| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp1 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspr1 4781 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
| 2 | ssun1 4144 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sstri 3959 | . 2 ⊢ {𝐴} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
| 4 | df-tp 4597 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 5 | 3, 4 | sseqtrri 3999 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3915 ⊆ wss 3917 {csn 4592 {cpr 4594 {ctp 4596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-pr 4595 df-tp 4597 |
| This theorem is referenced by: fr3nr 7751 rngbase 17269 srngbase 17280 lmodbase 17296 ipsbase 17307 ipssca 17310 phlbase 17317 topgrpbas 17332 otpsbas 17347 odrngbas 17374 odrngtset 17377 prdssca 17426 prdsbas 17427 prdstset 17436 imasbas 17482 imassca 17489 imastset 17492 fucbas 17932 setcbas 18047 catcbas 18070 estrcbas 18093 cnfldbas 21275 cnfldtset 21281 cnfldbasOLD 21290 cnfldtsetOLD 21294 psrbas 21849 psrsca 21863 trkgbas 28379 rlocbas 33225 rlocaddval 33226 rlocmulval 33227 idlsrgbas 33482 signswch 34559 algbase 43170 clsk1indlem4 44040 clsk1indlem1 44041 cycl3grtri 47950 rngcbasALTV 48258 ringcbasALTV 48292 catbas 49219 mndtcbasval 49573 |
| Copyright terms: Public domain | W3C validator |