![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snsstp1 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspr1 4818 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
2 | ssun1 4187 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sstri 4004 | . 2 ⊢ {𝐴} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
4 | df-tp 4635 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
5 | 3, 4 | sseqtrri 4032 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3960 ⊆ wss 3962 {csn 4630 {cpr 4632 {ctp 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-un 3967 df-ss 3979 df-pr 4633 df-tp 4635 |
This theorem is referenced by: fr3nr 7790 rngbase 17344 srngbase 17355 lmodbase 17371 ipsbase 17382 ipssca 17385 phlbase 17392 topgrpbas 17407 otpsbas 17422 odrngbas 17449 odrngtset 17452 prdssca 17502 prdsbas 17503 prdstset 17512 imasbas 17558 imassca 17565 imastset 17568 fucbas 18015 setcbas 18131 catcbas 18154 estrcbas 18179 cnfldbas 21385 cnfldtset 21391 cnfldbasOLD 21400 cnfldtsetOLD 21404 psrbas 21970 psrsca 21984 trkgbas 28467 rlocbas 33253 rlocaddval 33254 rlocmulval 33255 idlsrgbas 33511 signswch 34554 algbase 43162 clsk1indlem4 44033 clsk1indlem1 44034 rngcbasALTV 48109 ringcbasALTV 48143 mndtcbasval 48888 |
Copyright terms: Public domain | W3C validator |