| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp1 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspr1 4765 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
| 2 | ssun1 4129 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sstri 3945 | . 2 ⊢ {𝐴} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
| 4 | df-tp 4582 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 5 | 3, 4 | sseqtrri 3985 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3901 ⊆ wss 3903 {csn 4577 {cpr 4579 {ctp 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 df-ss 3920 df-pr 4580 df-tp 4582 |
| This theorem is referenced by: fr3nr 7708 rngbase 17203 srngbase 17214 lmodbase 17230 ipsbase 17241 ipssca 17244 phlbase 17251 topgrpbas 17266 otpsbas 17281 odrngbas 17308 odrngtset 17311 prdssca 17360 prdsbas 17361 prdstset 17370 imasbas 17416 imassca 17423 imastset 17426 fucbas 17870 setcbas 17985 catcbas 18008 estrcbas 18031 cnfldbas 21265 cnfldtset 21271 cnfldbasOLD 21280 cnfldtsetOLD 21284 psrbas 21840 psrsca 21854 trkgbas 28390 rlocbas 33208 rlocaddval 33209 rlocmulval 33210 idlsrgbas 33442 signswch 34535 algbase 43157 clsk1indlem4 44027 clsk1indlem1 44028 cycl3grtri 47941 rngcbasALTV 48260 ringcbasALTV 48294 catbas 49221 mndtcbasval 49575 |
| Copyright terms: Public domain | W3C validator |