MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsstp2 Structured version   Visualization version   GIF version

Theorem snsstp2 4781
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
Assertion
Ref Expression
snsstp2 {𝐵} ⊆ {𝐴, 𝐵, 𝐶}

Proof of Theorem snsstp2
StepHypRef Expression
1 snsspr2 4779 . . 3 {𝐵} ⊆ {𝐴, 𝐵}
2 ssun1 4141 . . 3 {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶})
31, 2sstri 3956 . 2 {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶})
4 df-tp 4594 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
53, 4sseqtrri 3996 1 {𝐵} ⊆ {𝐴, 𝐵, 𝐶}
Colors of variables: wff setvar class
Syntax hints:  cun 3912  wss 3914  {csn 4589  {cpr 4591  {ctp 4593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-ss 3931  df-pr 4592  df-tp 4594
This theorem is referenced by:  fr3nr  7748  rngplusg  17263  srngplusg  17274  lmodplusg  17290  ipsaddg  17301  ipsvsca  17304  phlplusg  17311  topgrpplusg  17326  otpstset  17341  odrngplusg  17368  odrngle  17371  prdsplusg  17421  prdsvsca  17423  prdsle  17425  imasplusg  17480  imasvsca  17483  imasle  17486  fuchom  17926  setchomfval  18041  catchomfval  18064  estrchomfval  18087  xpchomfval  18140  mpocnfldadd  21269  cnfldle  21275  cnfldaddOLD  21284  cnfldleOLD  21288  psrplusg  21845  psrvscafval  21857  trkgdist  28373  rlocaddval  33219  idlsrgplusg  33476  algaddg  43164  clsk1indlem4  44033  rngchomfvalALTV  48255  ringchomfvalALTV  48289  cathomfval  49216  mndtchom  49573
  Copyright terms: Public domain W3C validator