Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem2a Structured version   Visualization version   GIF version

Theorem subfacp1lem2a 33142
Description: Lemma for subfacp1 33148. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
subfacp1lem1.n (𝜑𝑁 ∈ ℕ)
subfacp1lem1.m (𝜑𝑀 ∈ (2...(𝑁 + 1)))
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
subfacp1lem2.5 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
subfacp1lem2.6 (𝜑𝐺:𝐾1-1-onto𝐾)
Assertion
Ref Expression
subfacp1lem2a (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦   𝑓,𝑁,𝑛,𝑥,𝑦   𝜑,𝑥,𝑦   𝐷,𝑛   𝑓,𝐾,𝑛,𝑥,𝑦   𝑓,𝑀,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)   𝐹(𝑛)   𝐺(𝑥,𝑦,𝑓,𝑛)   𝑀(𝑛)

Proof of Theorem subfacp1lem2a
StepHypRef Expression
1 subfacp1lem2.6 . . . 4 (𝜑𝐺:𝐾1-1-onto𝐾)
2 1z 12350 . . . . . 6 1 ∈ ℤ
3 subfacp1lem1.x . . . . . 6 𝑀 ∈ V
4 f1oprswap 6760 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ V) → {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀})
52, 3, 4mp2an 689 . . . . 5 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀}
65a1i 11 . . . 4 (𝜑 → {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀})
7 derang.d . . . . . 6 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
8 subfac.n . . . . . 6 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
9 subfacp1lem.a . . . . . 6 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
10 subfacp1lem1.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
11 subfacp1lem1.m . . . . . 6 (𝜑𝑀 ∈ (2...(𝑁 + 1)))
12 subfacp1lem1.k . . . . . 6 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
137, 8, 9, 10, 11, 3, 12subfacp1lem1 33141 . . . . 5 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
1413simp1d 1141 . . . 4 (𝜑 → (𝐾 ∩ {1, 𝑀}) = ∅)
15 f1oun 6735 . . . 4 (((𝐺:𝐾1-1-onto𝐾 ∧ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀}) ∧ ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∩ {1, 𝑀}) = ∅)) → (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}))
161, 6, 14, 14, 15syl22anc 836 . . 3 (𝜑 → (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}))
1713simp2d 1142 . . . 4 (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)))
18 subfacp1lem2.5 . . . . . . 7 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
19 f1oeq1 6704 . . . . . . 7 (𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) → (𝐹:(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀})))
2018, 19ax-mp 5 . . . . . 6 (𝐹:(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}))
21 f1oeq2 6705 . . . . . 6 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → (𝐹:(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(𝐾 ∪ {1, 𝑀})))
2220, 21bitr3id 285 . . . . 5 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → ((𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(𝐾 ∪ {1, 𝑀})))
23 f1oeq3 6706 . . . . 5 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → (𝐹:(1...(𝑁 + 1))–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
2422, 23bitrd 278 . . . 4 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → ((𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
2517, 24syl 17 . . 3 (𝜑 → ((𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
2616, 25mpbid 231 . 2 (𝜑𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
27 f1ofun 6718 . . . . 5 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → Fun 𝐹)
2826, 27syl 17 . . . 4 (𝜑 → Fun 𝐹)
29 snsspr1 4747 . . . . . 6 {⟨1, 𝑀⟩} ⊆ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}
30 ssun2 4107 . . . . . . 7 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩} ⊆ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
3130, 18sseqtrri 3958 . . . . . 6 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩} ⊆ 𝐹
3229, 31sstri 3930 . . . . 5 {⟨1, 𝑀⟩} ⊆ 𝐹
33 1ex 10971 . . . . . . 7 1 ∈ V
3433snid 4597 . . . . . 6 1 ∈ {1}
353dmsnop 6119 . . . . . 6 dom {⟨1, 𝑀⟩} = {1}
3634, 35eleqtrri 2838 . . . . 5 1 ∈ dom {⟨1, 𝑀⟩}
37 funssfv 6795 . . . . 5 ((Fun 𝐹 ∧ {⟨1, 𝑀⟩} ⊆ 𝐹 ∧ 1 ∈ dom {⟨1, 𝑀⟩}) → (𝐹‘1) = ({⟨1, 𝑀⟩}‘1))
3832, 36, 37mp3an23 1452 . . . 4 (Fun 𝐹 → (𝐹‘1) = ({⟨1, 𝑀⟩}‘1))
3928, 38syl 17 . . 3 (𝜑 → (𝐹‘1) = ({⟨1, 𝑀⟩}‘1))
4033, 3fvsn 7053 . . 3 ({⟨1, 𝑀⟩}‘1) = 𝑀
4139, 40eqtrdi 2794 . 2 (𝜑 → (𝐹‘1) = 𝑀)
42 snsspr2 4748 . . . . . 6 {⟨𝑀, 1⟩} ⊆ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}
4342, 31sstri 3930 . . . . 5 {⟨𝑀, 1⟩} ⊆ 𝐹
443snid 4597 . . . . . 6 𝑀 ∈ {𝑀}
4533dmsnop 6119 . . . . . 6 dom {⟨𝑀, 1⟩} = {𝑀}
4644, 45eleqtrri 2838 . . . . 5 𝑀 ∈ dom {⟨𝑀, 1⟩}
47 funssfv 6795 . . . . 5 ((Fun 𝐹 ∧ {⟨𝑀, 1⟩} ⊆ 𝐹𝑀 ∈ dom {⟨𝑀, 1⟩}) → (𝐹𝑀) = ({⟨𝑀, 1⟩}‘𝑀))
4843, 46, 47mp3an23 1452 . . . 4 (Fun 𝐹 → (𝐹𝑀) = ({⟨𝑀, 1⟩}‘𝑀))
4928, 48syl 17 . . 3 (𝜑 → (𝐹𝑀) = ({⟨𝑀, 1⟩}‘𝑀))
503, 33fvsn 7053 . . 3 ({⟨𝑀, 1⟩}‘𝑀) = 1
5149, 50eqtrdi 2794 . 2 (𝜑 → (𝐹𝑀) = 1)
5226, 41, 513jca 1127 1 (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  {cpr 4563  cop 4567  cmpt 5157  dom cdm 5589  Fun wfun 6427  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  Fincfn 8733  1c1 10872   + caddc 10874  cmin 11205  cn 11973  2c2 12028  0cn0 12233  cz 12319  ...cfz 13239  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  subfacp1lem2b  33143  subfacp1lem3  33144  subfacp1lem4  33145  subfacp1lem5  33146
  Copyright terms: Public domain W3C validator