MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2strop Structured version   Visualization version   GIF version

Theorem 2strop 17175
Description: The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) Use the index-independent version 2strop1 17179 instead. (New usage is discouraged.)
Hypotheses
Ref Expression
2str.g 𝐺 = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(πΈβ€˜ndx), + ⟩}
2str.e 𝐸 = Slot 𝑁
2str.l 1 < 𝑁
2str.n 𝑁 ∈ β„•
Assertion
Ref Expression
2strop ( + ∈ 𝑉 β†’ + = (πΈβ€˜πΊ))

Proof of Theorem 2strop
StepHypRef Expression
1 2str.g . . 3 𝐺 = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(πΈβ€˜ndx), + ⟩}
2 2str.e . . 3 𝐸 = Slot 𝑁
3 2str.l . . 3 1 < 𝑁
4 2str.n . . 3 𝑁 ∈ β„•
51, 2, 3, 42strstr 17173 . 2 𝐺 Struct ⟨1, π‘βŸ©
62, 4ndxid 17137 . 2 𝐸 = Slot (πΈβ€˜ndx)
7 snsspr2 4813 . . 3 {⟨(πΈβ€˜ndx), + ⟩} βŠ† {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(πΈβ€˜ndx), + ⟩}
87, 1sseqtrri 4014 . 2 {⟨(πΈβ€˜ndx), + ⟩} βŠ† 𝐺
95, 6, 8strfv 17144 1 ( + ∈ 𝑉 β†’ + = (πΈβ€˜πΊ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  {csn 4623  {cpr 4625  βŸ¨cop 4629   class class class wbr 5141  β€˜cfv 6536  1c1 11110   < clt 11249  β„•cn 12213  Slot cslot 17121  ndxcnx 17133  Basecbs 17151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-struct 17087  df-slot 17122  df-ndx 17134  df-base 17152
This theorem is referenced by:  grpplusgOLD  17241  isposixOLD  18289  eltpsgOLD  22797  indistpsALTOLD  22868  tuslemOLD  24123  tmslemOLD  24342
  Copyright terms: Public domain W3C validator