![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > algvsca | Structured version Visualization version GIF version |
Description: The scalar product operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
algpart.a | ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) |
Ref | Expression |
---|---|
algvsca | ⊢ ( · ∈ 𝑉 → · = ( ·𝑠 ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algpart.a | . . 3 ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) | |
2 | 1 | algstr 39211 | . 2 ⊢ 𝐴 Struct 〈1, 6〉 |
3 | vscaid 16489 | . 2 ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | |
4 | snsspr2 4618 | . . 3 ⊢ {〈( ·𝑠 ‘ndx), · 〉} ⊆ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉} | |
5 | ssun2 4031 | . . . 4 ⊢ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉} ⊆ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) | |
6 | 5, 1 | sseqtr4i 3887 | . . 3 ⊢ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉} ⊆ 𝐴 |
7 | 4, 6 | sstri 3860 | . 2 ⊢ {〈( ·𝑠 ‘ndx), · 〉} ⊆ 𝐴 |
8 | 2, 3, 7 | strfv 16385 | 1 ⊢ ( · ∈ 𝑉 → · = ( ·𝑠 ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 ∪ cun 3820 {csn 4435 {cpr 4437 {ctp 4439 〈cop 4441 ‘cfv 6185 1c1 10334 6c6 11497 ndxcnx 16334 Basecbs 16337 +gcplusg 16419 .rcmulr 16420 Scalarcsca 16422 ·𝑠 cvsca 16423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-oadd 7907 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-n0 11706 df-z 11792 df-uz 12057 df-fz 12707 df-struct 16339 df-ndx 16340 df-slot 16341 df-base 16343 df-plusg 16432 df-mulr 16433 df-sca 16435 df-vsca 16436 |
This theorem is referenced by: mendvscafval 39224 |
Copyright terms: Public domain | W3C validator |