Step | Hyp | Ref
| Expression |
1 | | prdsbas.p |
. . 3
β’ π = (πXsπ
) |
2 | | eqid 2732 |
. . 3
β’
(Baseβπ) =
(Baseβπ) |
3 | | prdsbas.i |
. . 3
β’ (π β dom π
= πΌ) |
4 | | prdsbas.s |
. . . 4
β’ (π β π β π) |
5 | | prdsbas.r |
. . . 4
β’ (π β π
β π) |
6 | | prdsbas.b |
. . . 4
β’ π΅ = (Baseβπ) |
7 | 1, 4, 5, 6, 3 | prdsbas 17402 |
. . 3
β’ (π β π΅ = Xπ₯ β πΌ (Baseβ(π
βπ₯))) |
8 | | eqid 2732 |
. . . 4
β’
(+gβπ) = (+gβπ) |
9 | 1, 4, 5, 6, 3, 8 | prdsplusg 17403 |
. . 3
β’ (π β (+gβπ) = (π β π΅, π β π΅ β¦ (π₯ β πΌ β¦ ((πβπ₯)(+gβ(π
βπ₯))(πβπ₯))))) |
10 | | eqid 2732 |
. . . 4
β’
(.rβπ) = (.rβπ) |
11 | 1, 4, 5, 6, 3, 10 | prdsmulr 17404 |
. . 3
β’ (π β (.rβπ) = (π β π΅, π β π΅ β¦ (π₯ β πΌ β¦ ((πβπ₯)(.rβ(π
βπ₯))(πβπ₯))))) |
12 | | eqid 2732 |
. . . 4
β’ (
Β·π βπ) = ( Β·π
βπ) |
13 | 1, 4, 5, 6, 3, 2, 12 | prdsvsca 17405 |
. . 3
β’ (π β (
Β·π βπ) = (π β (Baseβπ), π β π΅ β¦ (π₯ β πΌ β¦ (π( Β·π
β(π
βπ₯))(πβπ₯))))) |
14 | | eqidd 2733 |
. . 3
β’ (π β (π β π΅, π β π΅ β¦ (π Ξ£g (π₯ β πΌ β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯))))) = (π β π΅, π β π΅ β¦ (π Ξ£g (π₯ β πΌ β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))) |
15 | | eqid 2732 |
. . . 4
β’
(TopSetβπ) =
(TopSetβπ) |
16 | 1, 4, 5, 6, 3, 15 | prdstset 17411 |
. . 3
β’ (π β (TopSetβπ) =
(βtβ(TopOpen β π
))) |
17 | | eqid 2732 |
. . . 4
β’
(leβπ) =
(leβπ) |
18 | 1, 4, 5, 6, 3, 17 | prdsle 17407 |
. . 3
β’ (π β (leβπ) = {β¨π, πβ© β£ ({π, π} β π΅ β§ βπ₯ β πΌ (πβπ₯)(leβ(π
βπ₯))(πβπ₯))}) |
19 | | eqid 2732 |
. . . 4
β’
(distβπ) =
(distβπ) |
20 | 1, 4, 5, 6, 3, 19 | prdsds 17409 |
. . 3
β’ (π β (distβπ) = (π β π΅, π β π΅ β¦ sup((ran (π₯ β πΌ β¦ ((πβπ₯)(distβ(π
βπ₯))(πβπ₯))) βͺ {0}), β*, <
))) |
21 | | prdshom.h |
. . . 4
β’ π» = (Hom βπ) |
22 | 1, 4, 5, 6, 3, 21 | prdshom 17412 |
. . 3
β’ (π β π» = (π β π΅, π β π΅ β¦ Xπ₯ β πΌ ((πβπ₯)(Hom β(π
βπ₯))(πβπ₯)))) |
23 | | eqidd 2733 |
. . 3
β’ (π β (π β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯))))) = (π β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))) |
24 | 1, 2, 3, 7, 9, 11,
13, 14, 16, 18, 20, 22, 23, 4, 5 | prdsval 17400 |
. 2
β’ (π β π = (({β¨(Baseβndx), π΅β©,
β¨(+gβndx), (+gβπ)β©, β¨(.rβndx),
(.rβπ)β©} βͺ {β¨(Scalarβndx),
πβ©, β¨(
Β·π βndx), (
Β·π βπ)β©,
β¨(Β·πβndx), (π β π΅, π β π΅ β¦ (π Ξ£g (π₯ β πΌ β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(TopSetβπ)β©,
β¨(leβndx), (leβπ)β©, β¨(distβndx),
(distβπ)β©} βͺ
{β¨(Hom βndx), π»β©, β¨(compβndx), (π β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©}))) |
25 | | prdsco.o |
. 2
β’ β =
(compβπ) |
26 | | ccoid 17358 |
. 2
β’ comp =
Slot (compβndx) |
27 | 6 | fvexi 6905 |
. . . . 5
β’ π΅ β V |
28 | 27, 27 | xpex 7739 |
. . . 4
β’ (π΅ Γ π΅) β V |
29 | 28, 27 | mpoex 8065 |
. . 3
β’ (π β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯))))) β V |
30 | 29 | a1i 11 |
. 2
β’ (π β (π β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯))))) β V) |
31 | | snsspr2 4818 |
. . . 4
β’
{β¨(compβndx), (π β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©} β {β¨(Hom βndx),
π»β©,
β¨(compβndx), (π
β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©} |
32 | | ssun2 4173 |
. . . 4
β’
{β¨(Hom βndx), π»β©, β¨(compβndx), (π β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©} β
({β¨(TopSetβndx), (TopSetβπ)β©, β¨(leβndx),
(leβπ)β©,
β¨(distβndx), (distβπ)β©} βͺ {β¨(Hom βndx),
π»β©,
β¨(compβndx), (π
β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©}) |
33 | 31, 32 | sstri 3991 |
. . 3
β’
{β¨(compβndx), (π β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©} β
({β¨(TopSetβndx), (TopSetβπ)β©, β¨(leβndx),
(leβπ)β©,
β¨(distβndx), (distβπ)β©} βͺ {β¨(Hom βndx),
π»β©,
β¨(compβndx), (π
β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©}) |
34 | | ssun2 4173 |
. . 3
β’
({β¨(TopSetβndx), (TopSetβπ)β©, β¨(leβndx),
(leβπ)β©,
β¨(distβndx), (distβπ)β©} βͺ {β¨(Hom βndx),
π»β©,
β¨(compβndx), (π
β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©}) β
(({β¨(Baseβndx), π΅β©, β¨(+gβndx),
(+gβπ)β©, β¨(.rβndx),
(.rβπ)β©} βͺ {β¨(Scalarβndx),
πβ©, β¨(
Β·π βndx), (
Β·π βπ)β©,
β¨(Β·πβndx), (π β π΅, π β π΅ β¦ (π Ξ£g (π₯ β πΌ β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(TopSetβπ)β©,
β¨(leβndx), (leβπ)β©, β¨(distβndx),
(distβπ)β©} βͺ
{β¨(Hom βndx), π»β©, β¨(compβndx), (π β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©})) |
35 | 33, 34 | sstri 3991 |
. 2
β’
{β¨(compβndx), (π β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©} β
(({β¨(Baseβndx), π΅β©, β¨(+gβndx),
(+gβπ)β©, β¨(.rβndx),
(.rβπ)β©} βͺ {β¨(Scalarβndx),
πβ©, β¨(
Β·π βndx), (
Β·π βπ)β©,
β¨(Β·πβndx), (π β π΅, π β π΅ β¦ (π Ξ£g (π₯ β πΌ β¦ ((πβπ₯)(Β·πβ(π
βπ₯))(πβπ₯)))))β©}) βͺ ({β¨(TopSetβndx),
(TopSetβπ)β©,
β¨(leβndx), (leβπ)β©, β¨(distβndx),
(distβπ)β©} βͺ
{β¨(Hom βndx), π»β©, β¨(compβndx), (π β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))β©})) |
36 | 24, 25, 26, 30, 35 | prdsbaslem 17398 |
1
β’ (π β β = (π β (π΅ Γ π΅), π β π΅ β¦ (π β ((2nd βπ)π»π), π β (π»βπ) β¦ (π₯ β πΌ β¦ ((πβπ₯)(β¨((1st βπ)βπ₯), ((2nd βπ)βπ₯)β©(compβ(π
βπ₯))(πβπ₯))(πβπ₯)))))) |