![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsstp2 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspr2 4622 | . . 3 ⊢ {𝐵} ⊆ {𝐴, 𝐵} | |
2 | ssun1 4038 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sstri 3868 | . 2 ⊢ {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
4 | df-tp 4446 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
5 | 3, 4 | sseqtr4i 3895 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3828 ⊆ wss 3830 {csn 4441 {cpr 4443 {ctp 4445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2751 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-v 3418 df-un 3835 df-in 3837 df-ss 3844 df-pr 4444 df-tp 4446 |
This theorem is referenced by: fr3nr 7310 rngplusg 16477 srngplusg 16485 lmodplusg 16494 ipsaddg 16501 ipsvsca 16504 phlplusg 16511 topgrpplusg 16519 otpstset 16526 odrngplusg 16537 odrngle 16540 prdsplusg 16587 prdsvsca 16589 prdsle 16591 imasplusg 16646 imasvsca 16649 imasle 16652 fuchom 17089 setchomfval 17197 catchomfval 17216 estrchomfval 17234 xpchomfval 17287 psrplusg 19875 psrvscafval 19884 cnfldadd 20252 cnfldle 20256 trkgdist 25934 algaddg 39172 clsk1indlem4 39754 rngchomfvalALTV 43617 ringchomfvalALTV 43680 |
Copyright terms: Public domain | W3C validator |