| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp1 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspr1 4763 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
| 2 | ssun1 4125 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sstri 3939 | . 2 ⊢ {𝐴} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
| 4 | df-tp 4578 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 5 | 3, 4 | sseqtrri 3979 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3895 ⊆ wss 3897 {csn 4573 {cpr 4575 {ctp 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-pr 4576 df-tp 4578 |
| This theorem is referenced by: fr3nr 7705 rngbase 17203 srngbase 17214 lmodbase 17230 ipsbase 17241 ipssca 17244 phlbase 17251 topgrpbas 17266 otpsbas 17281 odrngbas 17308 odrngtset 17311 prdssca 17360 prdsbas 17361 prdstset 17370 imasbas 17416 imassca 17423 imastset 17426 fucbas 17870 setcbas 17985 catcbas 18008 estrcbas 18031 cnfldbas 21295 cnfldtset 21301 cnfldbasOLD 21310 cnfldtsetOLD 21314 psrbas 21870 psrsca 21884 trkgbas 28423 rlocbas 33234 rlocaddval 33235 rlocmulval 33236 idlsrgbas 33469 signswch 34574 algbase 43266 clsk1indlem4 44136 clsk1indlem1 44137 cycl3grtri 48046 rngcbasALTV 48365 ringcbasALTV 48399 catbas 49326 mndtcbasval 49680 |
| Copyright terms: Public domain | W3C validator |