![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsstp2 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspr2 4840 | . . 3 ⊢ {𝐵} ⊆ {𝐴, 𝐵} | |
2 | ssun1 4201 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sstri 4018 | . 2 ⊢ {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
4 | df-tp 4653 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
5 | 3, 4 | sseqtrri 4046 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3974 ⊆ wss 3976 {csn 4648 {cpr 4650 {ctp 4652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-pr 4651 df-tp 4653 |
This theorem is referenced by: fr3nr 7807 rngplusg 17359 srngplusg 17370 lmodplusg 17386 ipsaddg 17397 ipsvsca 17400 phlplusg 17407 topgrpplusg 17422 otpstset 17437 odrngplusg 17464 odrngle 17467 prdsplusg 17518 prdsvsca 17520 prdsle 17522 imasplusg 17577 imasvsca 17580 imasle 17583 fuchom 18030 fuchomOLD 18031 setchomfval 18146 catchomfval 18169 estrchomfval 18194 xpchomfval 18248 mpocnfldadd 21392 cnfldle 21398 cnfldaddOLD 21407 cnfldleOLD 21411 psrplusg 21979 psrvscafval 21991 trkgdist 28472 rlocaddval 33240 idlsrgplusg 33498 algaddg 43136 clsk1indlem4 44006 rngchomfvalALTV 47990 ringchomfvalALTV 48024 mndtchom 48757 |
Copyright terms: Public domain | W3C validator |