![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ablsimpgfindlem2 | Structured version Visualization version GIF version |
Description: Lemma for ablsimpgfind 40119. An element of an abelian finite simple group which squares to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
ablsimpgfindlem1.1 | ⊢ 𝐵 = (Base‘𝐺) |
ablsimpgfindlem1.2 | ⊢ 0 = (0g‘𝐺) |
ablsimpgfindlem1.3 | ⊢ · = (.g‘𝐺) |
ablsimpgfindlem1.4 | ⊢ 𝑂 = (od‘𝐺) |
ablsimpgfindlem1.5 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablsimpgfindlem1.6 | ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
Ref | Expression |
---|---|
ablsimpgfindlem2 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → (𝑂‘𝑥) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → (2 · 𝑥) = 0 ) | |
2 | ablsimpgfindlem1.6 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | |
3 | 2 | simpggrpd 40103 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ Grp) |
4 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐺 ∈ Grp) |
5 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
6 | 2z 11852 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 2 ∈ ℤ) |
8 | 4, 5, 7 | 3jca 1119 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 2 ∈ ℤ)) |
9 | 8 | adantr 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → (𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 2 ∈ ℤ)) |
10 | ablsimpgfindlem1.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
11 | ablsimpgfindlem1.4 | . . . . 5 ⊢ 𝑂 = (od‘𝐺) | |
12 | ablsimpgfindlem1.3 | . . . . 5 ⊢ · = (.g‘𝐺) | |
13 | ablsimpgfindlem1.2 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
14 | 10, 11, 12, 13 | oddvds 18394 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 2 ∈ ℤ) → ((𝑂‘𝑥) ∥ 2 ↔ (2 · 𝑥) = 0 )) |
15 | 9, 14 | syl 17 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → ((𝑂‘𝑥) ∥ 2 ↔ (2 · 𝑥) = 0 )) |
16 | 1, 15 | mpbird 258 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → (𝑂‘𝑥) ∥ 2) |
17 | 2ne0 11578 | . . . . 5 ⊢ 2 ≠ 0 | |
18 | 17 | a1i 11 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → 2 ≠ 0) |
19 | 18 | neneqd 2987 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → ¬ 2 = 0) |
20 | 0dvds 15451 | . . . 4 ⊢ (2 ∈ ℤ → (0 ∥ 2 ↔ 2 = 0)) | |
21 | 6, 20 | ax-mp 5 | . . 3 ⊢ (0 ∥ 2 ↔ 2 = 0) |
22 | 19, 21 | sylnibr 330 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → ¬ 0 ∥ 2) |
23 | nbrne2 4976 | . 2 ⊢ (((𝑂‘𝑥) ∥ 2 ∧ ¬ 0 ∥ 2) → (𝑂‘𝑥) ≠ 0) | |
24 | 16, 22, 23 | syl2anc 584 | 1 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → (𝑂‘𝑥) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1078 = wceq 1520 ∈ wcel 2079 ≠ wne 2982 class class class wbr 4956 ‘cfv 6217 (class class class)co 7007 0cc0 10372 2c2 11529 ℤcz 11818 ∥ cdvds 15428 Basecbs 16300 0gc0g 16530 Grpcgrp 17849 .gcmg 17969 odcod 18371 Abelcabl 18622 SimpGrpcsimpg 40098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 ax-pre-sup 10450 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-1st 7536 df-2nd 7537 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-sup 8742 df-inf 8743 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-div 11135 df-nn 11476 df-2 11537 df-3 11538 df-n0 11735 df-z 11819 df-uz 12083 df-rp 12229 df-fz 12732 df-fl 13000 df-mod 13076 df-seq 13208 df-exp 13268 df-cj 14280 df-re 14281 df-im 14282 df-sqrt 14416 df-abs 14417 df-dvds 15429 df-0g 16532 df-mgm 17669 df-sgrp 17711 df-mnd 17722 df-grp 17852 df-minusg 17853 df-sbg 17854 df-mulg 17970 df-od 18375 df-simpg 40099 |
This theorem is referenced by: ablsimpgfind 40119 |
Copyright terms: Public domain | W3C validator |