Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem2a Structured version   Visualization version   GIF version

Theorem subfacp1lem2a 33247
Description: Lemma for subfacp1 33253. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
subfacp1lem1.n (𝜑𝑁 ∈ ℕ)
subfacp1lem1.m (𝜑𝑀 ∈ (2...(𝑁 + 1)))
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
subfacp1lem2.5 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
subfacp1lem2.6 (𝜑𝐺:𝐾1-1-onto𝐾)
Assertion
Ref Expression
subfacp1lem2a (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦   𝑓,𝑁,𝑛,𝑥,𝑦   𝜑,𝑥,𝑦   𝐷,𝑛   𝑓,𝐾,𝑛,𝑥,𝑦   𝑓,𝑀,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)   𝐹(𝑛)   𝐺(𝑥,𝑦,𝑓,𝑛)   𝑀(𝑛)

Proof of Theorem subfacp1lem2a
StepHypRef Expression
1 subfacp1lem2.6 . . . 4 (𝜑𝐺:𝐾1-1-onto𝐾)
2 1z 12423 . . . . . 6 1 ∈ ℤ
3 subfacp1lem1.x . . . . . 6 𝑀 ∈ V
4 f1oprswap 6797 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ V) → {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀})
52, 3, 4mp2an 689 . . . . 5 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀}
65a1i 11 . . . 4 (𝜑 → {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀})
7 derang.d . . . . . 6 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
8 subfac.n . . . . . 6 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
9 subfacp1lem.a . . . . . 6 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
10 subfacp1lem1.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
11 subfacp1lem1.m . . . . . 6 (𝜑𝑀 ∈ (2...(𝑁 + 1)))
12 subfacp1lem1.k . . . . . 6 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
137, 8, 9, 10, 11, 3, 12subfacp1lem1 33246 . . . . 5 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
1413simp1d 1141 . . . 4 (𝜑 → (𝐾 ∩ {1, 𝑀}) = ∅)
15 f1oun 6772 . . . 4 (((𝐺:𝐾1-1-onto𝐾 ∧ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀}) ∧ ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∩ {1, 𝑀}) = ∅)) → (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}))
161, 6, 14, 14, 15syl22anc 836 . . 3 (𝜑 → (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}))
1713simp2d 1142 . . . 4 (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)))
18 subfacp1lem2.5 . . . . . . 7 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
19 f1oeq1 6741 . . . . . . 7 (𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) → (𝐹:(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀})))
2018, 19ax-mp 5 . . . . . 6 (𝐹:(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}))
21 f1oeq2 6742 . . . . . 6 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → (𝐹:(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(𝐾 ∪ {1, 𝑀})))
2220, 21bitr3id 284 . . . . 5 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → ((𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(𝐾 ∪ {1, 𝑀})))
23 f1oeq3 6743 . . . . 5 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → (𝐹:(1...(𝑁 + 1))–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
2422, 23bitrd 278 . . . 4 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → ((𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
2517, 24syl 17 . . 3 (𝜑 → ((𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
2616, 25mpbid 231 . 2 (𝜑𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
27 f1ofun 6755 . . . . 5 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → Fun 𝐹)
2826, 27syl 17 . . . 4 (𝜑 → Fun 𝐹)
29 snsspr1 4759 . . . . . 6 {⟨1, 𝑀⟩} ⊆ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}
30 ssun2 4118 . . . . . . 7 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩} ⊆ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
3130, 18sseqtrri 3968 . . . . . 6 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩} ⊆ 𝐹
3229, 31sstri 3940 . . . . 5 {⟨1, 𝑀⟩} ⊆ 𝐹
33 1ex 11044 . . . . . . 7 1 ∈ V
3433snid 4607 . . . . . 6 1 ∈ {1}
353dmsnop 6141 . . . . . 6 dom {⟨1, 𝑀⟩} = {1}
3634, 35eleqtrri 2837 . . . . 5 1 ∈ dom {⟨1, 𝑀⟩}
37 funssfv 6832 . . . . 5 ((Fun 𝐹 ∧ {⟨1, 𝑀⟩} ⊆ 𝐹 ∧ 1 ∈ dom {⟨1, 𝑀⟩}) → (𝐹‘1) = ({⟨1, 𝑀⟩}‘1))
3832, 36, 37mp3an23 1452 . . . 4 (Fun 𝐹 → (𝐹‘1) = ({⟨1, 𝑀⟩}‘1))
3928, 38syl 17 . . 3 (𝜑 → (𝐹‘1) = ({⟨1, 𝑀⟩}‘1))
4033, 3fvsn 7092 . . 3 ({⟨1, 𝑀⟩}‘1) = 𝑀
4139, 40eqtrdi 2793 . 2 (𝜑 → (𝐹‘1) = 𝑀)
42 snsspr2 4760 . . . . . 6 {⟨𝑀, 1⟩} ⊆ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}
4342, 31sstri 3940 . . . . 5 {⟨𝑀, 1⟩} ⊆ 𝐹
443snid 4607 . . . . . 6 𝑀 ∈ {𝑀}
4533dmsnop 6141 . . . . . 6 dom {⟨𝑀, 1⟩} = {𝑀}
4644, 45eleqtrri 2837 . . . . 5 𝑀 ∈ dom {⟨𝑀, 1⟩}
47 funssfv 6832 . . . . 5 ((Fun 𝐹 ∧ {⟨𝑀, 1⟩} ⊆ 𝐹𝑀 ∈ dom {⟨𝑀, 1⟩}) → (𝐹𝑀) = ({⟨𝑀, 1⟩}‘𝑀))
4843, 46, 47mp3an23 1452 . . . 4 (Fun 𝐹 → (𝐹𝑀) = ({⟨𝑀, 1⟩}‘𝑀))
4928, 48syl 17 . . 3 (𝜑 → (𝐹𝑀) = ({⟨𝑀, 1⟩}‘𝑀))
503, 33fvsn 7092 . . 3 ({⟨𝑀, 1⟩}‘𝑀) = 1
5149, 50eqtrdi 2793 . 2 (𝜑 → (𝐹𝑀) = 1)
5226, 41, 513jca 1127 1 (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  {cab 2714  wne 2941  wral 3062  Vcvv 3441  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4267  {csn 4571  {cpr 4573  cop 4577  cmpt 5170  dom cdm 5607  Fun wfun 6459  1-1-ontowf1o 6464  cfv 6465  (class class class)co 7315  Fincfn 8781  1c1 10945   + caddc 10947  cmin 11278  cn 12046  2c2 12101  0cn0 12306  cz 12392  ...cfz 13312  chash 14117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-1st 7876  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-1o 8344  df-oadd 8348  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-fin 8785  df-dju 9730  df-card 9768  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-nn 12047  df-2 12109  df-n0 12307  df-z 12393  df-uz 12656  df-fz 13313  df-hash 14118
This theorem is referenced by:  subfacp1lem2b  33248  subfacp1lem3  33249  subfacp1lem4  33250  subfacp1lem5  33251
  Copyright terms: Public domain W3C validator