| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp1 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspr1 4790 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
| 2 | ssun1 4153 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sstri 3968 | . 2 ⊢ {𝐴} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
| 4 | df-tp 4606 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 5 | 3, 4 | sseqtrri 4008 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3924 ⊆ wss 3926 {csn 4601 {cpr 4603 {ctp 4605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-pr 4604 df-tp 4606 |
| This theorem is referenced by: fr3nr 7764 rngbase 17311 srngbase 17322 lmodbase 17338 ipsbase 17349 ipssca 17352 phlbase 17359 topgrpbas 17374 otpsbas 17389 odrngbas 17416 odrngtset 17419 prdssca 17468 prdsbas 17469 prdstset 17478 imasbas 17524 imassca 17531 imastset 17534 fucbas 17974 setcbas 18089 catcbas 18112 estrcbas 18135 cnfldbas 21317 cnfldtset 21323 cnfldbasOLD 21332 cnfldtsetOLD 21336 psrbas 21891 psrsca 21905 trkgbas 28370 rlocbas 33208 rlocaddval 33209 rlocmulval 33210 idlsrgbas 33465 signswch 34539 algbase 43145 clsk1indlem4 44015 clsk1indlem1 44016 cycl3grtri 47907 rngcbasALTV 48189 ringcbasALTV 48223 catbas 49094 mndtcbasval 49405 |
| Copyright terms: Public domain | W3C validator |