Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  corclrcl Structured version   Visualization version   GIF version

Theorem corclrcl 43731
Description: The reflexive closure is idempotent. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
corclrcl (r* ∘ r*) = r*

Proof of Theorem corclrcl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrcl4 43700 . 2 r* = (𝑎 ∈ V ↦ 𝑖 ∈ {0, 1} (𝑎𝑟𝑖))
2 dfrcl4 43700 . 2 r* = (𝑏 ∈ V ↦ 𝑗 ∈ {0, 1} (𝑏𝑟𝑗))
3 dfrcl4 43700 . 2 r* = (𝑐 ∈ V ↦ 𝑘 ∈ {0, 1} (𝑐𝑟𝑘))
4 prex 5407 . 2 {0, 1} ∈ V
5 unidm 4132 . . 3 ({0, 1} ∪ {0, 1}) = {0, 1}
65eqcomi 2744 . 2 {0, 1} = ({0, 1} ∪ {0, 1})
7 oveq2 7413 . . . . 5 (𝑘 = 𝑗 → (𝑑𝑟𝑘) = (𝑑𝑟𝑗))
87cbviunv 5016 . . . 4 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
9 1ex 11231 . . . . . . 7 1 ∈ V
10 oveq2 7413 . . . . . . 7 (𝑖 = 1 → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1))
119, 10iunxsn 5067 . . . . . 6 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1)
12 ovex 7438 . . . . . . . 8 (𝑑𝑟𝑗) ∈ V
134, 12iunex 7967 . . . . . . 7 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ∈ V
14 relexp1g 15045 . . . . . . 7 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ∈ V → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
1513, 14ax-mp 5 . . . . . 6 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
1611, 15eqtri 2758 . . . . 5 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
1716eqcomi 2744 . . . 4 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
188, 17eqtri 2758 . . 3 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) = 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
19 snsspr2 4791 . . . 4 {1} ⊆ {0, 1}
20 iunss1 4982 . . . 4 ({1} ⊆ {0, 1} → 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
2119, 20ax-mp 5 . . 3 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
2218, 21eqsstri 4005 . 2 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
23 c0ex 11229 . . . . . 6 0 ∈ V
2423prid1 4738 . . . . 5 0 ∈ {0, 1}
25 oveq2 7413 . . . . . 6 (𝑘 = 0 → (𝑑𝑟𝑘) = (𝑑𝑟0))
2625ssiun2s 5024 . . . . 5 (0 ∈ {0, 1} → (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
2724, 26ax-mp 5 . . . 4 (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
28 oveq2 7413 . . . . . 6 (𝑗 = 𝑘 → (𝑑𝑟𝑗) = (𝑑𝑟𝑘))
2928cbviunv 5016 . . . . 5 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
3029eqimssi 4019 . . . 4 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
31 unss12 4163 . . . 4 (((𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∧ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)) → ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)))
3227, 30, 31mp2an 692 . . 3 ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
33 df-pr 4604 . . . . 5 {0, 1} = ({0} ∪ {1})
34 iuneq1 4984 . . . . 5 ({0, 1} = ({0} ∪ {1}) → 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
3533, 34ax-mp 5 . . . 4 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
36 iunxun 5070 . . . . 5 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
37 oveq2 7413 . . . . . . . 8 (𝑖 = 0 → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0))
3823, 37iunxsn 5067 . . . . . . 7 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0)
39 vex 3463 . . . . . . . 8 𝑑 ∈ V
40 0nn0 12516 . . . . . . . . 9 0 ∈ ℕ0
41 1nn0 12517 . . . . . . . . 9 1 ∈ ℕ0
42 prssi 4797 . . . . . . . . 9 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ⊆ ℕ0)
4340, 41, 42mp2an 692 . . . . . . . 8 {0, 1} ⊆ ℕ0
4424, 24elini 4174 . . . . . . . . 9 0 ∈ ({0, 1} ∩ {0, 1})
4544ne0ii 4319 . . . . . . . 8 ({0, 1} ∩ {0, 1}) ≠ ∅
46 iunrelexp0 43726 . . . . . . . 8 ((𝑑 ∈ V ∧ {0, 1} ⊆ ℕ0 ∧ ({0, 1} ∩ {0, 1}) ≠ ∅) → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0))
4739, 43, 45, 46mp3an 1463 . . . . . . 7 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0)
4838, 47eqtri 2758 . . . . . 6 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = (𝑑𝑟0)
4948, 16uneq12i 4141 . . . . 5 ( 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)) = ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
5036, 49eqtri 2758 . . . 4 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
5135, 50eqtri 2758 . . 3 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
52 iunxun 5070 . . 3 𝑘 ∈ ({0, 1} ∪ {0, 1})(𝑑𝑟𝑘) = ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
5332, 51, 523sstr4i 4010 . 2 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ({0, 1} ∪ {0, 1})(𝑑𝑟𝑘)
541, 2, 3, 4, 4, 6, 22, 22, 53comptiunov2i 43730 1 (r* ∘ r*) = r*
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  cun 3924  cin 3925  wss 3926  c0 4308  {csn 4601  {cpr 4603   ciun 4967  ccom 5658  (class class class)co 7405  0cc0 11129  1c1 11130  0cn0 12501  𝑟crelexp 15038  r*crcl 43696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020  df-relexp 15039  df-rcl 43697
This theorem is referenced by:  corclrtrcl  43765  cortrclrcl  43767
  Copyright terms: Public domain W3C validator