![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsstp1 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspr1 4839 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
2 | ssun1 4201 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sstri 4018 | . 2 ⊢ {𝐴} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
4 | df-tp 4653 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
5 | 3, 4 | sseqtrri 4046 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3974 ⊆ wss 3976 {csn 4648 {cpr 4650 {ctp 4652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-pr 4651 df-tp 4653 |
This theorem is referenced by: fr3nr 7807 rngbase 17358 srngbase 17369 lmodbase 17385 ipsbase 17396 ipssca 17399 phlbase 17406 topgrpbas 17421 otpsbas 17436 odrngbas 17463 odrngtset 17466 prdssca 17516 prdsbas 17517 prdstset 17526 imasbas 17572 imassca 17579 imastset 17582 fucbas 18029 setcbas 18145 catcbas 18168 estrcbas 18193 cnfldbas 21391 cnfldtset 21397 cnfldbasOLD 21406 cnfldtsetOLD 21410 psrbas 21976 psrsca 21990 trkgbas 28471 rlocbas 33239 rlocaddval 33240 rlocmulval 33241 idlsrgbas 33497 signswch 34538 algbase 43135 clsk1indlem4 44006 clsk1indlem1 44007 rngcbasALTV 47989 ringcbasALTV 48023 mndtcbasval 48753 |
Copyright terms: Public domain | W3C validator |