Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  corclrcl Structured version   Visualization version   GIF version

Theorem corclrcl 40408
Description: The reflexive closure is idempotent. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
corclrcl (r* ∘ r*) = r*

Proof of Theorem corclrcl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrcl4 40377 . 2 r* = (𝑎 ∈ V ↦ 𝑖 ∈ {0, 1} (𝑎𝑟𝑖))
2 dfrcl4 40377 . 2 r* = (𝑏 ∈ V ↦ 𝑗 ∈ {0, 1} (𝑏𝑟𝑗))
3 dfrcl4 40377 . 2 r* = (𝑐 ∈ V ↦ 𝑘 ∈ {0, 1} (𝑐𝑟𝑘))
4 prex 5298 . 2 {0, 1} ∈ V
5 unidm 4079 . . 3 ({0, 1} ∪ {0, 1}) = {0, 1}
65eqcomi 2807 . 2 {0, 1} = ({0, 1} ∪ {0, 1})
7 oveq2 7143 . . . . 5 (𝑘 = 𝑗 → (𝑑𝑟𝑘) = (𝑑𝑟𝑗))
87cbviunv 4927 . . . 4 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
9 1ex 10626 . . . . . . 7 1 ∈ V
10 oveq2 7143 . . . . . . 7 (𝑖 = 1 → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1))
119, 10iunxsn 4976 . . . . . 6 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1)
12 ovex 7168 . . . . . . . 8 (𝑑𝑟𝑗) ∈ V
134, 12iunex 7651 . . . . . . 7 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ∈ V
14 relexp1g 14377 . . . . . . 7 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ∈ V → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
1513, 14ax-mp 5 . . . . . 6 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
1611, 15eqtri 2821 . . . . 5 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
1716eqcomi 2807 . . . 4 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
188, 17eqtri 2821 . . 3 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) = 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
19 snsspr2 4708 . . . 4 {1} ⊆ {0, 1}
20 iunss1 4895 . . . 4 ({1} ⊆ {0, 1} → 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
2119, 20ax-mp 5 . . 3 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
2218, 21eqsstri 3949 . 2 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
23 c0ex 10624 . . . . . 6 0 ∈ V
2423prid1 4658 . . . . 5 0 ∈ {0, 1}
25 oveq2 7143 . . . . . 6 (𝑘 = 0 → (𝑑𝑟𝑘) = (𝑑𝑟0))
2625ssiun2s 4935 . . . . 5 (0 ∈ {0, 1} → (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
2724, 26ax-mp 5 . . . 4 (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
28 oveq2 7143 . . . . . 6 (𝑗 = 𝑘 → (𝑑𝑟𝑗) = (𝑑𝑟𝑘))
2928cbviunv 4927 . . . . 5 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
3029eqimssi 3973 . . . 4 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
31 unss12 4109 . . . 4 (((𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∧ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)) → ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)))
3227, 30, 31mp2an 691 . . 3 ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
33 df-pr 4528 . . . . 5 {0, 1} = ({0} ∪ {1})
34 iuneq1 4897 . . . . 5 ({0, 1} = ({0} ∪ {1}) → 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
3533, 34ax-mp 5 . . . 4 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
36 iunxun 4979 . . . . 5 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
37 oveq2 7143 . . . . . . . 8 (𝑖 = 0 → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0))
3823, 37iunxsn 4976 . . . . . . 7 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0)
39 vex 3444 . . . . . . . 8 𝑑 ∈ V
40 0nn0 11900 . . . . . . . . 9 0 ∈ ℕ0
41 1nn0 11901 . . . . . . . . 9 1 ∈ ℕ0
42 prssi 4714 . . . . . . . . 9 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ⊆ ℕ0)
4340, 41, 42mp2an 691 . . . . . . . 8 {0, 1} ⊆ ℕ0
4424, 24elini 4120 . . . . . . . . 9 0 ∈ ({0, 1} ∩ {0, 1})
4544ne0ii 4253 . . . . . . . 8 ({0, 1} ∩ {0, 1}) ≠ ∅
46 iunrelexp0 40403 . . . . . . . 8 ((𝑑 ∈ V ∧ {0, 1} ⊆ ℕ0 ∧ ({0, 1} ∩ {0, 1}) ≠ ∅) → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0))
4739, 43, 45, 46mp3an 1458 . . . . . . 7 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0)
4838, 47eqtri 2821 . . . . . 6 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = (𝑑𝑟0)
4948, 16uneq12i 4088 . . . . 5 ( 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)) = ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
5036, 49eqtri 2821 . . . 4 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
5135, 50eqtri 2821 . . 3 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
52 iunxun 4979 . . 3 𝑘 ∈ ({0, 1} ∪ {0, 1})(𝑑𝑟𝑘) = ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
5332, 51, 523sstr4i 3958 . 2 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ({0, 1} ∪ {0, 1})(𝑑𝑟𝑘)
541, 2, 3, 4, 4, 6, 22, 22, 53comptiunov2i 40407 1 (r* ∘ r*) = r*
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525  {cpr 4527   ciun 4881  ccom 5523  (class class class)co 7135  0cc0 10526  1c1 10527  0cn0 11885  𝑟crelexp 14370  r*crcl 40373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-relexp 14371  df-rcl 40374
This theorem is referenced by:  corclrtrcl  40442  cortrclrcl  40444
  Copyright terms: Public domain W3C validator