Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  corclrcl Structured version   Visualization version   GIF version

Theorem corclrcl 41204
Description: The reflexive closure is idempotent. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
corclrcl (r* ∘ r*) = r*

Proof of Theorem corclrcl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrcl4 41173 . 2 r* = (𝑎 ∈ V ↦ 𝑖 ∈ {0, 1} (𝑎𝑟𝑖))
2 dfrcl4 41173 . 2 r* = (𝑏 ∈ V ↦ 𝑗 ∈ {0, 1} (𝑏𝑟𝑗))
3 dfrcl4 41173 . 2 r* = (𝑐 ∈ V ↦ 𝑘 ∈ {0, 1} (𝑐𝑟𝑘))
4 prex 5350 . 2 {0, 1} ∈ V
5 unidm 4082 . . 3 ({0, 1} ∪ {0, 1}) = {0, 1}
65eqcomi 2747 . 2 {0, 1} = ({0, 1} ∪ {0, 1})
7 oveq2 7263 . . . . 5 (𝑘 = 𝑗 → (𝑑𝑟𝑘) = (𝑑𝑟𝑗))
87cbviunv 4966 . . . 4 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
9 1ex 10902 . . . . . . 7 1 ∈ V
10 oveq2 7263 . . . . . . 7 (𝑖 = 1 → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1))
119, 10iunxsn 5016 . . . . . 6 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1)
12 ovex 7288 . . . . . . . 8 (𝑑𝑟𝑗) ∈ V
134, 12iunex 7784 . . . . . . 7 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ∈ V
14 relexp1g 14665 . . . . . . 7 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ∈ V → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
1513, 14ax-mp 5 . . . . . 6 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
1611, 15eqtri 2766 . . . . 5 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
1716eqcomi 2747 . . . 4 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
188, 17eqtri 2766 . . 3 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) = 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
19 snsspr2 4745 . . . 4 {1} ⊆ {0, 1}
20 iunss1 4935 . . . 4 ({1} ⊆ {0, 1} → 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
2119, 20ax-mp 5 . . 3 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
2218, 21eqsstri 3951 . 2 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
23 c0ex 10900 . . . . . 6 0 ∈ V
2423prid1 4695 . . . . 5 0 ∈ {0, 1}
25 oveq2 7263 . . . . . 6 (𝑘 = 0 → (𝑑𝑟𝑘) = (𝑑𝑟0))
2625ssiun2s 4974 . . . . 5 (0 ∈ {0, 1} → (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
2724, 26ax-mp 5 . . . 4 (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
28 oveq2 7263 . . . . . 6 (𝑗 = 𝑘 → (𝑑𝑟𝑗) = (𝑑𝑟𝑘))
2928cbviunv 4966 . . . . 5 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
3029eqimssi 3975 . . . 4 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
31 unss12 4112 . . . 4 (((𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∧ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)) → ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)))
3227, 30, 31mp2an 688 . . 3 ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
33 df-pr 4561 . . . . 5 {0, 1} = ({0} ∪ {1})
34 iuneq1 4937 . . . . 5 ({0, 1} = ({0} ∪ {1}) → 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
3533, 34ax-mp 5 . . . 4 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
36 iunxun 5019 . . . . 5 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
37 oveq2 7263 . . . . . . . 8 (𝑖 = 0 → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0))
3823, 37iunxsn 5016 . . . . . . 7 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0)
39 vex 3426 . . . . . . . 8 𝑑 ∈ V
40 0nn0 12178 . . . . . . . . 9 0 ∈ ℕ0
41 1nn0 12179 . . . . . . . . 9 1 ∈ ℕ0
42 prssi 4751 . . . . . . . . 9 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ⊆ ℕ0)
4340, 41, 42mp2an 688 . . . . . . . 8 {0, 1} ⊆ ℕ0
4424, 24elini 4123 . . . . . . . . 9 0 ∈ ({0, 1} ∩ {0, 1})
4544ne0ii 4268 . . . . . . . 8 ({0, 1} ∩ {0, 1}) ≠ ∅
46 iunrelexp0 41199 . . . . . . . 8 ((𝑑 ∈ V ∧ {0, 1} ⊆ ℕ0 ∧ ({0, 1} ∩ {0, 1}) ≠ ∅) → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0))
4739, 43, 45, 46mp3an 1459 . . . . . . 7 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0)
4838, 47eqtri 2766 . . . . . 6 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = (𝑑𝑟0)
4948, 16uneq12i 4091 . . . . 5 ( 𝑖 ∈ {0} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)) = ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
5036, 49eqtri 2766 . . . 4 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
5135, 50eqtri 2766 . . 3 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ((𝑑𝑟0) ∪ 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
52 iunxun 5019 . . 3 𝑘 ∈ ({0, 1} ∪ {0, 1})(𝑑𝑟𝑘) = ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
5332, 51, 523sstr4i 3960 . 2 𝑖 ∈ {0, 1} ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ({0, 1} ∪ {0, 1})(𝑑𝑟𝑘)
541, 2, 3, 4, 4, 6, 22, 22, 53comptiunov2i 41203 1 (r* ∘ r*) = r*
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558  {cpr 4560   ciun 4921  ccom 5584  (class class class)co 7255  0cc0 10802  1c1 10803  0cn0 12163  𝑟crelexp 14658  r*crcl 41169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-relexp 14659  df-rcl 41170
This theorem is referenced by:  corclrtrcl  41238  cortrclrcl  41240
  Copyright terms: Public domain W3C validator