑉)
Assertion
Ref Expression
cvmlift3lem7 (𝜑𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋))
Distinct variable groups:   𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑧,𝐴   𝑓,𝑔,𝑧,𝑏,𝑥   𝐽,𝑏   𝑔,𝑐,𝑥,𝐽,𝑑,𝑓,𝑘,𝑠   𝐹,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠   𝑥,𝑧,𝐹   𝑓,𝑀,𝑔,𝑥   𝐻,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑆,𝑏,𝑓,𝑥   𝐵,𝑏,𝑑,𝑓,𝑔,𝑥,𝑧   𝑋,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝐺,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑥,𝑧   𝑇,𝑏,𝑐,𝑑,𝑠   𝐶,𝑏,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠,𝑥,𝑧   𝜑,𝑓,𝑥   𝐾,𝑏,𝑐,𝑓,𝑔,𝑥,𝑧   𝑃,𝑏,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑂,𝑏,𝑐,𝑓,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧   𝑊,𝑐,𝑑,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑔,𝑘,𝑠,𝑏,𝑐,𝑑)   𝐴(𝑥,𝑔)   𝐵(𝑘,𝑠,𝑐)   𝑃(𝑘,𝑠)   𝑆(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝑇(𝑥,𝑧,𝑓,𝑔,𝑘)   𝐺(𝑠)   𝐻(𝑘,𝑠)   𝐽(𝑧)   𝐾(𝑘,𝑠,𝑑)   𝑀(𝑧,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑂(𝑘,𝑠,𝑑)   𝑉(𝑥,𝑧,𝑓,𝑔,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑊(𝑧,𝑔,𝑘,𝑠,𝑏)   𝑋(𝑘,𝑠)   𝑌(𝑘,𝑠,𝑏,𝑐,𝑑)

Proof of Theorem cvmlift3lem7
Dummy variables 𝑎 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.b . . . 4 𝐵 = 𝐶
2 cvmlift3.y . . . 4 𝑌 = 𝐾
3 cvmlift3lem7.s . . . 4 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
4 cvmlift3.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmlift3.k . . . . 5 (𝜑𝐾 ∈ SConn)
6 cvmlift3.l . . . . 5 (𝜑𝐾 ∈ 𝑛-Locally PConn)
7 cvmlift3.o . . . . 5 (𝜑𝑂𝑌)
8 cvmlift3.g . . . . 5 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
9 cvmlift3.p . . . . 5 (𝜑𝑃𝐵)
10 cvmlift3.e . . . . 5 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
11 cvmlift3.h . . . . 5 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
121, 2, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem3 32799 . . . 4 (𝜑𝐻:𝑌𝐵)
131, 2, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem5 32801 . . . . 5 (𝜑 → (𝐹𝐻) = 𝐺)
1413, 8eqeltrd 2852 . . . 4 (𝜑 → (𝐹𝐻) ∈ (𝐾 Cn 𝐽))
15 sconntop 32706 . . . . 5 (𝐾 ∈ SConn → 𝐾 ∈ Top)
165, 15syl 17 . . . 4 (𝜑𝐾 ∈ Top)
17 cvmlift3lem7.3 . . . . . 6 (𝜑𝑀 ⊆ (𝐺𝐴))
18 cnvimass 5921 . . . . . . 7 (𝐺𝐴) ⊆ dom 𝐺
19 eqid 2758 . . . . . . . . 9 𝐽 = 𝐽
202, 19cnf 21946 . . . . . . . 8 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
21 fdm 6506 . . . . . . . 8 (𝐺:𝑌 𝐽 → dom 𝐺 = 𝑌)
228, 20, 213syl 18 . . . . . . 7 (𝜑 → dom 𝐺 = 𝑌)
2318, 22sseqtrid 3944 . . . . . 6 (𝜑 → (𝐺𝐴) ⊆ 𝑌)
2417, 23sstrd 3902 . . . . 5 (𝜑𝑀𝑌)
25 cvmlift3lem7.5 . . . . . 6 (𝜑𝑉𝑀)
26 cvmlift3lem7.6 . . . . . 6 (𝜑𝑋𝑉)
2725, 26sseldd 3893 . . . . 5 (𝜑𝑋𝑀)
2824, 27sseldd 3893 . . . 4 (𝜑𝑋𝑌)
29 cvmlift3lem7.2 . . . 4 (𝜑𝑇 ∈ (𝑆𝐴))
3012, 28ffvelrnd 6843 . . . . 5 (𝜑 → (𝐻𝑋) ∈ 𝐵)
31 fvco3 6751 . . . . . . . 8 ((𝐻:𝑌𝐵𝑋𝑌) → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
3212, 28, 31syl2anc 587 . . . . . . 7 (𝜑 → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
3313fveq1d 6660 . . . . . . 7 (𝜑 → ((𝐹𝐻)‘𝑋) = (𝐺𝑋))
3432, 33eqtr3d 2795 . . . . . 6 (𝜑 → (𝐹‘(𝐻𝑋)) = (𝐺𝑋))
35 cvmlift3lem7.1 . . . . . 6 (𝜑 → (𝐺𝑋) ∈ 𝐴)
3634, 35eqeltrd 2852 . . . . 5 (𝜑 → (𝐹‘(𝐻𝑋)) ∈ 𝐴)
37 cvmlift3lem7.w . . . . . 6 𝑊 = (𝑏𝑇 (𝐻𝑋) ∈ 𝑏)
383, 1, 37cvmsiota 32755 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝐴) ∧ (𝐻𝑋) ∈ 𝐵 ∧ (𝐹‘(𝐻𝑋)) ∈ 𝐴)) → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
394, 29, 30, 36, 38syl13anc 1369 . . . 4 (𝜑 → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
40 eqid 2758 . . . . . . . . . . 11 (𝐻𝑋) = (𝐻𝑋)
411, 2, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem4 32800 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ((𝐻𝑋) = (𝐻𝑋) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑋))))
4240, 41mpbii 236 . . . . . . . . . 10 ((𝜑𝑋𝑌) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑋)))
4328, 42mpdan 686 . . . . . . . . 9 (𝜑 → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑋)))
4443adantr 484 . . . . . . . 8 ((𝜑𝑦𝑀) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑋)))
45 fveq1 6657 . . . . . . . . . . 11 (𝑓 = → (𝑓‘0) = (‘0))
4645eqeq1d 2760 . . . . . . . . . 10 (𝑓 = → ((𝑓‘0) = 𝑂 ↔ (‘0) = 𝑂))
47 fveq1 6657 . . . . . . . . . . 11 (𝑓 = → (𝑓‘1) = (‘1))
4847eqeq1d 2760 . . . . . . . . . 10 (𝑓 = → ((𝑓‘1) = 𝑋 ↔ (‘1) = 𝑋))
49 coeq2 5698 . . . . . . . . . . . . . . . 16 (𝑓 = → (𝐺𝑓) = (𝐺))
5049eqeq2d 2769 . . . . . . . . . . . . . . 15 (𝑓 = → ((𝐹𝑔) = (𝐺𝑓) ↔ (𝐹𝑔) = (𝐺)))
5150anbi1d 632 . . . . . . . . . . . . . 14 (𝑓 = → (((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
5251riotabidv 7110 . . . . . . . . . . . . 13 (𝑓 = → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
53 coeq2 5698 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑔 → (𝐹𝑎) = (𝐹𝑔))
5453eqeq1d 2760 . . . . . . . . . . . . . . 15 (𝑎 = 𝑔 → ((𝐹𝑎) = (𝐺) ↔ (𝐹𝑔) = (𝐺)))
55 fveq1 6657 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑔 → (𝑎‘0) = (𝑔‘0))
5655eqeq1d 2760 . . . . . . . . . . . . . . 15 (𝑎 = 𝑔 → ((𝑎‘0) = 𝑃 ↔ (𝑔‘0) = 𝑃))
5754, 56anbi12d 633 . . . . . . . . . . . . . 14 (𝑎 = 𝑔 → (((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃)))
5857cbvriotavw 7118 . . . . . . . . . . . . 13 (𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺) ∧ (𝑔‘0) = 𝑃))
5952, 58eqtr4di 2811 . . . . . . . . . . . 12 (𝑓 = → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃)))
6059fveq1d 6660 . . . . . . . . . . 11 (𝑓 = → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1))
6160eqeq1d 2760 . . . . . . . . . 10 (𝑓 = → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑋) ↔ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)))
6246, 48, 613anbi123d 1433 . . . . . . . . 9 (𝑓 = → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑋)) ↔ ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋))))
6362cbvrexvw 3362 . . . . . . . 8 (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑋)) ↔ ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)))
6444, 63sylib 221 . . . . . . 7 ((𝜑𝑦𝑀) → ∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)))
65 cvmlift3lem7.7 . . . . . . . . 9 (𝜑 → (𝐾t 𝑀) ∈ PConn)
6665adantr 484 . . . . . . . 8 ((𝜑𝑦𝑀) → (𝐾t 𝑀) ∈ PConn)
672restuni 21862 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ 𝑀𝑌) → 𝑀 = (𝐾t 𝑀))
6816, 24, 67syl2anc 587 . . . . . . . . . 10 (𝜑𝑀 = (𝐾t 𝑀))
6927, 68eleqtrd 2854 . . . . . . . . 9 (𝜑𝑋 (𝐾t 𝑀))
7069adantr 484 . . . . . . . 8 ((𝜑𝑦𝑀) → 𝑋 (𝐾t 𝑀))
7168eleq2d 2837 . . . . . . . . 9 (𝜑 → (𝑦𝑀𝑦 (𝐾t 𝑀)))
7271biimpa 480 . . . . . . . 8 ((𝜑𝑦𝑀) → 𝑦 (𝐾t 𝑀))
73 eqid 2758 . . . . . . . . 9 (𝐾t 𝑀) = (𝐾t 𝑀)
7473pconncn 32702 . . . . . . . 8 (((𝐾t 𝑀) ∈ PConn ∧ 𝑋 (𝐾t 𝑀) ∧ 𝑦 (𝐾t 𝑀)) → ∃𝑛 ∈ (II Cn (𝐾t 𝑀))((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))
7566, 70, 72, 74syl3anc 1368 . . . . . . 7 ((𝜑𝑦𝑀) → ∃𝑛 ∈ (II Cn (𝐾t 𝑀))((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))
76 reeanv 3285 . . . . . . . 8 (∃ ∈ (II Cn 𝐾)∃𝑛 ∈ (II Cn (𝐾t 𝑀))(((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)) ↔ (∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ∃𝑛 ∈ (II Cn (𝐾t 𝑀))((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)))
774ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
785ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝐾 ∈ SConn)
796ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝐾 ∈ 𝑛-Locally PConn)
807ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑂𝑌)
818ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝐺 ∈ (𝐾 Cn 𝐽))
829ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑃𝐵)
8310ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → (𝐹𝑃) = (𝐺𝑂))
8435ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → (𝐺𝑋) ∈ 𝐴)
8529ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑇 ∈ (𝑆𝐴))
8617ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑀 ⊆ (𝐺𝐴))
8727ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑋𝑀)
88 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑦𝑀)
89 simplrl 776 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → ∈ (II Cn 𝐾))
90 simprl 770 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → ((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)))
91 simplrr 777 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑛 ∈ (II Cn (𝐾t 𝑀)))
92 simprr 772 . . . . . . . . . . 11 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))
9353eqeq1d 2760 . . . . . . . . . . . . 13 (𝑎 = 𝑔 → ((𝐹𝑎) = (𝐺𝑛) ↔ (𝐹𝑔) = (𝐺𝑛)))
9455eqeq1d 2760 . . . . . . . . . . . . 13 (𝑎 = 𝑔 → ((𝑎‘0) = (𝐻𝑋) ↔ (𝑔‘0) = (𝐻𝑋)))
9593, 94anbi12d 633 . . . . . . . . . . . 12 (𝑎 = 𝑔 → (((𝐹𝑎) = (𝐺𝑛) ∧ (𝑎‘0) = (𝐻𝑋)) ↔ ((𝐹𝑔) = (𝐺𝑛) ∧ (𝑔‘0) = (𝐻𝑋))))
9695cbvriotavw 7118 . . . . . . . . . . 11 (𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺𝑛) ∧ (𝑎‘0) = (𝐻𝑋))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑛) ∧ (𝑔‘0) = (𝐻𝑋)))
971, 2, 77, 78, 79, 80, 81, 82, 83, 11, 3, 84, 85, 86, 37, 87, 88, 89, 58, 90, 91, 92, 96cvmlift3lem6 32802 . . . . . . . . . 10 ((((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) ∧ (((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → (𝐻𝑦) ∈ 𝑊)
9897ex 416 . . . . . . . . 9 (((𝜑𝑦𝑀) ∧ ( ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾t 𝑀)))) → ((((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)) → (𝐻𝑦) ∈ 𝑊))
9998rexlimdvva 3218 . . . . . . . 8 ((𝜑𝑦𝑀) → (∃ ∈ (II Cn 𝐾)∃𝑛 ∈ (II Cn (𝐾t 𝑀))(((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)) → (𝐻𝑦) ∈ 𝑊))
10076, 99syl5bir 246 . . . . . . 7 ((𝜑𝑦𝑀) → ((∃ ∈ (II Cn 𝐾)((‘0) = 𝑂 ∧ (‘1) = 𝑋 ∧ ((𝑎 ∈ (II Cn 𝐶)((𝐹𝑎) = (𝐺) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻𝑋)) ∧ ∃𝑛 ∈ (II Cn (𝐾t 𝑀))((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)) → (𝐻𝑦) ∈ 𝑊))
10164, 75, 100mp2and 698 . . . . . 6 ((𝜑𝑦𝑀) → (𝐻𝑦) ∈ 𝑊)
102101ralrimiva 3113 . . . . 5 (𝜑 → ∀𝑦𝑀 (𝐻𝑦) ∈ 𝑊)
10312ffund 6502 . . . . . 6 (𝜑 → Fun 𝐻)
10412fdmd 6508 . . . . . . 7 (𝜑 → dom 𝐻 = 𝑌)
10524, 104sseqtrrd 3933 . . . . . 6 (𝜑𝑀 ⊆ dom 𝐻)
106 funimass4 6718 . . . . . 6 ((Fun 𝐻𝑀 ⊆ dom 𝐻) → ((𝐻𝑀) ⊆ 𝑊 ↔ ∀𝑦𝑀 (𝐻𝑦) ∈ 𝑊))
107103, 105, 106syl2anc 587 . . . . 5 (𝜑 → ((𝐻𝑀) ⊆ 𝑊 ↔ ∀𝑦𝑀 (𝐻𝑦) ∈ 𝑊))
108102, 107mpbird 260 . . . 4 (𝜑 → (𝐻𝑀) ⊆ 𝑊)
1091, 2, 3, 4, 12, 14, 16, 28, 29, 39, 24, 108cvmlift2lem9a 32781 . . 3 (𝜑 → (𝐻𝑀) ∈ ((𝐾t 𝑀) Cn 𝐶))
11073cncnpi 21978 . . 3 (((𝐻𝑀) ∈ ((𝐾t 𝑀) Cn 𝐶) ∧ 𝑋 (𝐾t 𝑀)) → (𝐻𝑀) ∈ (((𝐾t 𝑀) CnP 𝐶)‘𝑋))
111109, 69, 110syl2anc 587 . 2 (𝜑 → (𝐻𝑀) ∈ (((𝐾t 𝑀) CnP 𝐶)‘𝑋))
112 cvmlift3lem7.4 . . . . 5 (𝜑𝑉𝐾)
1132ssntr 21758 . . . . 5 (((𝐾 ∈ Top ∧ 𝑀𝑌) ∧ (𝑉𝐾𝑉𝑀)) → 𝑉 ⊆ ((int‘𝐾)‘𝑀))
11416, 24, 112, 25, 113syl22anc 837 . . . 4 (𝜑𝑉 ⊆ ((int‘𝐾)‘𝑀))
115114, 26sseldd 3893 . . 3 (𝜑𝑋 ∈ ((int‘𝐾)‘𝑀))
1162, 1cnprest 21989 . . 3 (((𝐾 ∈ Top ∧ 𝑀𝑌) ∧ (𝑋 ∈ ((int‘𝐾)‘𝑀) ∧ 𝐻:𝑌𝐵)) → (𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋) ↔ (𝐻𝑀) ∈ (((𝐾t 𝑀) CnP 𝐶)‘𝑋)))
11716, 24, 115, 12, 116syl22anc 837 . 2 (𝜑 → (𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋) ↔ (𝐻𝑀) ∈ (((𝐾t 𝑀) CnP 𝐶)‘𝑋)))
118111, 117mpbird 260 1 (𝜑𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071  {crab 3074   ∖ cdif 3855   ∩ cin 3857   ⊆ wss 3858  ∅c0 4225  𝒫 cpw 4494  {csn 4522  ∪ cuni 4798   ↦ cmpt 5112  ◡ccnv 5523  dom cdm 5524   ↾ cres 5526   “ cima 5527   ∘ ccom 5528  Fun wfun 6329  ⟶wf 6331  ‘cfv 6335  ℩crio 7107  (class class class)co 7150  0cc0 10575  1c1 10576   ↾t crest 16752  Topctop 21593  intcnt 21717   Cn ccn 21924   CnP ccnp 21925  𝑛-Locally cnlly 22165  Homeochmeo 22453  IIcii 23576  PConncpconn 32697  SConncsconn 32698   CovMap ccvm 32733 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-ec 8301  df-map 8418  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-clim 14893  df-sum 15091  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-cn 21927  df-cnp 21928  df-cmp 22087  df-conn 22112  df-lly 22166  df-nlly 22167  df-tx 22262  df-hmeo 22455  df-xms 23022  df-ms 23023  df-tms 23024  df-ii 23578  df-htpy 23671  df-phtpy 23672  df-phtpc 23693  df-pco 23706  df-pconn 32699  df-sconn 32700  df-cvm 32734 This theorem is referenced by:  cvmlift3lem8  32804
 Copyright terms: Public domain W3C validator