Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem2a Structured version   Visualization version   GIF version

Theorem subfacp1lem2a 34660
Description: Lemma for subfacp1 34666. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
subfacp1lem1.n (𝜑𝑁 ∈ ℕ)
subfacp1lem1.m (𝜑𝑀 ∈ (2...(𝑁 + 1)))
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
subfacp1lem2.5 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
subfacp1lem2.6 (𝜑𝐺:𝐾1-1-onto𝐾)
Assertion
Ref Expression
subfacp1lem2a (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦   𝑓,𝑁,𝑛,𝑥,𝑦   𝜑,𝑥,𝑦   𝐷,𝑛   𝑓,𝐾,𝑛,𝑥,𝑦   𝑓,𝑀,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)   𝐹(𝑛)   𝐺(𝑥,𝑦,𝑓,𝑛)   𝑀(𝑛)

Proof of Theorem subfacp1lem2a
StepHypRef Expression
1 subfacp1lem2.6 . . . 4 (𝜑𝐺:𝐾1-1-onto𝐾)
2 1z 12589 . . . . . 6 1 ∈ ℤ
3 subfacp1lem1.x . . . . . 6 𝑀 ∈ V
4 f1oprswap 6867 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ V) → {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀})
52, 3, 4mp2an 689 . . . . 5 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀}
65a1i 11 . . . 4 (𝜑 → {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀})
7 derang.d . . . . . 6 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
8 subfac.n . . . . . 6 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
9 subfacp1lem.a . . . . . 6 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
10 subfacp1lem1.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
11 subfacp1lem1.m . . . . . 6 (𝜑𝑀 ∈ (2...(𝑁 + 1)))
12 subfacp1lem1.k . . . . . 6 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
137, 8, 9, 10, 11, 3, 12subfacp1lem1 34659 . . . . 5 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
1413simp1d 1139 . . . 4 (𝜑 → (𝐾 ∩ {1, 𝑀}) = ∅)
15 f1oun 6842 . . . 4 (((𝐺:𝐾1-1-onto𝐾 ∧ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀}) ∧ ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∩ {1, 𝑀}) = ∅)) → (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}))
161, 6, 14, 14, 15syl22anc 836 . . 3 (𝜑 → (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}))
1713simp2d 1140 . . . 4 (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)))
18 subfacp1lem2.5 . . . . . . 7 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
19 f1oeq1 6811 . . . . . . 7 (𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) → (𝐹:(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀})))
2018, 19ax-mp 5 . . . . . 6 (𝐹:(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}))
21 f1oeq2 6812 . . . . . 6 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → (𝐹:(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(𝐾 ∪ {1, 𝑀})))
2220, 21bitr3id 285 . . . . 5 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → ((𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(𝐾 ∪ {1, 𝑀})))
23 f1oeq3 6813 . . . . 5 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → (𝐹:(1...(𝑁 + 1))–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
2422, 23bitrd 279 . . . 4 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → ((𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
2517, 24syl 17 . . 3 (𝜑 → ((𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
2616, 25mpbid 231 . 2 (𝜑𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
27 f1ofun 6825 . . . . 5 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → Fun 𝐹)
2826, 27syl 17 . . . 4 (𝜑 → Fun 𝐹)
29 snsspr1 4809 . . . . . 6 {⟨1, 𝑀⟩} ⊆ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}
30 ssun2 4165 . . . . . . 7 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩} ⊆ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
3130, 18sseqtrri 4011 . . . . . 6 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩} ⊆ 𝐹
3229, 31sstri 3983 . . . . 5 {⟨1, 𝑀⟩} ⊆ 𝐹
33 1ex 11207 . . . . . . 7 1 ∈ V
3433snid 4656 . . . . . 6 1 ∈ {1}
353dmsnop 6205 . . . . . 6 dom {⟨1, 𝑀⟩} = {1}
3634, 35eleqtrri 2824 . . . . 5 1 ∈ dom {⟨1, 𝑀⟩}
37 funssfv 6902 . . . . 5 ((Fun 𝐹 ∧ {⟨1, 𝑀⟩} ⊆ 𝐹 ∧ 1 ∈ dom {⟨1, 𝑀⟩}) → (𝐹‘1) = ({⟨1, 𝑀⟩}‘1))
3832, 36, 37mp3an23 1449 . . . 4 (Fun 𝐹 → (𝐹‘1) = ({⟨1, 𝑀⟩}‘1))
3928, 38syl 17 . . 3 (𝜑 → (𝐹‘1) = ({⟨1, 𝑀⟩}‘1))
4033, 3fvsn 7171 . . 3 ({⟨1, 𝑀⟩}‘1) = 𝑀
4139, 40eqtrdi 2780 . 2 (𝜑 → (𝐹‘1) = 𝑀)
42 snsspr2 4810 . . . . . 6 {⟨𝑀, 1⟩} ⊆ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}
4342, 31sstri 3983 . . . . 5 {⟨𝑀, 1⟩} ⊆ 𝐹
443snid 4656 . . . . . 6 𝑀 ∈ {𝑀}
4533dmsnop 6205 . . . . . 6 dom {⟨𝑀, 1⟩} = {𝑀}
4644, 45eleqtrri 2824 . . . . 5 𝑀 ∈ dom {⟨𝑀, 1⟩}
47 funssfv 6902 . . . . 5 ((Fun 𝐹 ∧ {⟨𝑀, 1⟩} ⊆ 𝐹𝑀 ∈ dom {⟨𝑀, 1⟩}) → (𝐹𝑀) = ({⟨𝑀, 1⟩}‘𝑀))
4843, 46, 47mp3an23 1449 . . . 4 (Fun 𝐹 → (𝐹𝑀) = ({⟨𝑀, 1⟩}‘𝑀))
4928, 48syl 17 . . 3 (𝜑 → (𝐹𝑀) = ({⟨𝑀, 1⟩}‘𝑀))
503, 33fvsn 7171 . . 3 ({⟨𝑀, 1⟩}‘𝑀) = 1
5149, 50eqtrdi 2780 . 2 (𝜑 → (𝐹𝑀) = 1)
5226, 41, 513jca 1125 1 (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  {cab 2701  wne 2932  wral 3053  Vcvv 3466  cdif 3937  cun 3938  cin 3939  wss 3940  c0 4314  {csn 4620  {cpr 4622  cop 4626  cmpt 5221  dom cdm 5666  Fun wfun 6527  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401  Fincfn 8935  1c1 11107   + caddc 11109  cmin 11441  cn 12209  2c2 12264  0cn0 12469  cz 12555  ...cfz 13481  chash 14287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-oadd 8465  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482  df-hash 14288
This theorem is referenced by:  subfacp1lem2b  34661  subfacp1lem3  34662  subfacp1lem4  34663  subfacp1lem5  34664
  Copyright terms: Public domain W3C validator