Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsstp1 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspr1 4747 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
2 | ssun1 4106 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sstri 3930 | . 2 ⊢ {𝐴} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
4 | df-tp 4566 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
5 | 3, 4 | sseqtrri 3958 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3885 ⊆ wss 3887 {csn 4561 {cpr 4563 {ctp 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-pr 4564 df-tp 4566 |
This theorem is referenced by: fr3nr 7622 rngbase 17009 srngbase 17020 lmodbase 17036 ipsbase 17047 ipssca 17050 phlbase 17057 topgrpbas 17072 otpsbas 17087 odrngbas 17114 odrngtset 17117 prdssca 17167 prdsbas 17168 prdstset 17177 imasbas 17223 imassca 17230 imastset 17233 fucbas 17677 setcbas 17793 catcbas 17816 estrcbas 17841 cnfldbas 20601 cnfldtset 20605 psrbas 21147 psrsca 21158 trkgbas 26806 idlsrgbas 31649 signswch 32540 algbase 41003 clsk1indlem4 41654 clsk1indlem1 41655 rngcbasALTV 45541 ringcbasALTV 45604 mndtcbasval 46367 |
Copyright terms: Public domain | W3C validator |