| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp2 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspr2 4775 | . . 3 ⊢ {𝐵} ⊆ {𝐴, 𝐵} | |
| 2 | ssun1 4137 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sstri 3953 | . 2 ⊢ {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
| 4 | df-tp 4590 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 5 | 3, 4 | sseqtrri 3993 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3909 ⊆ wss 3911 {csn 4585 {cpr 4587 {ctp 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 df-pr 4588 df-tp 4590 |
| This theorem is referenced by: fr3nr 7728 rngplusg 17239 srngplusg 17250 lmodplusg 17266 ipsaddg 17277 ipsvsca 17280 phlplusg 17287 topgrpplusg 17302 otpstset 17317 odrngplusg 17344 odrngle 17347 prdsplusg 17397 prdsvsca 17399 prdsle 17401 imasplusg 17456 imasvsca 17459 imasle 17462 fuchom 17906 setchomfval 18021 catchomfval 18044 estrchomfval 18067 xpchomfval 18120 mpocnfldadd 21301 cnfldle 21307 cnfldaddOLD 21316 cnfldleOLD 21320 psrplusg 21878 psrvscafval 21890 trkgdist 28426 rlocaddval 33235 idlsrgplusg 33469 algaddg 43157 clsk1indlem4 44026 rngchomfvalALTV 48248 ringchomfvalALTV 48282 cathomfval 49209 mndtchom 49566 |
| Copyright terms: Public domain | W3C validator |