MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsimpgprmd Structured version   Visualization version   GIF version

Theorem ablsimpgprmd 19885
Description: An abelian simple group has prime order. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
ablsimpgprmd.1 𝐵 = (Base‘𝐺)
ablsimpgprmd.2 (𝜑𝐺 ∈ Abel)
ablsimpgprmd.3 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
ablsimpgprmd (𝜑 → (♯‘𝐵) ∈ ℙ)

Proof of Theorem ablsimpgprmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → (♯‘𝐵) = 1)
2 ablsimpgprmd.3 . . . . . . . 8 (𝜑𝐺 ∈ SimpGrp)
32simpggrpd 19865 . . . . . . 7 (𝜑𝐺 ∈ Grp)
4 ablsimpgprmd.1 . . . . . . . 8 𝐵 = (Base‘𝐺)
5 eqid 2736 . . . . . . . 8 (0g𝐺) = (0g𝐺)
64, 5grpidcl 18770 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
73, 6syl 17 . . . . . 6 (𝜑 → (0g𝐺) ∈ 𝐵)
87adantr 481 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → (0g𝐺) ∈ 𝐵)
9 ablsimpgprmd.2 . . . . . . 7 (𝜑𝐺 ∈ Abel)
104, 9, 2ablsimpgfind 19880 . . . . . 6 (𝜑𝐵 ∈ Fin)
1110adantr 481 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐵 ∈ Fin)
121, 8, 11hash1elsn 14263 . . . 4 ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐵 = {(0g𝐺)})
132adantr 481 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐺 ∈ SimpGrp)
144, 5, 13simpgntrivd 19868 . . . 4 ((𝜑 ∧ (♯‘𝐵) = 1) → ¬ 𝐵 = {(0g𝐺)})
1512, 14pm2.65da 815 . . 3 (𝜑 → ¬ (♯‘𝐵) = 1)
164, 3, 10hashfingrpnn 18775 . . . . 5 (𝜑 → (♯‘𝐵) ∈ ℕ)
17 elnn1uz2 12842 . . . . 5 ((♯‘𝐵) ∈ ℕ ↔ ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
1816, 17sylib 217 . . . 4 (𝜑 → ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
1918ord 862 . . 3 (𝜑 → (¬ (♯‘𝐵) = 1 → (♯‘𝐵) ∈ (ℤ‘2)))
2015, 19mpd 15 . 2 (𝜑 → (♯‘𝐵) ∈ (ℤ‘2))
219, 2ablsimpgcygd 19876 . . . . . . 7 (𝜑𝐺 ∈ CycGrp)
22213ad2ant1 1133 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝐺 ∈ CycGrp)
23 simp3 1138 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝑦 ∥ (♯‘𝐵))
24103ad2ant1 1133 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝐵 ∈ Fin)
25 simp2 1137 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝑦 ∈ ℕ)
264, 22, 23, 24, 25fincygsubgodexd 19883 . . . . 5 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝑦)
27 simpl1 1191 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝜑)
2827, 2syl 17 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝐺 ∈ SimpGrp)
29 simprl 769 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝑥 ∈ (SubGrp‘𝐺))
30 ablnsg 19616 . . . . . . . . 9 (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
3127, 9, 303syl 18 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
3229, 31eleqtrrd 2841 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝑥 ∈ (NrmSGrp‘𝐺))
334, 5, 28, 32simpgnsgeqd 19871 . . . . . 6 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
34 simpr 485 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → 𝑥 = {(0g𝐺)})
3534fveq2d 6843 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → (♯‘𝑥) = (♯‘{(0g𝐺)}))
36 simplrr 776 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → (♯‘𝑥) = 𝑦)
375fvexi 6853 . . . . . . . . . 10 (0g𝐺) ∈ V
38 hashsng 14261 . . . . . . . . . 10 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
3937, 38mp1i 13 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → (♯‘{(0g𝐺)}) = 1)
4035, 36, 393eqtr3d 2784 . . . . . . . 8 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → 𝑦 = 1)
4140ex 413 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = {(0g𝐺)} → 𝑦 = 1))
42 simplrr 776 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → (♯‘𝑥) = 𝑦)
43 simpr 485 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
4443fveq2d 6843 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → (♯‘𝑥) = (♯‘𝐵))
4542, 44eqtr3d 2778 . . . . . . . 8 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → 𝑦 = (♯‘𝐵))
4645ex 413 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = 𝐵𝑦 = (♯‘𝐵)))
4741, 46orim12d 963 . . . . . 6 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → ((𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))))
4833, 47mpd 15 . . . . 5 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))
4926, 48rexlimddv 3156 . . . 4 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))
50493exp 1119 . . 3 (𝜑 → (𝑦 ∈ ℕ → (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))))
5150ralrimiv 3140 . 2 (𝜑 → ∀𝑦 ∈ ℕ (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))))
52 isprm2 16550 . 2 ((♯‘𝐵) ∈ ℙ ↔ ((♯‘𝐵) ∈ (ℤ‘2) ∧ ∀𝑦 ∈ ℕ (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))))
5320, 51, 52sylanbrc 583 1 (𝜑 → (♯‘𝐵) ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wral 3062  Vcvv 3443  {csn 4584   class class class wbr 5103  cfv 6493  Fincfn 8879  1c1 11048  cn 12149  2c2 12204  cuz 12759  chash 14222  cdvds 16128  cprime 16539  Basecbs 17075  0gc0g 17313  Grpcgrp 18740  SubGrpcsubg 18913  NrmSGrpcnsg 18914  Abelcabl 19554  CycGrpccyg 19645  SimpGrpcsimpg 19860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-inf2 9573  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7799  df-1st 7917  df-2nd 7918  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-1o 8408  df-2o 8409  df-oadd 8412  df-omul 8413  df-er 8644  df-map 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9374  df-inf 9375  df-oi 9442  df-card 9871  df-acn 9874  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-div 11809  df-nn 12150  df-2 12212  df-3 12213  df-n0 12410  df-z 12496  df-uz 12760  df-rp 12908  df-fz 13417  df-fl 13689  df-mod 13767  df-seq 13899  df-exp 13960  df-hash 14223  df-cj 14976  df-re 14977  df-im 14978  df-sqrt 15112  df-abs 15113  df-dvds 16129  df-gcd 16367  df-prm 16540  df-sets 17028  df-slot 17046  df-ndx 17058  df-base 17076  df-ress 17105  df-plusg 17138  df-0g 17315  df-mgm 18489  df-sgrp 18538  df-mnd 18549  df-submnd 18594  df-grp 18743  df-minusg 18744  df-sbg 18745  df-mulg 18864  df-subg 18916  df-nsg 18917  df-od 19301  df-cmn 19555  df-abl 19556  df-cyg 19646  df-simpg 19861
This theorem is referenced by:  ablsimpgd  19886
  Copyright terms: Public domain W3C validator