MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsimpgcygd Structured version   Visualization version   GIF version

Theorem ablsimpgcygd 20152
Description: An abelian simple group is cyclic. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof shortened by Rohan Ridenour, 31-Oct-2023.)
Hypotheses
Ref Expression
ablsimpgcygd.1 (𝜑𝐺 ∈ Abel)
ablsimpgcygd.2 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
ablsimpgcygd (𝜑𝐺 ∈ CycGrp)

Proof of Theorem ablsimpgcygd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2740 . . 3 (0g𝐺) = (0g𝐺)
3 ablsimpgcygd.2 . . 3 (𝜑𝐺 ∈ SimpGrp)
41, 2, 3simpgnideld 20145 . 2 (𝜑 → ∃𝑥 ∈ (Base‘𝐺) ¬ 𝑥 = (0g𝐺))
5 eqid 2740 . . 3 (.g𝐺) = (.g𝐺)
63simpggrpd 20141 . . . 4 (𝜑𝐺 ∈ Grp)
76adantr 480 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ¬ 𝑥 = (0g𝐺))) → 𝐺 ∈ Grp)
8 simprl 770 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ¬ 𝑥 = (0g𝐺))) → 𝑥 ∈ (Base‘𝐺))
9 ablsimpgcygd.1 . . . . 5 (𝜑𝐺 ∈ Abel)
109ad2antrr 725 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ¬ 𝑥 = (0g𝐺))) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝐺 ∈ Abel)
113ad2antrr 725 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ¬ 𝑥 = (0g𝐺))) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝐺 ∈ SimpGrp)
12 simplrl 776 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ¬ 𝑥 = (0g𝐺))) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
13 simplrr 777 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ¬ 𝑥 = (0g𝐺))) ∧ 𝑦 ∈ (Base‘𝐺)) → ¬ 𝑥 = (0g𝐺))
14 simpr 484 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ¬ 𝑥 = (0g𝐺))) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦 ∈ (Base‘𝐺))
151, 2, 5, 10, 11, 12, 13, 14ablsimpg1gend 20151 . . 3 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ¬ 𝑥 = (0g𝐺))) ∧ 𝑦 ∈ (Base‘𝐺)) → ∃𝑧 ∈ ℤ 𝑦 = (𝑧(.g𝐺)𝑥))
161, 5, 7, 8, 15iscygd 19931 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ¬ 𝑥 = (0g𝐺))) → 𝐺 ∈ CycGrp)
174, 16rexlimddv 3167 1 (𝜑𝐺 ∈ CycGrp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  cfv 6575  Basecbs 17260  0gc0g 17501  Grpcgrp 18975  .gcmg 19109  Abelcabl 19825  CycGrpccyg 19921  SimpGrpcsimpg 20136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-n0 12556  df-z 12642  df-uz 12906  df-fz 13570  df-seq 14055  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ress 17290  df-plusg 17326  df-0g 17503  df-mgm 18680  df-sgrp 18759  df-mnd 18775  df-submnd 18821  df-grp 18978  df-minusg 18979  df-sbg 18980  df-mulg 19110  df-subg 19165  df-nsg 19166  df-cmn 19826  df-abl 19827  df-cyg 19922  df-simpg 20137
This theorem is referenced by:  ablsimpgprmd  20161
  Copyright terms: Public domain W3C validator