| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝐵) = 1) →
(♯‘𝐵) =
1) |
| 2 | | ablsimpgprmd.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
| 3 | 2 | simpggrpd 20083 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 4 | | ablsimpgprmd.1 |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
| 5 | | eqid 2736 |
. . . . . . . 8
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 6 | 4, 5 | grpidcl 18953 |
. . . . . . 7
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
| 7 | 3, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → (0g‘𝐺) ∈ 𝐵) |
| 8 | 7 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝐵) = 1) →
(0g‘𝐺)
∈ 𝐵) |
| 9 | | ablsimpgprmd.2 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Abel) |
| 10 | 4, 9, 2 | ablsimpgfind 20098 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 11 | 10 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐵 ∈ Fin) |
| 12 | 1, 8, 11 | hash1elsn 14394 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐵 = {(0g‘𝐺)}) |
| 13 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐺 ∈ SimpGrp) |
| 14 | 4, 5, 13 | simpgntrivd 20086 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐵) = 1) → ¬ 𝐵 = {(0g‘𝐺)}) |
| 15 | 12, 14 | pm2.65da 816 |
. . 3
⊢ (𝜑 → ¬ (♯‘𝐵) = 1) |
| 16 | 4, 3, 10 | hashfingrpnn 18960 |
. . . . 5
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ) |
| 17 | | elnn1uz2 12946 |
. . . . 5
⊢
((♯‘𝐵)
∈ ℕ ↔ ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈
(ℤ≥‘2))) |
| 18 | 16, 17 | sylib 218 |
. . . 4
⊢ (𝜑 → ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈
(ℤ≥‘2))) |
| 19 | 18 | ord 864 |
. . 3
⊢ (𝜑 → (¬
(♯‘𝐵) = 1
→ (♯‘𝐵)
∈ (ℤ≥‘2))) |
| 20 | 15, 19 | mpd 15 |
. 2
⊢ (𝜑 → (♯‘𝐵) ∈
(ℤ≥‘2)) |
| 21 | 9, 2 | ablsimpgcygd 20094 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ CycGrp) |
| 22 | 21 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝐺 ∈ CycGrp) |
| 23 | | simp3 1138 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝑦 ∥ (♯‘𝐵)) |
| 24 | 10 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝐵 ∈ Fin) |
| 25 | | simp2 1137 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝑦 ∈ ℕ) |
| 26 | 4, 22, 23, 24, 25 | fincygsubgodexd 20101 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝑦) |
| 27 | | simpl1 1192 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝜑) |
| 28 | 27, 2 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝐺 ∈ SimpGrp) |
| 29 | | simprl 770 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝑥 ∈ (SubGrp‘𝐺)) |
| 30 | | ablnsg 19833 |
. . . . . . . . 9
⊢ (𝐺 ∈ Abel →
(NrmSGrp‘𝐺) =
(SubGrp‘𝐺)) |
| 31 | 27, 9, 30 | 3syl 18 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) |
| 32 | 29, 31 | eleqtrrd 2838 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
| 33 | 4, 5, 28, 32 | simpgnsgeqd 20089 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = {(0g‘𝐺)} ∨ 𝑥 = 𝐵)) |
| 34 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g‘𝐺)}) → 𝑥 = {(0g‘𝐺)}) |
| 35 | 34 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g‘𝐺)}) → (♯‘𝑥) =
(♯‘{(0g‘𝐺)})) |
| 36 | | simplrr 777 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g‘𝐺)}) → (♯‘𝑥) = 𝑦) |
| 37 | 5 | fvexi 6895 |
. . . . . . . . . 10
⊢
(0g‘𝐺) ∈ V |
| 38 | | hashsng 14392 |
. . . . . . . . . 10
⊢
((0g‘𝐺) ∈ V →
(♯‘{(0g‘𝐺)}) = 1) |
| 39 | 37, 38 | mp1i 13 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g‘𝐺)}) →
(♯‘{(0g‘𝐺)}) = 1) |
| 40 | 35, 36, 39 | 3eqtr3d 2779 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g‘𝐺)}) → 𝑦 = 1) |
| 41 | 40 | ex 412 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = {(0g‘𝐺)} → 𝑦 = 1)) |
| 42 | | simplrr 777 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → (♯‘𝑥) = 𝑦) |
| 43 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) |
| 44 | 43 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → (♯‘𝑥) = (♯‘𝐵)) |
| 45 | 42, 44 | eqtr3d 2773 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → 𝑦 = (♯‘𝐵)) |
| 46 | 45 | ex 412 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = 𝐵 → 𝑦 = (♯‘𝐵))) |
| 47 | 41, 46 | orim12d 966 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → ((𝑥 = {(0g‘𝐺)} ∨ 𝑥 = 𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))) |
| 48 | 33, 47 | mpd 15 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))) |
| 49 | 26, 48 | rexlimddv 3148 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))) |
| 50 | 49 | 3exp 1119 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ℕ → (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))))) |
| 51 | 50 | ralrimiv 3132 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ ℕ (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))) |
| 52 | | isprm2 16706 |
. 2
⊢
((♯‘𝐵)
∈ ℙ ↔ ((♯‘𝐵) ∈ (ℤ≥‘2)
∧ ∀𝑦 ∈
ℕ (𝑦 ∥
(♯‘𝐵) →
(𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))))) |
| 53 | 20, 51, 52 | sylanbrc 583 |
1
⊢ (𝜑 → (♯‘𝐵) ∈
ℙ) |