| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp2 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspr2 4779 | . . 3 ⊢ {𝐵} ⊆ {𝐴, 𝐵} | |
| 2 | ssun1 4141 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sstri 3956 | . 2 ⊢ {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
| 4 | df-tp 4594 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 5 | 3, 4 | sseqtrri 3996 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3912 ⊆ wss 3914 {csn 4589 {cpr 4591 {ctp 4593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-pr 4592 df-tp 4594 |
| This theorem is referenced by: fr3nr 7748 rngplusg 17263 srngplusg 17274 lmodplusg 17290 ipsaddg 17301 ipsvsca 17304 phlplusg 17311 topgrpplusg 17326 otpstset 17341 odrngplusg 17368 odrngle 17371 prdsplusg 17421 prdsvsca 17423 prdsle 17425 imasplusg 17480 imasvsca 17483 imasle 17486 fuchom 17926 setchomfval 18041 catchomfval 18064 estrchomfval 18087 xpchomfval 18140 mpocnfldadd 21269 cnfldle 21275 cnfldaddOLD 21284 cnfldleOLD 21288 psrplusg 21845 psrvscafval 21857 trkgdist 28373 rlocaddval 33219 idlsrgplusg 33476 algaddg 43164 clsk1indlem4 44033 rngchomfvalALTV 48255 ringchomfvalALTV 48289 cathomfval 49216 mndtchom 49573 |
| Copyright terms: Public domain | W3C validator |