MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoel2 Structured version   Visualization version   GIF version

Theorem smoel2 8359
Description: A strictly monotone ordinal function preserves the membership relation. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smoel2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵𝐴𝐶𝐵)) → (𝐹𝐶) ∈ (𝐹𝐵))

Proof of Theorem smoel2
StepHypRef Expression
1 fndm 6649 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
21eleq2d 2819 . . . . 5 (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹𝐵𝐴))
32anbi1d 630 . . . 4 (𝐹 Fn 𝐴 → ((𝐵 ∈ dom 𝐹𝐶𝐵) ↔ (𝐵𝐴𝐶𝐵)))
43biimprd 247 . . 3 (𝐹 Fn 𝐴 → ((𝐵𝐴𝐶𝐵) → (𝐵 ∈ dom 𝐹𝐶𝐵)))
5 smoel 8356 . . . 4 ((Smo 𝐹𝐵 ∈ dom 𝐹𝐶𝐵) → (𝐹𝐶) ∈ (𝐹𝐵))
653expib 1122 . . 3 (Smo 𝐹 → ((𝐵 ∈ dom 𝐹𝐶𝐵) → (𝐹𝐶) ∈ (𝐹𝐵)))
74, 6sylan9 508 . 2 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ((𝐵𝐴𝐶𝐵) → (𝐹𝐶) ∈ (𝐹𝐵)))
87imp 407 1 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵𝐴𝐶𝐵)) → (𝐹𝐶) ∈ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  dom cdm 5675   Fn wfn 6535  cfv 6540  Smo wsmo 8341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-tr 5265  df-ord 6364  df-iota 6492  df-fn 6543  df-fv 6548  df-smo 8342
This theorem is referenced by:  smo11  8360  smoord  8361  smogt  8363  cofsmo  10260
  Copyright terms: Public domain W3C validator