MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsco Structured version   Visualization version   GIF version

Theorem prdsco 17413
Description: Structure product composition operation. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsbas.p 𝑃 = (𝑆Xs𝑅)
prdsbas.s (πœ‘ β†’ 𝑆 ∈ 𝑉)
prdsbas.r (πœ‘ β†’ 𝑅 ∈ π‘Š)
prdsbas.b 𝐡 = (Baseβ€˜π‘ƒ)
prdsbas.i (πœ‘ β†’ dom 𝑅 = 𝐼)
prdshom.h 𝐻 = (Hom β€˜π‘ƒ)
prdsco.o βˆ™ = (compβ€˜π‘ƒ)
Assertion
Ref Expression
prdsco (πœ‘ β†’ βˆ™ = (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯))))))
Distinct variable groups:   π‘Ž,𝑐,𝑑,𝑒,π‘₯,𝐡   𝐻,π‘Ž,𝑐,𝑑,𝑒   πœ‘,π‘Ž,𝑐,𝑑,𝑒,π‘₯   𝐼,π‘Ž,𝑐,𝑑,𝑒,π‘₯   π‘₯,𝑃   𝑅,π‘Ž,𝑐,𝑑,𝑒,π‘₯   𝑆,π‘Ž,𝑐,𝑑,𝑒,π‘₯
Allowed substitution hints:   𝑃(𝑒,π‘Ž,𝑐,𝑑)   βˆ™ (π‘₯,𝑒,π‘Ž,𝑐,𝑑)   𝐻(π‘₯)   𝑉(π‘₯,𝑒,π‘Ž,𝑐,𝑑)   π‘Š(π‘₯,𝑒,π‘Ž,𝑐,𝑑)

Proof of Theorem prdsco
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3 𝑃 = (𝑆Xs𝑅)
2 eqid 2732 . . 3 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
3 prdsbas.i . . 3 (πœ‘ β†’ dom 𝑅 = 𝐼)
4 prdsbas.s . . . 4 (πœ‘ β†’ 𝑆 ∈ 𝑉)
5 prdsbas.r . . . 4 (πœ‘ β†’ 𝑅 ∈ π‘Š)
6 prdsbas.b . . . 4 𝐡 = (Baseβ€˜π‘ƒ)
71, 4, 5, 6, 3prdsbas 17402 . . 3 (πœ‘ β†’ 𝐡 = Xπ‘₯ ∈ 𝐼 (Baseβ€˜(π‘…β€˜π‘₯)))
8 eqid 2732 . . . 4 (+gβ€˜π‘ƒ) = (+gβ€˜π‘ƒ)
91, 4, 5, 6, 3, 8prdsplusg 17403 . . 3 (πœ‘ β†’ (+gβ€˜π‘ƒ) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(+gβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))
10 eqid 2732 . . . 4 (.rβ€˜π‘ƒ) = (.rβ€˜π‘ƒ)
111, 4, 5, 6, 3, 10prdsmulr 17404 . . 3 (πœ‘ β†’ (.rβ€˜π‘ƒ) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(.rβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))
12 eqid 2732 . . . 4 ( ·𝑠 β€˜π‘ƒ) = ( ·𝑠 β€˜π‘ƒ)
131, 4, 5, 6, 3, 2, 12prdsvsca 17405 . . 3 (πœ‘ β†’ ( ·𝑠 β€˜π‘ƒ) = (𝑓 ∈ (Baseβ€˜π‘†), 𝑔 ∈ 𝐡 ↦ (π‘₯ ∈ 𝐼 ↦ (𝑓( ·𝑠 β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))
14 eqidd 2733 . . 3 (πœ‘ β†’ (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))))
15 eqid 2732 . . . 4 (TopSetβ€˜π‘ƒ) = (TopSetβ€˜π‘ƒ)
161, 4, 5, 6, 3, 15prdstset 17411 . . 3 (πœ‘ β†’ (TopSetβ€˜π‘ƒ) = (∏tβ€˜(TopOpen ∘ 𝑅)))
17 eqid 2732 . . . 4 (leβ€˜π‘ƒ) = (leβ€˜π‘ƒ)
181, 4, 5, 6, 3, 17prdsle 17407 . . 3 (πœ‘ β†’ (leβ€˜π‘ƒ) = {βŸ¨π‘“, π‘”βŸ© ∣ ({𝑓, 𝑔} βŠ† 𝐡 ∧ βˆ€π‘₯ ∈ 𝐼 (π‘“β€˜π‘₯)(leβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))})
19 eqid 2732 . . . 4 (distβ€˜π‘ƒ) = (distβ€˜π‘ƒ)
201, 4, 5, 6, 3, 19prdsds 17409 . . 3 (πœ‘ β†’ (distβ€˜π‘ƒ) = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ sup((ran (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(distβ€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))) βˆͺ {0}), ℝ*, < )))
21 prdshom.h . . . 4 𝐻 = (Hom β€˜π‘ƒ)
221, 4, 5, 6, 3, 21prdshom 17412 . . 3 (πœ‘ β†’ 𝐻 = (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ Xπ‘₯ ∈ 𝐼 ((π‘“β€˜π‘₯)(Hom β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯))))
23 eqidd 2733 . . 3 (πœ‘ β†’ (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯))))) = (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯))))))
241, 2, 3, 7, 9, 11, 13, 14, 16, 18, 20, 22, 23, 4, 5prdsval 17400 . 2 (πœ‘ β†’ 𝑃 = (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ƒ)⟩, ⟨(.rβ€˜ndx), (.rβ€˜π‘ƒ)⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘ƒ)⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))⟩}) βˆͺ ({⟨(TopSetβ€˜ndx), (TopSetβ€˜π‘ƒ)⟩, ⟨(leβ€˜ndx), (leβ€˜π‘ƒ)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ƒ)⟩} βˆͺ {⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩})))
25 prdsco.o . 2 βˆ™ = (compβ€˜π‘ƒ)
26 ccoid 17358 . 2 comp = Slot (compβ€˜ndx)
276fvexi 6905 . . . . 5 𝐡 ∈ V
2827, 27xpex 7739 . . . 4 (𝐡 Γ— 𝐡) ∈ V
2928, 27mpoex 8065 . . 3 (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯))))) ∈ V
3029a1i 11 . 2 (πœ‘ β†’ (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯))))) ∈ V)
31 snsspr2 4818 . . . 4 {⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩} βŠ† {⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩}
32 ssun2 4173 . . . 4 {⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩} βŠ† ({⟨(TopSetβ€˜ndx), (TopSetβ€˜π‘ƒ)⟩, ⟨(leβ€˜ndx), (leβ€˜π‘ƒ)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ƒ)⟩} βˆͺ {⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩})
3331, 32sstri 3991 . . 3 {⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩} βŠ† ({⟨(TopSetβ€˜ndx), (TopSetβ€˜π‘ƒ)⟩, ⟨(leβ€˜ndx), (leβ€˜π‘ƒ)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ƒ)⟩} βˆͺ {⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩})
34 ssun2 4173 . . 3 ({⟨(TopSetβ€˜ndx), (TopSetβ€˜π‘ƒ)⟩, ⟨(leβ€˜ndx), (leβ€˜π‘ƒ)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ƒ)⟩} βˆͺ {⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩}) βŠ† (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ƒ)⟩, ⟨(.rβ€˜ndx), (.rβ€˜π‘ƒ)⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘ƒ)⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))⟩}) βˆͺ ({⟨(TopSetβ€˜ndx), (TopSetβ€˜π‘ƒ)⟩, ⟨(leβ€˜ndx), (leβ€˜π‘ƒ)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ƒ)⟩} βˆͺ {⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩}))
3533, 34sstri 3991 . 2 {⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩} βŠ† (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ƒ)⟩, ⟨(.rβ€˜ndx), (.rβ€˜π‘ƒ)⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘ƒ)⟩, ⟨(Β·π‘–β€˜ndx), (𝑓 ∈ 𝐡, 𝑔 ∈ 𝐡 ↦ (𝑆 Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜(π‘…β€˜π‘₯))(π‘”β€˜π‘₯)))))⟩}) βˆͺ ({⟨(TopSetβ€˜ndx), (TopSetβ€˜π‘ƒ)⟩, ⟨(leβ€˜ndx), (leβ€˜π‘ƒ)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ƒ)⟩} βˆͺ {⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯)))))⟩}))
3624, 25, 26, 30, 35prdsbaslem 17398 1 (πœ‘ β†’ βˆ™ = (π‘Ž ∈ (𝐡 Γ— 𝐡), 𝑐 ∈ 𝐡 ↦ (𝑑 ∈ ((2nd β€˜π‘Ž)𝐻𝑐), 𝑒 ∈ (π»β€˜π‘Ž) ↦ (π‘₯ ∈ 𝐼 ↦ ((π‘‘β€˜π‘₯)(⟨((1st β€˜π‘Ž)β€˜π‘₯), ((2nd β€˜π‘Ž)β€˜π‘₯)⟩(compβ€˜(π‘…β€˜π‘₯))(π‘β€˜π‘₯))(π‘’β€˜π‘₯))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βˆͺ cun 3946  {csn 4628  {cpr 4630  {ctp 4632  βŸ¨cop 4634   ↦ cmpt 5231   Γ— cxp 5674  dom cdm 5676  β€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410  1st c1st 7972  2nd c2nd 7973  ndxcnx 17125  Basecbs 17143  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  Β·π‘–cip 17201  TopSetcts 17202  lecple 17203  distcds 17205  Hom chom 17207  compcco 17208   Ξ£g cgsu 17385  Xscprds 17390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-struct 17079  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-prds 17392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator