Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsstp1 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspr1 4744 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
2 | ssun1 4102 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sstri 3926 | . 2 ⊢ {𝐴} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
4 | df-tp 4563 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
5 | 3, 4 | sseqtrri 3954 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3881 ⊆ wss 3883 {csn 4558 {cpr 4560 {ctp 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-pr 4561 df-tp 4563 |
This theorem is referenced by: fr3nr 7600 rngbase 16935 srngbase 16946 lmodbase 16962 ipsbase 16972 ipssca 16975 phlbase 16982 topgrpbas 16996 otpsbas 17010 odrngbas 17033 odrngtset 17036 prdssca 17084 prdsbas 17085 prdstset 17094 imasbas 17140 imassca 17147 imastset 17150 fucbas 17593 setcbas 17709 catcbas 17732 estrcbas 17757 cnfldbas 20514 cnfldtset 20518 psrbas 21057 psrsca 21068 trkgbas 26710 idlsrgbas 31551 signswch 32440 algbase 40919 clsk1indlem4 41543 clsk1indlem1 41544 rngcbasALTV 45429 ringcbasALTV 45492 mndtcbasval 46253 |
Copyright terms: Public domain | W3C validator |