| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp2 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspr2 4782 | . . 3 ⊢ {𝐵} ⊆ {𝐴, 𝐵} | |
| 2 | ssun1 4144 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sstri 3959 | . 2 ⊢ {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
| 4 | df-tp 4597 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 5 | 3, 4 | sseqtrri 3999 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3915 ⊆ wss 3917 {csn 4592 {cpr 4594 {ctp 4596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-pr 4595 df-tp 4597 |
| This theorem is referenced by: fr3nr 7751 rngplusg 17270 srngplusg 17281 lmodplusg 17297 ipsaddg 17308 ipsvsca 17311 phlplusg 17318 topgrpplusg 17333 otpstset 17348 odrngplusg 17375 odrngle 17378 prdsplusg 17428 prdsvsca 17430 prdsle 17432 imasplusg 17487 imasvsca 17490 imasle 17493 fuchom 17933 setchomfval 18048 catchomfval 18071 estrchomfval 18094 xpchomfval 18147 mpocnfldadd 21276 cnfldle 21282 cnfldaddOLD 21291 cnfldleOLD 21295 psrplusg 21852 psrvscafval 21864 trkgdist 28380 rlocaddval 33226 idlsrgplusg 33483 algaddg 43171 clsk1indlem4 44040 rngchomfvalALTV 48259 ringchomfvalALTV 48293 cathomfval 49220 mndtchom 49577 |
| Copyright terms: Public domain | W3C validator |