Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsstp2 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspr2 4748 | . . 3 ⊢ {𝐵} ⊆ {𝐴, 𝐵} | |
2 | ssun1 4106 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sstri 3930 | . 2 ⊢ {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
4 | df-tp 4566 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
5 | 3, 4 | sseqtrri 3958 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3885 ⊆ wss 3887 {csn 4561 {cpr 4563 {ctp 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-pr 4564 df-tp 4566 |
This theorem is referenced by: fr3nr 7622 rngplusg 17010 srngplusg 17021 lmodplusg 17037 ipsaddg 17048 ipsvsca 17051 phlplusg 17058 topgrpplusg 17073 otpstset 17088 odrngplusg 17115 odrngle 17118 prdsplusg 17169 prdsvsca 17171 prdsle 17173 imasplusg 17228 imasvsca 17231 imasle 17234 fuchom 17678 fuchomOLD 17679 setchomfval 17794 catchomfval 17817 estrchomfval 17842 xpchomfval 17896 cnfldadd 20602 cnfldle 20606 psrplusg 21150 psrvscafval 21159 trkgdist 26807 idlsrgplusg 31650 algaddg 41004 clsk1indlem4 41654 rngchomfvalALTV 45542 ringchomfvalALTV 45605 mndtchom 46371 |
Copyright terms: Public domain | W3C validator |