MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsimpgprmd Structured version   Visualization version   GIF version

Theorem ablsimpgprmd 20150
Description: An abelian simple group has prime order. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
ablsimpgprmd.1 𝐵 = (Base‘𝐺)
ablsimpgprmd.2 (𝜑𝐺 ∈ Abel)
ablsimpgprmd.3 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
ablsimpgprmd (𝜑 → (♯‘𝐵) ∈ ℙ)

Proof of Theorem ablsimpgprmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → (♯‘𝐵) = 1)
2 ablsimpgprmd.3 . . . . . . . 8 (𝜑𝐺 ∈ SimpGrp)
32simpggrpd 20130 . . . . . . 7 (𝜑𝐺 ∈ Grp)
4 ablsimpgprmd.1 . . . . . . . 8 𝐵 = (Base‘𝐺)
5 eqid 2735 . . . . . . . 8 (0g𝐺) = (0g𝐺)
64, 5grpidcl 18996 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
73, 6syl 17 . . . . . 6 (𝜑 → (0g𝐺) ∈ 𝐵)
87adantr 480 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → (0g𝐺) ∈ 𝐵)
9 ablsimpgprmd.2 . . . . . . 7 (𝜑𝐺 ∈ Abel)
104, 9, 2ablsimpgfind 20145 . . . . . 6 (𝜑𝐵 ∈ Fin)
1110adantr 480 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐵 ∈ Fin)
121, 8, 11hash1elsn 14407 . . . 4 ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐵 = {(0g𝐺)})
132adantr 480 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐺 ∈ SimpGrp)
144, 5, 13simpgntrivd 20133 . . . 4 ((𝜑 ∧ (♯‘𝐵) = 1) → ¬ 𝐵 = {(0g𝐺)})
1512, 14pm2.65da 817 . . 3 (𝜑 → ¬ (♯‘𝐵) = 1)
164, 3, 10hashfingrpnn 19003 . . . . 5 (𝜑 → (♯‘𝐵) ∈ ℕ)
17 elnn1uz2 12965 . . . . 5 ((♯‘𝐵) ∈ ℕ ↔ ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
1816, 17sylib 218 . . . 4 (𝜑 → ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
1918ord 864 . . 3 (𝜑 → (¬ (♯‘𝐵) = 1 → (♯‘𝐵) ∈ (ℤ‘2)))
2015, 19mpd 15 . 2 (𝜑 → (♯‘𝐵) ∈ (ℤ‘2))
219, 2ablsimpgcygd 20141 . . . . . . 7 (𝜑𝐺 ∈ CycGrp)
22213ad2ant1 1132 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝐺 ∈ CycGrp)
23 simp3 1137 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝑦 ∥ (♯‘𝐵))
24103ad2ant1 1132 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝐵 ∈ Fin)
25 simp2 1136 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝑦 ∈ ℕ)
264, 22, 23, 24, 25fincygsubgodexd 20148 . . . . 5 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝑦)
27 simpl1 1190 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝜑)
2827, 2syl 17 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝐺 ∈ SimpGrp)
29 simprl 771 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝑥 ∈ (SubGrp‘𝐺))
30 ablnsg 19880 . . . . . . . . 9 (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
3127, 9, 303syl 18 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
3229, 31eleqtrrd 2842 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝑥 ∈ (NrmSGrp‘𝐺))
334, 5, 28, 32simpgnsgeqd 20136 . . . . . 6 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
34 simpr 484 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → 𝑥 = {(0g𝐺)})
3534fveq2d 6911 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → (♯‘𝑥) = (♯‘{(0g𝐺)}))
36 simplrr 778 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → (♯‘𝑥) = 𝑦)
375fvexi 6921 . . . . . . . . . 10 (0g𝐺) ∈ V
38 hashsng 14405 . . . . . . . . . 10 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
3937, 38mp1i 13 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → (♯‘{(0g𝐺)}) = 1)
4035, 36, 393eqtr3d 2783 . . . . . . . 8 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → 𝑦 = 1)
4140ex 412 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = {(0g𝐺)} → 𝑦 = 1))
42 simplrr 778 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → (♯‘𝑥) = 𝑦)
43 simpr 484 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
4443fveq2d 6911 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → (♯‘𝑥) = (♯‘𝐵))
4542, 44eqtr3d 2777 . . . . . . . 8 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → 𝑦 = (♯‘𝐵))
4645ex 412 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = 𝐵𝑦 = (♯‘𝐵)))
4741, 46orim12d 966 . . . . . 6 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → ((𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))))
4833, 47mpd 15 . . . . 5 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))
4926, 48rexlimddv 3159 . . . 4 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))
50493exp 1118 . . 3 (𝜑 → (𝑦 ∈ ℕ → (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))))
5150ralrimiv 3143 . 2 (𝜑 → ∀𝑦 ∈ ℕ (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))))
52 isprm2 16716 . 2 ((♯‘𝐵) ∈ ℙ ↔ ((♯‘𝐵) ∈ (ℤ‘2) ∧ ∀𝑦 ∈ ℕ (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))))
5320, 51, 52sylanbrc 583 1 (𝜑 → (♯‘𝐵) ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  {csn 4631   class class class wbr 5148  cfv 6563  Fincfn 8984  1c1 11154  cn 12264  2c2 12319  cuz 12876  chash 14366  cdvds 16287  cprime 16705  Basecbs 17245  0gc0g 17486  Grpcgrp 18964  SubGrpcsubg 19151  NrmSGrpcnsg 19152  Abelcabl 19814  CycGrpccyg 19910  SimpGrpcsimpg 20125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-nsg 19155  df-od 19561  df-cmn 19815  df-abl 19816  df-cyg 19911  df-simpg 20126
This theorem is referenced by:  ablsimpgd  20151
  Copyright terms: Public domain W3C validator