Step | Hyp | Ref
| Expression |
1 | | dfrcl4 41173 |
. 2
⊢ r* =
(𝑎 ∈ V ↦
∪ 𝑖 ∈ {0, 1} (𝑎↑𝑟𝑖)) |
2 | | dfrcl4 41173 |
. 2
⊢ r* =
(𝑏 ∈ V ↦
∪ 𝑗 ∈ {0, 1} (𝑏↑𝑟𝑗)) |
3 | | dfrcl4 41173 |
. 2
⊢ r* =
(𝑐 ∈ V ↦
∪ 𝑘 ∈ {0, 1} (𝑐↑𝑟𝑘)) |
4 | | prex 5350 |
. 2
⊢ {0, 1}
∈ V |
5 | | unidm 4082 |
. . 3
⊢ ({0, 1}
∪ {0, 1}) = {0, 1} |
6 | 5 | eqcomi 2747 |
. 2
⊢ {0, 1} =
({0, 1} ∪ {0, 1}) |
7 | | oveq2 7263 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝑑↑𝑟𝑘) = (𝑑↑𝑟𝑗)) |
8 | 7 | cbviunv 4966 |
. . . 4
⊢ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) = ∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗) |
9 | | 1ex 10902 |
. . . . . . 7
⊢ 1 ∈
V |
10 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑖 = 1 → (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟1)) |
11 | 9, 10 | iunxsn 5016 |
. . . . . 6
⊢ ∪ 𝑖 ∈ {1} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟1) |
12 | | ovex 7288 |
. . . . . . . 8
⊢ (𝑑↑𝑟𝑗) ∈ V |
13 | 4, 12 | iunex 7784 |
. . . . . . 7
⊢ ∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗) ∈ V |
14 | | relexp1g 14665 |
. . . . . . 7
⊢ (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗) ∈ V → (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟1) = ∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)) |
15 | 13, 14 | ax-mp 5 |
. . . . . 6
⊢ (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟1) = ∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗) |
16 | 11, 15 | eqtri 2766 |
. . . . 5
⊢ ∪ 𝑖 ∈ {1} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) = ∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗) |
17 | 16 | eqcomi 2747 |
. . . 4
⊢ ∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗) = ∪ 𝑖 ∈ {1} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) |
18 | 8, 17 | eqtri 2766 |
. . 3
⊢ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) = ∪ 𝑖 ∈ {1} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) |
19 | | snsspr2 4745 |
. . . 4
⊢ {1}
⊆ {0, 1} |
20 | | iunss1 4935 |
. . . 4
⊢ ({1}
⊆ {0, 1} → ∪ 𝑖 ∈ {1} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) ⊆ ∪
𝑖 ∈ {0, 1} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖)) |
21 | 19, 20 | ax-mp 5 |
. . 3
⊢ ∪ 𝑖 ∈ {1} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) ⊆ ∪
𝑖 ∈ {0, 1} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) |
22 | 18, 21 | eqsstri 3951 |
. 2
⊢ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) ⊆ ∪
𝑖 ∈ {0, 1} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) |
23 | | c0ex 10900 |
. . . . . 6
⊢ 0 ∈
V |
24 | 23 | prid1 4695 |
. . . . 5
⊢ 0 ∈
{0, 1} |
25 | | oveq2 7263 |
. . . . . 6
⊢ (𝑘 = 0 → (𝑑↑𝑟𝑘) = (𝑑↑𝑟0)) |
26 | 25 | ssiun2s 4974 |
. . . . 5
⊢ (0 ∈
{0, 1} → (𝑑↑𝑟0) ⊆ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘)) |
27 | 24, 26 | ax-mp 5 |
. . . 4
⊢ (𝑑↑𝑟0)
⊆ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) |
28 | | oveq2 7263 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝑑↑𝑟𝑗) = (𝑑↑𝑟𝑘)) |
29 | 28 | cbviunv 4966 |
. . . . 5
⊢ ∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗) = ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) |
30 | 29 | eqimssi 3975 |
. . . 4
⊢ ∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗) ⊆ ∪
𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) |
31 | | unss12 4112 |
. . . 4
⊢ (((𝑑↑𝑟0)
⊆ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) ∧ ∪
𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗) ⊆ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘)) → ((𝑑↑𝑟0) ∪ ∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)) ⊆ (∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) ∪ ∪
𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘))) |
32 | 27, 30, 31 | mp2an 688 |
. . 3
⊢ ((𝑑↑𝑟0)
∪ ∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)) ⊆ (∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) ∪ ∪
𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘)) |
33 | | df-pr 4561 |
. . . . 5
⊢ {0, 1} =
({0} ∪ {1}) |
34 | | iuneq1 4937 |
. . . . 5
⊢ ({0, 1} =
({0} ∪ {1}) → ∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) = ∪ 𝑖 ∈ ({0} ∪ {1})(∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖)) |
35 | 33, 34 | ax-mp 5 |
. . . 4
⊢ ∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) = ∪ 𝑖 ∈ ({0} ∪ {1})(∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) |
36 | | iunxun 5019 |
. . . . 5
⊢ ∪ 𝑖 ∈ ({0} ∪ {1})(∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑖 ∈ {0} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) ∪ ∪
𝑖 ∈ {1} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖)) |
37 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑖 = 0 → (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟0)) |
38 | 23, 37 | iunxsn 5016 |
. . . . . . 7
⊢ ∪ 𝑖 ∈ {0} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟0) |
39 | | vex 3426 |
. . . . . . . 8
⊢ 𝑑 ∈ V |
40 | | 0nn0 12178 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
41 | | 1nn0 12179 |
. . . . . . . . 9
⊢ 1 ∈
ℕ0 |
42 | | prssi 4751 |
. . . . . . . . 9
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1}
⊆ ℕ0) |
43 | 40, 41, 42 | mp2an 688 |
. . . . . . . 8
⊢ {0, 1}
⊆ ℕ0 |
44 | 24, 24 | elini 4123 |
. . . . . . . . 9
⊢ 0 ∈
({0, 1} ∩ {0, 1}) |
45 | 44 | ne0ii 4268 |
. . . . . . . 8
⊢ ({0, 1}
∩ {0, 1}) ≠ ∅ |
46 | | iunrelexp0 41199 |
. . . . . . . 8
⊢ ((𝑑 ∈ V ∧ {0, 1} ⊆
ℕ0 ∧ ({0, 1} ∩ {0, 1}) ≠ ∅) → (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟0) = (𝑑↑𝑟0)) |
47 | 39, 43, 45, 46 | mp3an 1459 |
. . . . . . 7
⊢ (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟0) = (𝑑↑𝑟0) |
48 | 38, 47 | eqtri 2766 |
. . . . . 6
⊢ ∪ 𝑖 ∈ {0} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) = (𝑑↑𝑟0) |
49 | 48, 16 | uneq12i 4091 |
. . . . 5
⊢ (∪ 𝑖 ∈ {0} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) ∪ ∪
𝑖 ∈ {1} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖)) = ((𝑑↑𝑟0) ∪ ∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)) |
50 | 36, 49 | eqtri 2766 |
. . . 4
⊢ ∪ 𝑖 ∈ ({0} ∪ {1})(∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) = ((𝑑↑𝑟0) ∪ ∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)) |
51 | 35, 50 | eqtri 2766 |
. . 3
⊢ ∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) = ((𝑑↑𝑟0) ∪ ∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)) |
52 | | iunxun 5019 |
. . 3
⊢ ∪ 𝑘 ∈ ({0, 1} ∪ {0, 1})(𝑑↑𝑟𝑘) = (∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) ∪ ∪
𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘)) |
53 | 32, 51, 52 | 3sstr4i 3960 |
. 2
⊢ ∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ {0, 1} (𝑑↑𝑟𝑗)↑𝑟𝑖) ⊆ ∪
𝑘 ∈ ({0, 1} ∪ {0,
1})(𝑑↑𝑟𝑘) |
54 | 1, 2, 3, 4, 4, 6, 22, 22, 53 | comptiunov2i 41203 |
1
⊢ (r*
∘ r*) = r* |