| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp2 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspr2 4791 | . . 3 ⊢ {𝐵} ⊆ {𝐴, 𝐵} | |
| 2 | ssun1 4153 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sstri 3968 | . 2 ⊢ {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
| 4 | df-tp 4606 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 5 | 3, 4 | sseqtrri 4008 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3924 ⊆ wss 3926 {csn 4601 {cpr 4603 {ctp 4605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-pr 4604 df-tp 4606 |
| This theorem is referenced by: fr3nr 7764 rngplusg 17312 srngplusg 17323 lmodplusg 17339 ipsaddg 17350 ipsvsca 17353 phlplusg 17360 topgrpplusg 17375 otpstset 17390 odrngplusg 17417 odrngle 17420 prdsplusg 17470 prdsvsca 17472 prdsle 17474 imasplusg 17529 imasvsca 17532 imasle 17535 fuchom 17975 setchomfval 18090 catchomfval 18113 estrchomfval 18136 xpchomfval 18189 mpocnfldadd 21318 cnfldle 21324 cnfldaddOLD 21333 cnfldleOLD 21337 psrplusg 21894 psrvscafval 21906 trkgdist 28371 rlocaddval 33209 idlsrgplusg 33466 algaddg 43146 clsk1indlem4 44015 rngchomfvalALTV 48190 ringchomfvalALTV 48224 cathomfval 49095 mndtchom 49409 |
| Copyright terms: Public domain | W3C validator |