Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem2a Structured version   Visualization version   GIF version

Theorem subfacp1lem2a 35167
Description: Lemma for subfacp1 35173. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
subfacp1lem1.n (𝜑𝑁 ∈ ℕ)
subfacp1lem1.m (𝜑𝑀 ∈ (2...(𝑁 + 1)))
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
subfacp1lem2.5 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
subfacp1lem2.6 (𝜑𝐺:𝐾1-1-onto𝐾)
Assertion
Ref Expression
subfacp1lem2a (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦   𝑓,𝑁,𝑛,𝑥,𝑦   𝜑,𝑥,𝑦   𝐷,𝑛   𝑓,𝐾,𝑛,𝑥,𝑦   𝑓,𝑀,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)   𝐹(𝑛)   𝐺(𝑥,𝑦,𝑓,𝑛)   𝑀(𝑛)

Proof of Theorem subfacp1lem2a
StepHypRef Expression
1 subfacp1lem2.6 . . . 4 (𝜑𝐺:𝐾1-1-onto𝐾)
2 1z 12563 . . . . . 6 1 ∈ ℤ
3 subfacp1lem1.x . . . . . 6 𝑀 ∈ V
4 f1oprswap 6844 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ V) → {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀})
52, 3, 4mp2an 692 . . . . 5 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀}
65a1i 11 . . . 4 (𝜑 → {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀})
7 derang.d . . . . . 6 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
8 subfac.n . . . . . 6 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
9 subfacp1lem.a . . . . . 6 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
10 subfacp1lem1.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
11 subfacp1lem1.m . . . . . 6 (𝜑𝑀 ∈ (2...(𝑁 + 1)))
12 subfacp1lem1.k . . . . . 6 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
137, 8, 9, 10, 11, 3, 12subfacp1lem1 35166 . . . . 5 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
1413simp1d 1142 . . . 4 (𝜑 → (𝐾 ∩ {1, 𝑀}) = ∅)
15 f1oun 6819 . . . 4 (((𝐺:𝐾1-1-onto𝐾 ∧ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}:{1, 𝑀}–1-1-onto→{1, 𝑀}) ∧ ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∩ {1, 𝑀}) = ∅)) → (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}))
161, 6, 14, 14, 15syl22anc 838 . . 3 (𝜑 → (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}))
1713simp2d 1143 . . . 4 (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)))
18 subfacp1lem2.5 . . . . . . 7 𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
19 f1oeq1 6788 . . . . . . 7 (𝐹 = (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}) → (𝐹:(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀})))
2018, 19ax-mp 5 . . . . . 6 (𝐹:(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}))
21 f1oeq2 6789 . . . . . 6 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → (𝐹:(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(𝐾 ∪ {1, 𝑀})))
2220, 21bitr3id 285 . . . . 5 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → ((𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(𝐾 ∪ {1, 𝑀})))
23 f1oeq3 6790 . . . . 5 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → (𝐹:(1...(𝑁 + 1))–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
2422, 23bitrd 279 . . . 4 ((𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) → ((𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
2517, 24syl 17 . . 3 (𝜑 → ((𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}):(𝐾 ∪ {1, 𝑀})–1-1-onto→(𝐾 ∪ {1, 𝑀}) ↔ 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))))
2616, 25mpbid 232 . 2 (𝜑𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
27 f1ofun 6802 . . . . 5 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → Fun 𝐹)
2826, 27syl 17 . . . 4 (𝜑 → Fun 𝐹)
29 snsspr1 4778 . . . . . 6 {⟨1, 𝑀⟩} ⊆ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}
30 ssun2 4142 . . . . . . 7 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩} ⊆ (𝐺 ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
3130, 18sseqtrri 3996 . . . . . 6 {⟨1, 𝑀⟩, ⟨𝑀, 1⟩} ⊆ 𝐹
3229, 31sstri 3956 . . . . 5 {⟨1, 𝑀⟩} ⊆ 𝐹
33 1ex 11170 . . . . . . 7 1 ∈ V
3433snid 4626 . . . . . 6 1 ∈ {1}
353dmsnop 6189 . . . . . 6 dom {⟨1, 𝑀⟩} = {1}
3634, 35eleqtrri 2827 . . . . 5 1 ∈ dom {⟨1, 𝑀⟩}
37 funssfv 6879 . . . . 5 ((Fun 𝐹 ∧ {⟨1, 𝑀⟩} ⊆ 𝐹 ∧ 1 ∈ dom {⟨1, 𝑀⟩}) → (𝐹‘1) = ({⟨1, 𝑀⟩}‘1))
3832, 36, 37mp3an23 1455 . . . 4 (Fun 𝐹 → (𝐹‘1) = ({⟨1, 𝑀⟩}‘1))
3928, 38syl 17 . . 3 (𝜑 → (𝐹‘1) = ({⟨1, 𝑀⟩}‘1))
4033, 3fvsn 7155 . . 3 ({⟨1, 𝑀⟩}‘1) = 𝑀
4139, 40eqtrdi 2780 . 2 (𝜑 → (𝐹‘1) = 𝑀)
42 snsspr2 4779 . . . . . 6 {⟨𝑀, 1⟩} ⊆ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩}
4342, 31sstri 3956 . . . . 5 {⟨𝑀, 1⟩} ⊆ 𝐹
443snid 4626 . . . . . 6 𝑀 ∈ {𝑀}
4533dmsnop 6189 . . . . . 6 dom {⟨𝑀, 1⟩} = {𝑀}
4644, 45eleqtrri 2827 . . . . 5 𝑀 ∈ dom {⟨𝑀, 1⟩}
47 funssfv 6879 . . . . 5 ((Fun 𝐹 ∧ {⟨𝑀, 1⟩} ⊆ 𝐹𝑀 ∈ dom {⟨𝑀, 1⟩}) → (𝐹𝑀) = ({⟨𝑀, 1⟩}‘𝑀))
4843, 46, 47mp3an23 1455 . . . 4 (Fun 𝐹 → (𝐹𝑀) = ({⟨𝑀, 1⟩}‘𝑀))
4928, 48syl 17 . . 3 (𝜑 → (𝐹𝑀) = ({⟨𝑀, 1⟩}‘𝑀))
503, 33fvsn 7155 . . 3 ({⟨𝑀, 1⟩}‘𝑀) = 1
5149, 50eqtrdi 2780 . 2 (𝜑 → (𝐹𝑀) = 1)
5226, 41, 513jca 1128 1 (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589  {cpr 4591  cop 4595  cmpt 5188  dom cdm 5638  Fun wfun 6505  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  Fincfn 8918  1c1 11069   + caddc 11071  cmin 11405  cn 12186  2c2 12241  0cn0 12442  cz 12529  ...cfz 13468  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296
This theorem is referenced by:  subfacp1lem2b  35168  subfacp1lem3  35169  subfacp1lem4  35170  subfacp1lem5  35171
  Copyright terms: Public domain W3C validator