Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝐵) = 1) →
(♯‘𝐵) =
1) |
2 | | ablsimpgprmd.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
3 | 2 | simpggrpd 19613 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Grp) |
4 | | ablsimpgprmd.1 |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
5 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝐺) = (0g‘𝐺) |
6 | 4, 5 | grpidcl 18522 |
. . . . . . 7
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
7 | 3, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → (0g‘𝐺) ∈ 𝐵) |
8 | 7 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝐵) = 1) →
(0g‘𝐺)
∈ 𝐵) |
9 | | ablsimpgprmd.2 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Abel) |
10 | 4, 9, 2 | ablsimpgfind 19628 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ Fin) |
11 | 10 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐵 ∈ Fin) |
12 | 1, 8, 11 | hash1elsn 14014 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐵 = {(0g‘𝐺)}) |
13 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐺 ∈ SimpGrp) |
14 | 4, 5, 13 | simpgntrivd 19616 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐵) = 1) → ¬ 𝐵 = {(0g‘𝐺)}) |
15 | 12, 14 | pm2.65da 813 |
. . 3
⊢ (𝜑 → ¬ (♯‘𝐵) = 1) |
16 | 4, 3, 10 | hashfingrpnn 18527 |
. . . . 5
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ) |
17 | | elnn1uz2 12594 |
. . . . 5
⊢
((♯‘𝐵)
∈ ℕ ↔ ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈
(ℤ≥‘2))) |
18 | 16, 17 | sylib 217 |
. . . 4
⊢ (𝜑 → ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈
(ℤ≥‘2))) |
19 | 18 | ord 860 |
. . 3
⊢ (𝜑 → (¬
(♯‘𝐵) = 1
→ (♯‘𝐵)
∈ (ℤ≥‘2))) |
20 | 15, 19 | mpd 15 |
. 2
⊢ (𝜑 → (♯‘𝐵) ∈
(ℤ≥‘2)) |
21 | 9, 2 | ablsimpgcygd 19624 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ CycGrp) |
22 | 21 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝐺 ∈ CycGrp) |
23 | | simp3 1136 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝑦 ∥ (♯‘𝐵)) |
24 | 10 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝐵 ∈ Fin) |
25 | | simp2 1135 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝑦 ∈ ℕ) |
26 | 4, 22, 23, 24, 25 | fincygsubgodexd 19631 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝑦) |
27 | | simpl1 1189 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝜑) |
28 | 27, 2 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝐺 ∈ SimpGrp) |
29 | | simprl 767 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝑥 ∈ (SubGrp‘𝐺)) |
30 | | ablnsg 19363 |
. . . . . . . . 9
⊢ (𝐺 ∈ Abel →
(NrmSGrp‘𝐺) =
(SubGrp‘𝐺)) |
31 | 27, 9, 30 | 3syl 18 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (NrmSGrp‘𝐺) = (SubGrp‘𝐺)) |
32 | 29, 31 | eleqtrrd 2842 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝑥 ∈ (NrmSGrp‘𝐺)) |
33 | 4, 5, 28, 32 | simpgnsgeqd 19619 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = {(0g‘𝐺)} ∨ 𝑥 = 𝐵)) |
34 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g‘𝐺)}) → 𝑥 = {(0g‘𝐺)}) |
35 | 34 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g‘𝐺)}) → (♯‘𝑥) =
(♯‘{(0g‘𝐺)})) |
36 | | simplrr 774 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g‘𝐺)}) → (♯‘𝑥) = 𝑦) |
37 | 5 | fvexi 6770 |
. . . . . . . . . 10
⊢
(0g‘𝐺) ∈ V |
38 | | hashsng 14012 |
. . . . . . . . . 10
⊢
((0g‘𝐺) ∈ V →
(♯‘{(0g‘𝐺)}) = 1) |
39 | 37, 38 | mp1i 13 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g‘𝐺)}) →
(♯‘{(0g‘𝐺)}) = 1) |
40 | 35, 36, 39 | 3eqtr3d 2786 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g‘𝐺)}) → 𝑦 = 1) |
41 | 40 | ex 412 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = {(0g‘𝐺)} → 𝑦 = 1)) |
42 | | simplrr 774 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → (♯‘𝑥) = 𝑦) |
43 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) |
44 | 43 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → (♯‘𝑥) = (♯‘𝐵)) |
45 | 42, 44 | eqtr3d 2780 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → 𝑦 = (♯‘𝐵)) |
46 | 45 | ex 412 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = 𝐵 → 𝑦 = (♯‘𝐵))) |
47 | 41, 46 | orim12d 961 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → ((𝑥 = {(0g‘𝐺)} ∨ 𝑥 = 𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))) |
48 | 33, 47 | mpd 15 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))) |
49 | 26, 48 | rexlimddv 3219 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))) |
50 | 49 | 3exp 1117 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ℕ → (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))))) |
51 | 50 | ralrimiv 3106 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ ℕ (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))) |
52 | | isprm2 16315 |
. 2
⊢
((♯‘𝐵)
∈ ℙ ↔ ((♯‘𝐵) ∈ (ℤ≥‘2)
∧ ∀𝑦 ∈
ℕ (𝑦 ∥
(♯‘𝐵) →
(𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))))) |
53 | 20, 51, 52 | sylanbrc 582 |
1
⊢ (𝜑 → (♯‘𝐵) ∈
ℙ) |