Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsstp2 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspr2 4745 | . . 3 ⊢ {𝐵} ⊆ {𝐴, 𝐵} | |
2 | ssun1 4102 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sstri 3926 | . 2 ⊢ {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
4 | df-tp 4563 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
5 | 3, 4 | sseqtrri 3954 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3881 ⊆ wss 3883 {csn 4558 {cpr 4560 {ctp 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-pr 4561 df-tp 4563 |
This theorem is referenced by: fr3nr 7600 rngplusg 16936 srngplusg 16947 lmodplusg 16963 ipsaddg 16973 ipsvsca 16976 phlplusg 16983 topgrpplusg 16997 otpstset 17011 odrngplusg 17034 odrngle 17037 prdsplusg 17086 prdsvsca 17088 prdsle 17090 imasplusg 17145 imasvsca 17148 imasle 17151 fuchom 17594 fuchomOLD 17595 setchomfval 17710 catchomfval 17733 estrchomfval 17758 xpchomfval 17812 cnfldadd 20515 cnfldle 20519 psrplusg 21060 psrvscafval 21069 trkgdist 26711 idlsrgplusg 31552 algaddg 40920 clsk1indlem4 41543 rngchomfvalALTV 45430 ringchomfvalALTV 45493 mndtchom 46257 |
Copyright terms: Public domain | W3C validator |