Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem2a Structured version   Visualization version   GIF version

Theorem subfacp1lem2a 35222
Description: Lemma for subfacp1 35228. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
subfacp1lem1.n (𝜑𝑁 ∈ ℕ)
subfacp1lem1.m (𝜑𝑀 ∈ (2...(𝑁 + 1)))
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
subfacp1lem2.5 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
subfacp1lem2.6 (𝜑𝐺:𝐾1-1-onto𝐾)
Assertion
Ref Expression
subfacp1lem2a (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦   𝑓,𝑁,𝑛,𝑥,𝑦   𝜑,𝑥,𝑦   𝐷,𝑛   𝑓,𝐾,𝑛,𝑥,𝑦   𝑓,𝑀,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)   𝐹(𝑛)   𝐺(𝑥,𝑦,𝑓,𝑛)   𝑀(𝑛)

Proof of Theorem subfacp1lem2a
StepHypRef Expression
1 subfacp1lem2.6 . . . 4 (𝜑𝐺:𝐾1-1-onto𝐾)
2 1z 12502 . . . . . 6 1 ∈ ℤ
3 subfacp1lem1.x . . . . . 6 𝑀 ∈ V
4 f1oprswap 6807 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ V) → {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀})
52, 3, 4mp2an 692 . . . . 5 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀}
65a1i 11 . . . 4 (𝜑 → {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀})
7 derang.d . . . . . 6 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
8 subfac.n . . . . . 6 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
9 subfacp1lem.a . . . . . 6 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
10 subfacp1lem1.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
11 subfacp1lem1.m . . . . . 6 (𝜑𝑀 ∈ (2...(𝑁 + 1)))
12 subfacp1lem1.k . . . . . 6 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
137, 8, 9, 10, 11, 3, 12subfacp1lem1 35221 . . . . 5 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
1413simp1d 1142 . . . 4 (𝜑 → (𝐾 ∩ {1, 𝑀}) = ∅)
15 f1oun 6782 . . . 4 (((𝐺:𝐾1-1-onto𝐾 ∧ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀}) ∧ ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∩ {1, 𝑀}) = ∅)) → (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}))
161, 6, 14, 14, 15syl22anc 838 . . 3 (𝜑 → (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}))
1713simp2d 1143 . . . 4 (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)))
18 subfacp1lem2.5 . . . . . . 7 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
19 f1oeq1 6751 . . . . . . 7 (𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) → (𝐹:(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀})))
2018, 19ax-mp 5 . . . . . 6 (𝐹:(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}))
21 f1oeq2 6752 . . . . . 6 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → (𝐹:(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(𝐾 ∪ {1, 𝑀})))
2220, 21bitr3id 285 . . . . 5 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → ((𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(𝐾 ∪ {1, 𝑀})))
23 f1oeq3 6753 . . . . 5 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → (𝐹:(1...(𝑁 + 1))–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
2422, 23bitrd 279 . . . 4 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → ((𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
2517, 24syl 17 . . 3 (𝜑 → ((𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
2616, 25mpbid 232 . 2 (𝜑𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
27 f1ofun 6765 . . . . 5 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → Fun 𝐹)
2826, 27syl 17 . . . 4 (𝜑 → Fun 𝐹)
29 snsspr1 4766 . . . . . 6 {⟨1, 𝑀⟩} ⊆ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}
30 ssun2 4129 . . . . . . 7 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩} ⊆ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
3130, 18sseqtrri 3984 . . . . . 6 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩} ⊆ 𝐹
3229, 31sstri 3944 . . . . 5 {⟨1, 𝑀⟩} ⊆ 𝐹
33 1ex 11108 . . . . . . 7 1 ∈ V
3433snid 4615 . . . . . 6 1 ∈ {1}
353dmsnop 6163 . . . . . 6 dom {⟨1, 𝑀⟩} = {1}
3634, 35eleqtrri 2830 . . . . 5 1 ∈ dom {⟨1, 𝑀⟩}
37 funssfv 6843 . . . . 5 ((Fun 𝐹 ∧ {⟨1, 𝑀⟩} ⊆ 𝐹 ∧ 1 ∈ dom {⟨1, 𝑀⟩}) → (𝐹‘1) = ({⟨1, 𝑀⟩}‘1))
3832, 36, 37mp3an23 1455 . . . 4 (Fun 𝐹 → (𝐹‘1) = ({⟨1, 𝑀⟩}‘1))
3928, 38syl 17 . . 3 (𝜑 → (𝐹‘1) = ({⟨1, 𝑀⟩}‘1))
4033, 3fvsn 7115 . . 3 ({⟨1, 𝑀⟩}‘1) = 𝑀
4139, 40eqtrdi 2782 . 2 (𝜑 → (𝐹‘1) = 𝑀)
42 snsspr2 4767 . . . . . 6 {⟨𝑀, 1⟩} ⊆ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}
4342, 31sstri 3944 . . . . 5 {⟨𝑀, 1⟩} ⊆ 𝐹
443snid 4615 . . . . . 6 𝑀 ∈ {𝑀}
4533dmsnop 6163 . . . . . 6 dom {⟨𝑀, 1⟩} = {𝑀}
4644, 45eleqtrri 2830 . . . . 5 𝑀 ∈ dom {⟨𝑀, 1⟩}
47 funssfv 6843 . . . . 5 ((Fun 𝐹 ∧ {⟨𝑀, 1⟩} ⊆ 𝐹𝑀 ∈ dom {⟨𝑀, 1⟩}) → (𝐹𝑀) = ({⟨𝑀, 1⟩}‘𝑀))
4843, 46, 47mp3an23 1455 . . . 4 (Fun 𝐹 → (𝐹𝑀) = ({⟨𝑀, 1⟩}‘𝑀))
4928, 48syl 17 . . 3 (𝜑 → (𝐹𝑀) = ({⟨𝑀, 1⟩}‘𝑀))
503, 33fvsn 7115 . . 3 ({⟨𝑀, 1⟩}‘𝑀) = 1
5149, 50eqtrdi 2782 . 2 (𝜑 → (𝐹𝑀) = 1)
5226, 41, 513jca 1128 1 (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wral 3047  Vcvv 3436  cdif 3899  cun 3900  cin 3901  wss 3902  c0 4283  {csn 4576  {cpr 4578  cop 4582  cmpt 5172  dom cdm 5616  Fun wfun 6475  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Fincfn 8869  1c1 11007   + caddc 11009  cmin 11344  cn 12125  2c2 12180  0cn0 12381  cz 12468  ...cfz 13407  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238
This theorem is referenced by:  subfacp1lem2b  35223  subfacp1lem3  35224  subfacp1lem4  35225  subfacp1lem5  35226
  Copyright terms: Public domain W3C validator