Step | Hyp | Ref
| Expression |
1 | | cvmlift3.b |
. . . 4
⊢ 𝐵 = ∪
𝐶 |
2 | | cvmlift3.y |
. . . 4
⊢ 𝑌 = ∪
𝐾 |
3 | | cvmlift3lem7.s |
. . . 4
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) |
4 | | cvmlift3.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
5 | | cvmlift3.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ SConn) |
6 | | cvmlift3.l |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
PConn) |
7 | | cvmlift3.o |
. . . . 5
⊢ (𝜑 → 𝑂 ∈ 𝑌) |
8 | | cvmlift3.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) |
9 | | cvmlift3.p |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
10 | | cvmlift3.e |
. . . . 5
⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) |
11 | | cvmlift3.h |
. . . . 5
⊢ 𝐻 = (𝑥 ∈ 𝑌 ↦ (℩𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))) |
12 | 1, 2, 4, 5, 6, 7, 8, 9, 10, 11 | cvmlift3lem3 32799 |
. . . 4
⊢ (𝜑 → 𝐻:𝑌⟶𝐵) |
13 | 1, 2, 4, 5, 6, 7, 8, 9, 10, 11 | cvmlift3lem5 32801 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘ 𝐻) = 𝐺) |
14 | 13, 8 | eqeltrd 2852 |
. . . 4
⊢ (𝜑 → (𝐹 ∘ 𝐻) ∈ (𝐾 Cn 𝐽)) |
15 | | sconntop 32706 |
. . . . 5
⊢ (𝐾 ∈ SConn → 𝐾 ∈ Top) |
16 | 5, 15 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ Top) |
17 | | cvmlift3lem7.3 |
. . . . . 6
⊢ (𝜑 → 𝑀 ⊆ (◡𝐺 “ 𝐴)) |
18 | | cnvimass 5921 |
. . . . . . 7
⊢ (◡𝐺 “ 𝐴) ⊆ dom 𝐺 |
19 | | eqid 2758 |
. . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 |
20 | 2, 19 | cnf 21946 |
. . . . . . . 8
⊢ (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌⟶∪ 𝐽) |
21 | | fdm 6506 |
. . . . . . . 8
⊢ (𝐺:𝑌⟶∪ 𝐽 → dom 𝐺 = 𝑌) |
22 | 8, 20, 21 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → dom 𝐺 = 𝑌) |
23 | 18, 22 | sseqtrid 3944 |
. . . . . 6
⊢ (𝜑 → (◡𝐺 “ 𝐴) ⊆ 𝑌) |
24 | 17, 23 | sstrd 3902 |
. . . . 5
⊢ (𝜑 → 𝑀 ⊆ 𝑌) |
25 | | cvmlift3lem7.5 |
. . . . . 6
⊢ (𝜑 → 𝑉 ⊆ 𝑀) |
26 | | cvmlift3lem7.6 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
27 | 25, 26 | sseldd 3893 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑀) |
28 | 24, 27 | sseldd 3893 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑌) |
29 | | cvmlift3lem7.2 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝐴)) |
30 | 12, 28 | ffvelrnd 6843 |
. . . . 5
⊢ (𝜑 → (𝐻‘𝑋) ∈ 𝐵) |
31 | | fvco3 6751 |
. . . . . . . 8
⊢ ((𝐻:𝑌⟶𝐵 ∧ 𝑋 ∈ 𝑌) → ((𝐹 ∘ 𝐻)‘𝑋) = (𝐹‘(𝐻‘𝑋))) |
32 | 12, 28, 31 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ∘ 𝐻)‘𝑋) = (𝐹‘(𝐻‘𝑋))) |
33 | 13 | fveq1d 6660 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ∘ 𝐻)‘𝑋) = (𝐺‘𝑋)) |
34 | 32, 33 | eqtr3d 2795 |
. . . . . 6
⊢ (𝜑 → (𝐹‘(𝐻‘𝑋)) = (𝐺‘𝑋)) |
35 | | cvmlift3lem7.1 |
. . . . . 6
⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐴) |
36 | 34, 35 | eqeltrd 2852 |
. . . . 5
⊢ (𝜑 → (𝐹‘(𝐻‘𝑋)) ∈ 𝐴) |
37 | | cvmlift3lem7.w |
. . . . . 6
⊢ 𝑊 = (℩𝑏 ∈ 𝑇 (𝐻‘𝑋) ∈ 𝑏) |
38 | 3, 1, 37 | cvmsiota 32755 |
. . . . 5
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝐴) ∧ (𝐻‘𝑋) ∈ 𝐵 ∧ (𝐹‘(𝐻‘𝑋)) ∈ 𝐴)) → (𝑊 ∈ 𝑇 ∧ (𝐻‘𝑋) ∈ 𝑊)) |
39 | 4, 29, 30, 36, 38 | syl13anc 1369 |
. . . 4
⊢ (𝜑 → (𝑊 ∈ 𝑇 ∧ (𝐻‘𝑋) ∈ 𝑊)) |
40 | | eqid 2758 |
. . . . . . . . . . 11
⊢ (𝐻‘𝑋) = (𝐻‘𝑋) |
41 | 1, 2, 4, 5, 6, 7, 8, 9, 10, 11 | cvmlift3lem4 32800 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ((𝐻‘𝑋) = (𝐻‘𝑋) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻‘𝑋)))) |
42 | 40, 41 | mpbii 236 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻‘𝑋))) |
43 | 28, 42 | mpdan 686 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻‘𝑋))) |
44 | 43 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑀) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻‘𝑋))) |
45 | | fveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → (𝑓‘0) = (ℎ‘0)) |
46 | 45 | eqeq1d 2760 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → ((𝑓‘0) = 𝑂 ↔ (ℎ‘0) = 𝑂)) |
47 | | fveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → (𝑓‘1) = (ℎ‘1)) |
48 | 47 | eqeq1d 2760 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → ((𝑓‘1) = 𝑋 ↔ (ℎ‘1) = 𝑋)) |
49 | | coeq2 5698 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = ℎ → (𝐺 ∘ 𝑓) = (𝐺 ∘ ℎ)) |
50 | 49 | eqeq2d 2769 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = ℎ → ((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ↔ (𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ))) |
51 | 50 | anbi1d 632 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = ℎ → (((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))) |
52 | 51 | riotabidv 7110 |
. . . . . . . . . . . . 13
⊢ (𝑓 = ℎ → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))) |
53 | | coeq2 5698 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑔 → (𝐹 ∘ 𝑎) = (𝐹 ∘ 𝑔)) |
54 | 53 | eqeq1d 2760 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑔 → ((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ↔ (𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ))) |
55 | | fveq1 6657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑔 → (𝑎‘0) = (𝑔‘0)) |
56 | 55 | eqeq1d 2760 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑔 → ((𝑎‘0) = 𝑃 ↔ (𝑔‘0) = 𝑃)) |
57 | 54, 56 | anbi12d 633 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑔 → (((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃) ↔ ((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃))) |
58 | 57 | cbvriotavw 7118 |
. . . . . . . . . . . . 13
⊢
(℩𝑎
∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ ℎ) ∧ (𝑔‘0) = 𝑃)) |
59 | 52, 58 | eqtr4di 2811 |
. . . . . . . . . . . 12
⊢ (𝑓 = ℎ → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃)) = (℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))) |
60 | 59 | fveq1d 6660 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1)) |
61 | 60 | eqeq1d 2760 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → (((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻‘𝑋) ↔ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋))) |
62 | 46, 48, 61 | 3anbi123d 1433 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ↔ ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)))) |
63 | 62 | cbvrexvw 3362 |
. . . . . . . 8
⊢
(∃𝑓 ∈ (II
Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ↔ ∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋))) |
64 | 44, 63 | sylib 221 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑀) → ∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋))) |
65 | | cvmlift3lem7.7 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 ↾t 𝑀) ∈ PConn) |
66 | 65 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑀) → (𝐾 ↾t 𝑀) ∈ PConn) |
67 | 2 | restuni 21862 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Top ∧ 𝑀 ⊆ 𝑌) → 𝑀 = ∪ (𝐾 ↾t 𝑀)) |
68 | 16, 24, 67 | syl2anc 587 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 = ∪ (𝐾 ↾t 𝑀)) |
69 | 27, 68 | eleqtrd 2854 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ ∪ (𝐾 ↾t 𝑀)) |
70 | 69 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑀) → 𝑋 ∈ ∪ (𝐾 ↾t 𝑀)) |
71 | 68 | eleq2d 2837 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝑀 ↔ 𝑦 ∈ ∪ (𝐾 ↾t 𝑀))) |
72 | 71 | biimpa 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑀) → 𝑦 ∈ ∪ (𝐾 ↾t 𝑀)) |
73 | | eqid 2758 |
. . . . . . . . 9
⊢ ∪ (𝐾
↾t 𝑀) =
∪ (𝐾 ↾t 𝑀) |
74 | 73 | pconncn 32702 |
. . . . . . . 8
⊢ (((𝐾 ↾t 𝑀) ∈ PConn ∧ 𝑋 ∈ ∪ (𝐾
↾t 𝑀)
∧ 𝑦 ∈ ∪ (𝐾
↾t 𝑀))
→ ∃𝑛 ∈ (II
Cn (𝐾 ↾t
𝑀))((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)) |
75 | 66, 70, 72, 74 | syl3anc 1368 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑀) → ∃𝑛 ∈ (II Cn (𝐾 ↾t 𝑀))((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)) |
76 | | reeanv 3285 |
. . . . . . . 8
⊢
(∃ℎ ∈ (II
Cn 𝐾)∃𝑛 ∈ (II Cn (𝐾 ↾t 𝑀))(((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)) ↔ (∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ∃𝑛 ∈ (II Cn (𝐾 ↾t 𝑀))((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) |
77 | 4 | ad3antrrr 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
78 | 5 | ad3antrrr 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝐾 ∈ SConn) |
79 | 6 | ad3antrrr 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝐾 ∈ 𝑛-Locally
PConn) |
80 | 7 | ad3antrrr 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑂 ∈ 𝑌) |
81 | 8 | ad3antrrr 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝐺 ∈ (𝐾 Cn 𝐽)) |
82 | 9 | ad3antrrr 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑃 ∈ 𝐵) |
83 | 10 | ad3antrrr 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → (𝐹‘𝑃) = (𝐺‘𝑂)) |
84 | 35 | ad3antrrr 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → (𝐺‘𝑋) ∈ 𝐴) |
85 | 29 | ad3antrrr 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑇 ∈ (𝑆‘𝐴)) |
86 | 17 | ad3antrrr 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑀 ⊆ (◡𝐺 “ 𝐴)) |
87 | 27 | ad3antrrr 729 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑋 ∈ 𝑀) |
88 | | simpllr 775 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑦 ∈ 𝑀) |
89 | | simplrl 776 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → ℎ ∈ (II Cn 𝐾)) |
90 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → ((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋))) |
91 | | simplrr 777 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀))) |
92 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)) |
93 | 53 | eqeq1d 2760 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑔 → ((𝐹 ∘ 𝑎) = (𝐺 ∘ 𝑛) ↔ (𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑛))) |
94 | 55 | eqeq1d 2760 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑔 → ((𝑎‘0) = (𝐻‘𝑋) ↔ (𝑔‘0) = (𝐻‘𝑋))) |
95 | 93, 94 | anbi12d 633 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑔 → (((𝐹 ∘ 𝑎) = (𝐺 ∘ 𝑛) ∧ (𝑎‘0) = (𝐻‘𝑋)) ↔ ((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑛) ∧ (𝑔‘0) = (𝐻‘𝑋)))) |
96 | 95 | cbvriotavw 7118 |
. . . . . . . . . . 11
⊢
(℩𝑎
∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ 𝑛) ∧ (𝑎‘0) = (𝐻‘𝑋))) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑛) ∧ (𝑔‘0) = (𝐻‘𝑋))) |
97 | 1, 2, 77, 78, 79, 80, 81, 82, 83, 11, 3, 84, 85, 86, 37, 87, 88, 89, 58, 90, 91, 92, 96 | cvmlift3lem6 32802 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) ∧ (((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦))) → (𝐻‘𝑦) ∈ 𝑊) |
98 | 97 | ex 416 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑀) ∧ (ℎ ∈ (II Cn 𝐾) ∧ 𝑛 ∈ (II Cn (𝐾 ↾t 𝑀)))) → ((((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)) → (𝐻‘𝑦) ∈ 𝑊)) |
99 | 98 | rexlimdvva 3218 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑀) → (∃ℎ ∈ (II Cn 𝐾)∃𝑛 ∈ (II Cn (𝐾 ↾t 𝑀))(((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)) → (𝐻‘𝑦) ∈ 𝑊)) |
100 | 76, 99 | syl5bir 246 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑀) → ((∃ℎ ∈ (II Cn 𝐾)((ℎ‘0) = 𝑂 ∧ (ℎ‘1) = 𝑋 ∧ ((℩𝑎 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑎) = (𝐺 ∘ ℎ) ∧ (𝑎‘0) = 𝑃))‘1) = (𝐻‘𝑋)) ∧ ∃𝑛 ∈ (II Cn (𝐾 ↾t 𝑀))((𝑛‘0) = 𝑋 ∧ (𝑛‘1) = 𝑦)) → (𝐻‘𝑦) ∈ 𝑊)) |
101 | 64, 75, 100 | mp2and 698 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑀) → (𝐻‘𝑦) ∈ 𝑊) |
102 | 101 | ralrimiva 3113 |
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ 𝑀 (𝐻‘𝑦) ∈ 𝑊) |
103 | 12 | ffund 6502 |
. . . . . 6
⊢ (𝜑 → Fun 𝐻) |
104 | 12 | fdmd 6508 |
. . . . . . 7
⊢ (𝜑 → dom 𝐻 = 𝑌) |
105 | 24, 104 | sseqtrrd 3933 |
. . . . . 6
⊢ (𝜑 → 𝑀 ⊆ dom 𝐻) |
106 | | funimass4 6718 |
. . . . . 6
⊢ ((Fun
𝐻 ∧ 𝑀 ⊆ dom 𝐻) → ((𝐻 “ 𝑀) ⊆ 𝑊 ↔ ∀𝑦 ∈ 𝑀 (𝐻‘𝑦) ∈ 𝑊)) |
107 | 103, 105,
106 | syl2anc 587 |
. . . . 5
⊢ (𝜑 → ((𝐻 “ 𝑀) ⊆ 𝑊 ↔ ∀𝑦 ∈ 𝑀 (𝐻‘𝑦) ∈ 𝑊)) |
108 | 102, 107 | mpbird 260 |
. . . 4
⊢ (𝜑 → (𝐻 “ 𝑀) ⊆ 𝑊) |
109 | 1, 2, 3, 4, 12, 14, 16, 28, 29, 39, 24, 108 | cvmlift2lem9a 32781 |
. . 3
⊢ (𝜑 → (𝐻 ↾ 𝑀) ∈ ((𝐾 ↾t 𝑀) Cn 𝐶)) |
110 | 73 | cncnpi 21978 |
. . 3
⊢ (((𝐻 ↾ 𝑀) ∈ ((𝐾 ↾t 𝑀) Cn 𝐶) ∧ 𝑋 ∈ ∪ (𝐾 ↾t 𝑀)) → (𝐻 ↾ 𝑀) ∈ (((𝐾 ↾t 𝑀) CnP 𝐶)‘𝑋)) |
111 | 109, 69, 110 | syl2anc 587 |
. 2
⊢ (𝜑 → (𝐻 ↾ 𝑀) ∈ (((𝐾 ↾t 𝑀) CnP 𝐶)‘𝑋)) |
112 | | cvmlift3lem7.4 |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ 𝐾) |
113 | 2 | ssntr 21758 |
. . . . 5
⊢ (((𝐾 ∈ Top ∧ 𝑀 ⊆ 𝑌) ∧ (𝑉 ∈ 𝐾 ∧ 𝑉 ⊆ 𝑀)) → 𝑉 ⊆ ((int‘𝐾)‘𝑀)) |
114 | 16, 24, 112, 25, 113 | syl22anc 837 |
. . . 4
⊢ (𝜑 → 𝑉 ⊆ ((int‘𝐾)‘𝑀)) |
115 | 114, 26 | sseldd 3893 |
. . 3
⊢ (𝜑 → 𝑋 ∈ ((int‘𝐾)‘𝑀)) |
116 | 2, 1 | cnprest 21989 |
. . 3
⊢ (((𝐾 ∈ Top ∧ 𝑀 ⊆ 𝑌) ∧ (𝑋 ∈ ((int‘𝐾)‘𝑀) ∧ 𝐻:𝑌⟶𝐵)) → (𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋) ↔ (𝐻 ↾ 𝑀) ∈ (((𝐾 ↾t 𝑀) CnP 𝐶)‘𝑋))) |
117 | 16, 24, 115, 12, 116 | syl22anc 837 |
. 2
⊢ (𝜑 → (𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋) ↔ (𝐻 ↾ 𝑀) ∈ (((𝐾 ↾t 𝑀) CnP 𝐶)‘𝑋))) |
118 | 111, 117 | mpbird 260 |
1
⊢ (𝜑 → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑋)) |