![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsstp1 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspr1 4816 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
2 | ssun1 4171 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sstri 3990 | . 2 ⊢ {𝐴} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
4 | df-tp 4632 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
5 | 3, 4 | sseqtrri 4018 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3945 ⊆ wss 3947 {csn 4627 {cpr 4629 {ctp 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-un 3952 df-in 3954 df-ss 3964 df-pr 4630 df-tp 4632 |
This theorem is referenced by: fr3nr 7761 rngbase 17248 srngbase 17259 lmodbase 17275 ipsbase 17286 ipssca 17289 phlbase 17296 topgrpbas 17311 otpsbas 17326 odrngbas 17353 odrngtset 17356 prdssca 17406 prdsbas 17407 prdstset 17416 imasbas 17462 imassca 17469 imastset 17472 fucbas 17916 setcbas 18032 catcbas 18055 estrcbas 18080 cnfldbas 21148 cnfldtset 21152 psrbas 21716 psrsca 21727 trkgbas 27963 idlsrgbas 32892 signswch 33870 gg-cnfldbas 35475 gg-cnfldtset 35479 algbase 42222 clsk1indlem4 43097 clsk1indlem1 43098 rngcbasALTV 46969 ringcbasALTV 47032 mndtcbasval 47793 |
Copyright terms: Public domain | W3C validator |