| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp1 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspr1 4778 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
| 2 | ssun1 4141 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sstri 3956 | . 2 ⊢ {𝐴} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
| 4 | df-tp 4594 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 5 | 3, 4 | sseqtrri 3996 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3912 ⊆ wss 3914 {csn 4589 {cpr 4591 {ctp 4593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-pr 4592 df-tp 4594 |
| This theorem is referenced by: fr3nr 7748 rngbase 17262 srngbase 17273 lmodbase 17289 ipsbase 17300 ipssca 17303 phlbase 17310 topgrpbas 17325 otpsbas 17340 odrngbas 17367 odrngtset 17370 prdssca 17419 prdsbas 17420 prdstset 17429 imasbas 17475 imassca 17482 imastset 17485 fucbas 17925 setcbas 18040 catcbas 18063 estrcbas 18086 cnfldbas 21268 cnfldtset 21274 cnfldbasOLD 21283 cnfldtsetOLD 21287 psrbas 21842 psrsca 21856 trkgbas 28372 rlocbas 33218 rlocaddval 33219 rlocmulval 33220 idlsrgbas 33475 signswch 34552 algbase 43163 clsk1indlem4 44033 clsk1indlem1 44034 cycl3grtri 47946 rngcbasALTV 48254 ringcbasALTV 48288 catbas 49215 mndtcbasval 49569 |
| Copyright terms: Public domain | W3C validator |