| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp2 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspr2 4775 | . . 3 ⊢ {𝐵} ⊆ {𝐴, 𝐵} | |
| 2 | ssun1 4137 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sstri 3953 | . 2 ⊢ {𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
| 4 | df-tp 4590 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 5 | 3, 4 | sseqtrri 3993 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3909 ⊆ wss 3911 {csn 4585 {cpr 4587 {ctp 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 df-pr 4588 df-tp 4590 |
| This theorem is referenced by: fr3nr 7728 rngplusg 17239 srngplusg 17250 lmodplusg 17266 ipsaddg 17277 ipsvsca 17280 phlplusg 17287 topgrpplusg 17302 otpstset 17317 odrngplusg 17344 odrngle 17347 prdsplusg 17397 prdsvsca 17399 prdsle 17401 imasplusg 17456 imasvsca 17459 imasle 17462 fuchom 17902 setchomfval 18017 catchomfval 18040 estrchomfval 18063 xpchomfval 18116 mpocnfldadd 21245 cnfldle 21251 cnfldaddOLD 21260 cnfldleOLD 21264 psrplusg 21821 psrvscafval 21833 trkgdist 28349 rlocaddval 33192 idlsrgplusg 33449 algaddg 43137 clsk1indlem4 44006 rngchomfvalALTV 48228 ringchomfvalALTV 48262 cathomfval 49189 mndtchom 49546 |
| Copyright terms: Public domain | W3C validator |