| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsstp1 | Structured version Visualization version GIF version | ||
| Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.) |
| Ref | Expression |
|---|---|
| snsstp1 | ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspr1 4774 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
| 2 | ssun1 4137 | . . 3 ⊢ {𝐴, 𝐵} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 1, 2 | sstri 3953 | . 2 ⊢ {𝐴} ⊆ ({𝐴, 𝐵} ∪ {𝐶}) |
| 4 | df-tp 4590 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 5 | 3, 4 | sseqtrri 3993 | 1 ⊢ {𝐴} ⊆ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3909 ⊆ wss 3911 {csn 4585 {cpr 4587 {ctp 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 df-pr 4588 df-tp 4590 |
| This theorem is referenced by: fr3nr 7728 rngbase 17238 srngbase 17249 lmodbase 17265 ipsbase 17276 ipssca 17279 phlbase 17286 topgrpbas 17301 otpsbas 17316 odrngbas 17343 odrngtset 17346 prdssca 17395 prdsbas 17396 prdstset 17405 imasbas 17451 imassca 17458 imastset 17461 fucbas 17905 setcbas 18020 catcbas 18043 estrcbas 18066 cnfldbas 21300 cnfldtset 21306 cnfldbasOLD 21315 cnfldtsetOLD 21319 psrbas 21875 psrsca 21889 trkgbas 28425 rlocbas 33234 rlocaddval 33235 rlocmulval 33236 idlsrgbas 33468 signswch 34545 algbase 43156 clsk1indlem4 44026 clsk1indlem1 44027 cycl3grtri 47939 rngcbasALTV 48247 ringcbasALTV 48281 catbas 49208 mndtcbasval 49562 |
| Copyright terms: Public domain | W3C validator |