Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snsstp1 | Structured version Visualization version GIF version |
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
Ref | Expression |
---|---|
snsstp1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspr1 4769 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
2 | ssun1 4127 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 1, 2 | sstri 3948 | . 2 ⊢ {𝐴} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
4 | df-tp 4586 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
5 | 3, 4 | sseqtrri 3976 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3903 ⊆ wss 3905 {csn 4581 {cpr 4583 {ctp 4585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3445 df-un 3910 df-in 3912 df-ss 3922 df-pr 4584 df-tp 4586 |
This theorem is referenced by: fr3nr 7693 rngbase 17111 srngbase 17122 lmodbase 17138 ipsbase 17149 ipssca 17152 phlbase 17159 topgrpbas 17174 otpsbas 17189 odrngbas 17216 odrngtset 17219 prdssca 17269 prdsbas 17270 prdstset 17279 imasbas 17325 imassca 17332 imastset 17335 fucbas 17779 setcbas 17895 catcbas 17918 estrcbas 17943 cnfldbas 20711 cnfldtset 20715 psrbas 21257 psrsca 21268 trkgbas 27161 idlsrgbas 32010 signswch 32904 algbase 41317 clsk1indlem4 42027 clsk1indlem1 42028 rngcbasALTV 45959 ringcbasALTV 46022 mndtcbasval 46784 |
Copyright terms: Public domain | W3C validator |