Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsstp2 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspr2 4705 | . . 3 ⊢ {𝐵} ⊆ {𝐴, 𝐵} | |
2 | ssun1 4077 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sstri 3901 | . 2 ⊢ {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
4 | df-tp 4527 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
5 | 3, 4 | sseqtrri 3929 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3856 ⊆ wss 3858 {csn 4522 {cpr 4524 {ctp 4526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-pr 4525 df-tp 4527 |
This theorem is referenced by: fr3nr 7493 rngplusg 16679 srngplusg 16687 lmodplusg 16696 ipsaddg 16703 ipsvsca 16706 phlplusg 16713 topgrpplusg 16721 otpstset 16728 odrngplusg 16739 odrngle 16742 prdsplusg 16789 prdsvsca 16791 prdsle 16793 imasplusg 16848 imasvsca 16851 imasle 16854 fuchom 17290 setchomfval 17405 catchomfval 17424 estrchomfval 17442 xpchomfval 17495 cnfldadd 20171 cnfldle 20175 psrplusg 20709 psrvscafval 20718 trkgdist 26339 idlsrgplusg 31171 algaddg 40496 clsk1indlem4 41120 rngchomfvalALTV 44975 ringchomfvalALTV 45038 |
Copyright terms: Public domain | W3C validator |