MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsimpgprmd Structured version   Visualization version   GIF version

Theorem ablsimpgprmd 20071
Description: An abelian simple group has prime order. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
ablsimpgprmd.1 𝐵 = (Base‘𝐺)
ablsimpgprmd.2 (𝜑𝐺 ∈ Abel)
ablsimpgprmd.3 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
ablsimpgprmd (𝜑 → (♯‘𝐵) ∈ ℙ)

Proof of Theorem ablsimpgprmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 483 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → (♯‘𝐵) = 1)
2 ablsimpgprmd.3 . . . . . . . 8 (𝜑𝐺 ∈ SimpGrp)
32simpggrpd 20051 . . . . . . 7 (𝜑𝐺 ∈ Grp)
4 ablsimpgprmd.1 . . . . . . . 8 𝐵 = (Base‘𝐺)
5 eqid 2725 . . . . . . . 8 (0g𝐺) = (0g𝐺)
64, 5grpidcl 18921 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
73, 6syl 17 . . . . . 6 (𝜑 → (0g𝐺) ∈ 𝐵)
87adantr 479 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → (0g𝐺) ∈ 𝐵)
9 ablsimpgprmd.2 . . . . . . 7 (𝜑𝐺 ∈ Abel)
104, 9, 2ablsimpgfind 20066 . . . . . 6 (𝜑𝐵 ∈ Fin)
1110adantr 479 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐵 ∈ Fin)
121, 8, 11hash1elsn 14357 . . . 4 ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐵 = {(0g𝐺)})
132adantr 479 . . . . 5 ((𝜑 ∧ (♯‘𝐵) = 1) → 𝐺 ∈ SimpGrp)
144, 5, 13simpgntrivd 20054 . . . 4 ((𝜑 ∧ (♯‘𝐵) = 1) → ¬ 𝐵 = {(0g𝐺)})
1512, 14pm2.65da 815 . . 3 (𝜑 → ¬ (♯‘𝐵) = 1)
164, 3, 10hashfingrpnn 18928 . . . . 5 (𝜑 → (♯‘𝐵) ∈ ℕ)
17 elnn1uz2 12934 . . . . 5 ((♯‘𝐵) ∈ ℕ ↔ ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
1816, 17sylib 217 . . . 4 (𝜑 → ((♯‘𝐵) = 1 ∨ (♯‘𝐵) ∈ (ℤ‘2)))
1918ord 862 . . 3 (𝜑 → (¬ (♯‘𝐵) = 1 → (♯‘𝐵) ∈ (ℤ‘2)))
2015, 19mpd 15 . 2 (𝜑 → (♯‘𝐵) ∈ (ℤ‘2))
219, 2ablsimpgcygd 20062 . . . . . . 7 (𝜑𝐺 ∈ CycGrp)
22213ad2ant1 1130 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝐺 ∈ CycGrp)
23 simp3 1135 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝑦 ∥ (♯‘𝐵))
24103ad2ant1 1130 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝐵 ∈ Fin)
25 simp2 1134 . . . . . 6 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → 𝑦 ∈ ℕ)
264, 22, 23, 24, 25fincygsubgodexd 20069 . . . . 5 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → ∃𝑥 ∈ (SubGrp‘𝐺)(♯‘𝑥) = 𝑦)
27 simpl1 1188 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝜑)
2827, 2syl 17 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝐺 ∈ SimpGrp)
29 simprl 769 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝑥 ∈ (SubGrp‘𝐺))
30 ablnsg 19801 . . . . . . . . 9 (𝐺 ∈ Abel → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
3127, 9, 303syl 18 . . . . . . . 8 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (NrmSGrp‘𝐺) = (SubGrp‘𝐺))
3229, 31eleqtrrd 2828 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → 𝑥 ∈ (NrmSGrp‘𝐺))
334, 5, 28, 32simpgnsgeqd 20057 . . . . . 6 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵))
34 simpr 483 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → 𝑥 = {(0g𝐺)})
3534fveq2d 6894 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → (♯‘𝑥) = (♯‘{(0g𝐺)}))
36 simplrr 776 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → (♯‘𝑥) = 𝑦)
375fvexi 6904 . . . . . . . . . 10 (0g𝐺) ∈ V
38 hashsng 14355 . . . . . . . . . 10 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
3937, 38mp1i 13 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → (♯‘{(0g𝐺)}) = 1)
4035, 36, 393eqtr3d 2773 . . . . . . . 8 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = {(0g𝐺)}) → 𝑦 = 1)
4140ex 411 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = {(0g𝐺)} → 𝑦 = 1))
42 simplrr 776 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → (♯‘𝑥) = 𝑦)
43 simpr 483 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
4443fveq2d 6894 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → (♯‘𝑥) = (♯‘𝐵))
4542, 44eqtr3d 2767 . . . . . . . 8 ((((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) ∧ 𝑥 = 𝐵) → 𝑦 = (♯‘𝐵))
4645ex 411 . . . . . . 7 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑥 = 𝐵𝑦 = (♯‘𝐵)))
4741, 46orim12d 962 . . . . . 6 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → ((𝑥 = {(0g𝐺)} ∨ 𝑥 = 𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))))
4833, 47mpd 15 . . . . 5 (((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) ∧ (𝑥 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑥) = 𝑦)) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))
4926, 48rexlimddv 3151 . . . 4 ((𝜑𝑦 ∈ ℕ ∧ 𝑦 ∥ (♯‘𝐵)) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))
50493exp 1116 . . 3 (𝜑 → (𝑦 ∈ ℕ → (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))))
5150ralrimiv 3135 . 2 (𝜑 → ∀𝑦 ∈ ℕ (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵))))
52 isprm2 16647 . 2 ((♯‘𝐵) ∈ ℙ ↔ ((♯‘𝐵) ∈ (ℤ‘2) ∧ ∀𝑦 ∈ ℕ (𝑦 ∥ (♯‘𝐵) → (𝑦 = 1 ∨ 𝑦 = (♯‘𝐵)))))
5320, 51, 52sylanbrc 581 1 (𝜑 → (♯‘𝐵) ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wral 3051  Vcvv 3463  {csn 4625   class class class wbr 5144  cfv 6543  Fincfn 8957  1c1 11134  cn 12237  2c2 12292  cuz 12847  chash 14316  cdvds 16225  cprime 16636  Basecbs 17174  0gc0g 17415  Grpcgrp 18889  SubGrpcsubg 19074  NrmSGrpcnsg 19075  Abelcabl 19735  CycGrpccyg 19831  SimpGrpcsimpg 20046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9460  df-inf 9461  df-oi 9528  df-card 9957  df-acn 9960  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-fz 13512  df-fl 13784  df-mod 13862  df-seq 13994  df-exp 14054  df-hash 14317  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-dvds 16226  df-gcd 16464  df-prm 16637  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-0g 17417  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-submnd 18735  df-grp 18892  df-minusg 18893  df-sbg 18894  df-mulg 19023  df-subg 19077  df-nsg 19078  df-od 19482  df-cmn 19736  df-abl 19737  df-cyg 19832  df-simpg 20047
This theorem is referenced by:  ablsimpgd  20072
  Copyright terms: Public domain W3C validator