| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp2 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspr2 4766 | . . 3 ⊢ {𝐵} ⊆ {𝐴, 𝐵} | |
| 2 | ssun1 4129 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sstri 3945 | . 2 ⊢ {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
| 4 | df-tp 4582 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 5 | 3, 4 | sseqtrri 3985 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3901 ⊆ wss 3903 {csn 4577 {cpr 4579 {ctp 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 df-ss 3920 df-pr 4580 df-tp 4582 |
| This theorem is referenced by: fr3nr 7708 rngplusg 17204 srngplusg 17215 lmodplusg 17231 ipsaddg 17242 ipsvsca 17245 phlplusg 17252 topgrpplusg 17267 otpstset 17282 odrngplusg 17309 odrngle 17312 prdsplusg 17362 prdsvsca 17364 prdsle 17366 imasplusg 17421 imasvsca 17424 imasle 17427 fuchom 17871 setchomfval 17986 catchomfval 18009 estrchomfval 18032 xpchomfval 18085 mpocnfldadd 21266 cnfldle 21272 cnfldaddOLD 21281 cnfldleOLD 21285 psrplusg 21843 psrvscafval 21855 trkgdist 28391 rlocaddval 33208 idlsrgplusg 33442 algaddg 43152 clsk1indlem4 44021 rngchomfvalALTV 48255 ringchomfvalALTV 48289 cathomfval 49216 mndtchom 49573 |
| Copyright terms: Public domain | W3C validator |