![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smoel2 | Structured version Visualization version GIF version |
Description: A strictly monotone ordinal function preserves the membership relation. (Contributed by Mario Carneiro, 12-Mar-2013.) |
Ref | Expression |
---|---|
smoel2 | ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 6649 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | 1 | eleq2d 2819 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
3 | 2 | anbi1d 630 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵) ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵))) |
4 | 3 | biimprd 247 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵))) |
5 | smoel 8356 | . . . 4 ⊢ ((Smo 𝐹 ∧ 𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) | |
6 | 5 | 3expib 1122 | . . 3 ⊢ (Smo 𝐹 → ((𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝐶) ∈ (𝐹‘𝐵))) |
7 | 4, 6 | sylan9 508 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝐶) ∈ (𝐹‘𝐵))) |
8 | 7 | imp 407 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 dom cdm 5675 Fn wfn 6535 ‘cfv 6540 Smo wsmo 8341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-tr 5265 df-ord 6364 df-iota 6492 df-fn 6543 df-fv 6548 df-smo 8342 |
This theorem is referenced by: smo11 8360 smoord 8361 smogt 8363 cofsmo 10260 |
Copyright terms: Public domain | W3C validator |