| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp2 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspr2 4764 | . . 3 ⊢ {𝐵} ⊆ {𝐴, 𝐵} | |
| 2 | ssun1 4125 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sstri 3939 | . 2 ⊢ {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
| 4 | df-tp 4578 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 5 | 3, 4 | sseqtrri 3979 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3895 ⊆ wss 3897 {csn 4573 {cpr 4575 {ctp 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-pr 4576 df-tp 4578 |
| This theorem is referenced by: fr3nr 7705 rngplusg 17204 srngplusg 17215 lmodplusg 17231 ipsaddg 17242 ipsvsca 17245 phlplusg 17252 topgrpplusg 17267 otpstset 17282 odrngplusg 17309 odrngle 17312 prdsplusg 17362 prdsvsca 17364 prdsle 17366 imasplusg 17421 imasvsca 17424 imasle 17427 fuchom 17871 setchomfval 17986 catchomfval 18009 estrchomfval 18032 xpchomfval 18085 mpocnfldadd 21296 cnfldle 21302 cnfldaddOLD 21311 cnfldleOLD 21315 psrplusg 21873 psrvscafval 21885 trkgdist 28424 rlocaddval 33235 idlsrgplusg 33470 algaddg 43278 clsk1indlem4 44147 rngchomfvalALTV 48377 ringchomfvalALTV 48411 cathomfval 49338 mndtchom 49695 |
| Copyright terms: Public domain | W3C validator |