![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsstp2 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspr2 4819 | . . 3 ⊢ {𝐵} ⊆ {𝐴, 𝐵} | |
2 | ssun1 4187 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sstri 4004 | . 2 ⊢ {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
4 | df-tp 4635 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
5 | 3, 4 | sseqtrri 4032 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3960 ⊆ wss 3962 {csn 4630 {cpr 4632 {ctp 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-un 3967 df-ss 3979 df-pr 4633 df-tp 4635 |
This theorem is referenced by: fr3nr 7790 rngplusg 17345 srngplusg 17356 lmodplusg 17372 ipsaddg 17383 ipsvsca 17386 phlplusg 17393 topgrpplusg 17408 otpstset 17423 odrngplusg 17450 odrngle 17453 prdsplusg 17504 prdsvsca 17506 prdsle 17508 imasplusg 17563 imasvsca 17566 imasle 17569 fuchom 18016 fuchomOLD 18017 setchomfval 18132 catchomfval 18155 estrchomfval 18180 xpchomfval 18234 mpocnfldadd 21386 cnfldle 21392 cnfldaddOLD 21401 cnfldleOLD 21405 psrplusg 21973 psrvscafval 21985 trkgdist 28468 rlocaddval 33254 idlsrgplusg 33512 algaddg 43163 clsk1indlem4 44033 rngchomfvalALTV 48110 ringchomfvalALTV 48144 mndtchom 48892 |
Copyright terms: Public domain | W3C validator |