Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsimpgprmd Structured version   Visualization version   GIF version

Theorem ablsimpgprmd 19234
 Description: An abelian simple group has prime order. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
ablsimpgprmd.1 𝐵 = (Base‘𝐺)
ablsimpgprmd.2 (𝜑𝐺 ∈ Abel)
ablsimpgprmd.3 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
ablsimpgprmd (𝜑 → (♯‘𝐵) ∈ ℙ)

Proof of Theorem ablsimpgprmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → (♯‘𝐵) = 1)
2 ablsimpgprmd.3 . . . . . . . 8 (𝜑𝐺 ∈ SimpGrp)
32simpggrpd 19214 . . . . . . 7 (𝜑𝐺 ∈ Grp)
4 ablsimpgprmd.1 . . . . . . . 8 𝐵 = (Base‘𝐺)
5 eqid 2798 . . . . . . . 8 (0g𝐺) = (0g𝐺)
64, 5grpidcl 18127 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
73, 6syl 17 . . . . . 6 (𝜑 → (0g𝐺) ∈ 𝐵)
87adantr 484 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → (0g𝐺) ∈ 𝐵)
9 ablsimpgprmd.2 . . . . . . 7 (𝜑𝐺 ∈ Abel)
104, 9, 2ablsimpgfind 19229 . . . . . 6 (𝜑𝐵 ∈ Fin)
1110adantr 484 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐵 ∈ Fin)
121, 8, 11hash1elsn 13731 . . . 4 ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐵 = {(0g𝐺)})
132adantr 484 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐺 ∈ SimpGrp)
144, 5, 13simpgntrivd 19217 . . . 4 ((𝜑 ∧ (♯‘𝐵) = 1) → ¬ 𝐵 = {(0g𝐺)})
1512, 14pm2.65da 816 . . 3 (𝜑 → ¬ (♯‘𝐵) = 1)
164, 3, 10hashfingrpnn 18132 . . . . 5 (𝜑 → (♯‘𝐵) ∈ ℕ)
17 elnn1uz2 12316 . . . . 5 ((♯‘𝐵) ∈ ℕ ↔ ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
1816, 17sylib 221 . . . 4 (𝜑 → ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
1918ord 861 . . 3 (𝜑 → (¬ (♯‘𝐵) = 1 → (♯‘𝐵) ∈ (ℤ‘2)))
2015, 19mpd 15 . 2 (𝜑 → (♯‘𝐵) ∈ (ℤ‘2))
219, 2ablsimpgcygd 19225 . . . . . . 7 (𝜑𝐺 ∈ CycGrp)
22213ad2ant1 1130 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝐺 ∈ CycGrp)
23 simp3 1135 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝑦 ∥ (♯‘𝐵))
24103ad2ant1 1130 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝐵 ∈ Fin)
25 simp2 1134 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝑦 ∈ ℕ)
264, 22, 23, 24, 25fincygsubgodexd 19232 . . . . 5 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝑦)
27 simpl1 1188 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝜑)
2827, 2syl 17 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝐺 ∈ SimpGrp)
29 simprl 770 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝑥 ∈ (SubGrp‘𝐺))
30 ablnsg 18964 . . . . . . . . 9 (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
3127, 9, 303syl 18 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
3229, 31eleqtrrd 2893 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝑥 ∈ (NrmSGrp‘𝐺))
334, 5, 28, 32simpgnsgeqd 19220 . . . . . 6 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
34 simpr 488 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → 𝑥 = {(0g𝐺)})
3534fveq2d 6650 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → (♯‘𝑥) = (♯‘{(0g𝐺)}))
36 simplrr 777 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → (♯‘𝑥) = 𝑦)
375fvexi 6660 . . . . . . . . . 10 (0g𝐺) ∈ V
38 hashsng 13729 . . . . . . . . . 10 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
3937, 38mp1i 13 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → (♯‘{(0g𝐺)}) = 1)
4035, 36, 393eqtr3d 2841 . . . . . . . 8 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → 𝑦 = 1)
4140ex 416 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = {(0g𝐺)} → 𝑦 = 1))
42 simplrr 777 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → (♯‘𝑥) = 𝑦)
43 simpr 488 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
4443fveq2d 6650 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → (♯‘𝑥) = (♯‘𝐵))
4542, 44eqtr3d 2835 . . . . . . . 8 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → 𝑦 = (♯‘𝐵))
4645ex 416 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = 𝐵𝑦 = (♯‘𝐵)))
4741, 46orim12d 962 . . . . . 6 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → ((𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))))
4833, 47mpd 15 . . . . 5 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))
4926, 48rexlimddv 3250 . . . 4 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))
50493exp 1116 . . 3 (𝜑 → (𝑦 ∈ ℕ → (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))))
5150ralrimiv 3148 . 2 (𝜑 → ∀𝑦 ∈ ℕ (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))))
52 isprm2 16019 . 2 ((♯‘𝐵) ∈ ℙ ↔ ((♯‘𝐵) ∈ (ℤ‘2) ∧ ∀𝑦 ∈ ℕ (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))))
5320, 51, 52sylanbrc 586 1 (𝜑 → (♯‘𝐵) ∈ ℙ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  Vcvv 3441  {csn 4525   class class class wbr 5031  ‘cfv 6325  Fincfn 8495  1c1 10530  ℕcn 11628  2c2 11683  ℤ≥cuz 12234  ♯chash 13689   ∥ cdvds 15602  ℙcprime 16008  Basecbs 16478  0gc0g 16708  Grpcgrp 18098  SubGrpcsubg 18269  NrmSGrpcnsg 18270  Abelcabl 18903  CycGrpccyg 18993  SimpGrpcsimpg 19209 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-omul 8093  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8893  df-inf 8894  df-oi 8961  df-card 9355  df-acn 9358  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-n0 11889  df-z 11973  df-uz 12235  df-rp 12381  df-fz 12889  df-fl 13160  df-mod 13236  df-seq 13368  df-exp 13429  df-hash 13690  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-dvds 15603  df-gcd 15837  df-prm 16009  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18221  df-subg 18272  df-nsg 18273  df-od 18652  df-cmn 18904  df-abl 18905  df-cyg 18994  df-simpg 19210 This theorem is referenced by:  ablsimpgd  19235
 Copyright terms: Public domain W3C validator