Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablsimpgfindlem2 | Structured version Visualization version GIF version |
Description: Lemma for ablsimpgfind 19713. An element of an abelian finite simple group which squares to the identity has finite order. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
ablsimpgfindlem1.1 | ⊢ 𝐵 = (Base‘𝐺) |
ablsimpgfindlem1.2 | ⊢ 0 = (0g‘𝐺) |
ablsimpgfindlem1.3 | ⊢ · = (.g‘𝐺) |
ablsimpgfindlem1.4 | ⊢ 𝑂 = (od‘𝐺) |
ablsimpgfindlem1.5 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablsimpgfindlem1.6 | ⊢ (𝜑 → 𝐺 ∈ SimpGrp) |
Ref | Expression |
---|---|
ablsimpgfindlem2 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → (𝑂‘𝑥) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → (2 · 𝑥) = 0 ) | |
2 | ablsimpgfindlem1.6 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ SimpGrp) | |
3 | 2 | simpggrpd 19698 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ Grp) |
4 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐺 ∈ Grp) |
5 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
6 | 2z 12352 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 2 ∈ ℤ) |
8 | 4, 5, 7 | 3jca 1127 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 2 ∈ ℤ)) |
9 | 8 | adantr 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → (𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 2 ∈ ℤ)) |
10 | ablsimpgfindlem1.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
11 | ablsimpgfindlem1.4 | . . . . 5 ⊢ 𝑂 = (od‘𝐺) | |
12 | ablsimpgfindlem1.3 | . . . . 5 ⊢ · = (.g‘𝐺) | |
13 | ablsimpgfindlem1.2 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
14 | 10, 11, 12, 13 | oddvds 19155 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 2 ∈ ℤ) → ((𝑂‘𝑥) ∥ 2 ↔ (2 · 𝑥) = 0 )) |
15 | 9, 14 | syl 17 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → ((𝑂‘𝑥) ∥ 2 ↔ (2 · 𝑥) = 0 )) |
16 | 1, 15 | mpbird 256 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → (𝑂‘𝑥) ∥ 2) |
17 | 2ne0 12077 | . . . . 5 ⊢ 2 ≠ 0 | |
18 | 17 | a1i 11 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → 2 ≠ 0) |
19 | 18 | neneqd 2948 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → ¬ 2 = 0) |
20 | 0dvds 15986 | . . . 4 ⊢ (2 ∈ ℤ → (0 ∥ 2 ↔ 2 = 0)) | |
21 | 6, 20 | ax-mp 5 | . . 3 ⊢ (0 ∥ 2 ↔ 2 = 0) |
22 | 19, 21 | sylnibr 329 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → ¬ 0 ∥ 2) |
23 | nbrne2 5094 | . 2 ⊢ (((𝑂‘𝑥) ∥ 2 ∧ ¬ 0 ∥ 2) → (𝑂‘𝑥) ≠ 0) | |
24 | 16, 22, 23 | syl2anc 584 | 1 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (2 · 𝑥) = 0 ) → (𝑂‘𝑥) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 0cc0 10871 2c2 12028 ℤcz 12319 ∥ cdvds 15963 Basecbs 16912 0gc0g 17150 Grpcgrp 18577 .gcmg 18700 odcod 19132 Abelcabl 19387 SimpGrpcsimpg 19693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-od 19136 df-simpg 19694 |
This theorem is referenced by: ablsimpgfind 19713 |
Copyright terms: Public domain | W3C validator |