MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsimpgprmd Structured version   Visualization version   GIF version

Theorem ablsimpgprmd 20159
Description: An abelian simple group has prime order. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
ablsimpgprmd.1 𝐵 = (Base‘𝐺)
ablsimpgprmd.2 (𝜑𝐺 ∈ Abel)
ablsimpgprmd.3 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
ablsimpgprmd (𝜑 → (♯‘𝐵) ∈ ℙ)

Proof of Theorem ablsimpgprmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → (♯‘𝐵) = 1)
2 ablsimpgprmd.3 . . . . . . . 8 (𝜑𝐺 ∈ SimpGrp)
32simpggrpd 20139 . . . . . . 7 (𝜑𝐺 ∈ Grp)
4 ablsimpgprmd.1 . . . . . . . 8 𝐵 = (Base‘𝐺)
5 eqid 2740 . . . . . . . 8 (0g𝐺) = (0g𝐺)
64, 5grpidcl 19005 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
73, 6syl 17 . . . . . 6 (𝜑 → (0g𝐺) ∈ 𝐵)
87adantr 480 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → (0g𝐺) ∈ 𝐵)
9 ablsimpgprmd.2 . . . . . . 7 (𝜑𝐺 ∈ Abel)
104, 9, 2ablsimpgfind 20154 . . . . . 6 (𝜑𝐵 ∈ Fin)
1110adantr 480 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐵 ∈ Fin)
121, 8, 11hash1elsn 14420 . . . 4 ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐵 = {(0g𝐺)})
132adantr 480 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐺 ∈ SimpGrp)
144, 5, 13simpgntrivd 20142 . . . 4 ((𝜑 ∧ (♯‘𝐵) = 1) → ¬ 𝐵 = {(0g𝐺)})
1512, 14pm2.65da 816 . . 3 (𝜑 → ¬ (♯‘𝐵) = 1)
164, 3, 10hashfingrpnn 19012 . . . . 5 (𝜑 → (♯‘𝐵) ∈ ℕ)
17 elnn1uz2 12990 . . . . 5 ((♯‘𝐵) ∈ ℕ ↔ ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
1816, 17sylib 218 . . . 4 (𝜑 → ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
1918ord 863 . . 3 (𝜑 → (¬ (♯‘𝐵) = 1 → (♯‘𝐵) ∈ (ℤ‘2)))
2015, 19mpd 15 . 2 (𝜑 → (♯‘𝐵) ∈ (ℤ‘2))
219, 2ablsimpgcygd 20150 . . . . . . 7 (𝜑𝐺 ∈ CycGrp)
22213ad2ant1 1133 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝐺 ∈ CycGrp)
23 simp3 1138 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝑦 ∥ (♯‘𝐵))
24103ad2ant1 1133 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝐵 ∈ Fin)
25 simp2 1137 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝑦 ∈ ℕ)
264, 22, 23, 24, 25fincygsubgodexd 20157 . . . . 5 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝑦)
27 simpl1 1191 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝜑)
2827, 2syl 17 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝐺 ∈ SimpGrp)
29 simprl 770 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝑥 ∈ (SubGrp‘𝐺))
30 ablnsg 19889 . . . . . . . . 9 (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
3127, 9, 303syl 18 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
3229, 31eleqtrrd 2847 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝑥 ∈ (NrmSGrp‘𝐺))
334, 5, 28, 32simpgnsgeqd 20145 . . . . . 6 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
34 simpr 484 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → 𝑥 = {(0g𝐺)})
3534fveq2d 6924 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → (♯‘𝑥) = (♯‘{(0g𝐺)}))
36 simplrr 777 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → (♯‘𝑥) = 𝑦)
375fvexi 6934 . . . . . . . . . 10 (0g𝐺) ∈ V
38 hashsng 14418 . . . . . . . . . 10 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
3937, 38mp1i 13 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → (♯‘{(0g𝐺)}) = 1)
4035, 36, 393eqtr3d 2788 . . . . . . . 8 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → 𝑦 = 1)
4140ex 412 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = {(0g𝐺)} → 𝑦 = 1))
42 simplrr 777 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → (♯‘𝑥) = 𝑦)
43 simpr 484 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
4443fveq2d 6924 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → (♯‘𝑥) = (♯‘𝐵))
4542, 44eqtr3d 2782 . . . . . . . 8 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → 𝑦 = (♯‘𝐵))
4645ex 412 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = 𝐵𝑦 = (♯‘𝐵)))
4741, 46orim12d 965 . . . . . 6 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → ((𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))))
4833, 47mpd 15 . . . . 5 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))
4926, 48rexlimddv 3167 . . . 4 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))
50493exp 1119 . . 3 (𝜑 → (𝑦 ∈ ℕ → (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))))
5150ralrimiv 3151 . 2 (𝜑 → ∀𝑦 ∈ ℕ (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))))
52 isprm2 16729 . 2 ((♯‘𝐵) ∈ ℙ ↔ ((♯‘𝐵) ∈ (ℤ‘2) ∧ ∀𝑦 ∈ ℕ (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))))
5320, 51, 52sylanbrc 582 1 (𝜑 → (♯‘𝐵) ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  {csn 4648   class class class wbr 5166  cfv 6573  Fincfn 9003  1c1 11185  cn 12293  2c2 12348  cuz 12903  chash 14379  cdvds 16302  cprime 16718  Basecbs 17258  0gc0g 17499  Grpcgrp 18973  SubGrpcsubg 19160  NrmSGrpcnsg 19161  Abelcabl 19823  CycGrpccyg 19919  SimpGrpcsimpg 20134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-od 19570  df-cmn 19824  df-abl 19825  df-cyg 19920  df-simpg 20135
This theorem is referenced by:  ablsimpgd  20160
  Copyright terms: Public domain W3C validator