![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsstp2 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspr2 4819 | . . 3 ⊢ {𝐵} ⊆ {𝐴, 𝐵} | |
2 | ssun1 4173 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sstri 3992 | . 2 ⊢ {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
4 | df-tp 4634 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
5 | 3, 4 | sseqtrri 4020 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3947 ⊆ wss 3949 {csn 4629 {cpr 4631 {ctp 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3954 df-in 3956 df-ss 3966 df-pr 4632 df-tp 4634 |
This theorem is referenced by: fr3nr 7759 rngplusg 17245 srngplusg 17256 lmodplusg 17272 ipsaddg 17283 ipsvsca 17286 phlplusg 17293 topgrpplusg 17308 otpstset 17323 odrngplusg 17350 odrngle 17353 prdsplusg 17404 prdsvsca 17406 prdsle 17408 imasplusg 17463 imasvsca 17466 imasle 17469 fuchom 17913 fuchomOLD 17914 setchomfval 18029 catchomfval 18052 estrchomfval 18077 xpchomfval 18131 cnfldadd 20949 cnfldle 20953 psrplusg 21500 psrvscafval 21509 trkgdist 27697 idlsrgplusg 32619 algaddg 41921 clsk1indlem4 42795 rngchomfvalALTV 46882 ringchomfvalALTV 46945 mndtchom 47710 |
Copyright terms: Public domain | W3C validator |