| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipotset | Structured version Visualization version GIF version | ||
| Description: Topology of the inclusion poset. (Contributed by Mario Carneiro, 24-Oct-2015.) |
| Ref | Expression |
|---|---|
| ipoval.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipole.l | ⊢ ≤ = (le‘𝐼) |
| Ref | Expression |
|---|---|
| ipotset | ⊢ (𝐹 ∈ 𝑉 → (ordTop‘ ≤ ) = (TopSet‘𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6853 | . . 3 ⊢ (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}) ∈ V | |
| 2 | ipostr 18464 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ∪ {〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉}) Struct 〈1, ;11〉 | |
| 3 | tsetid 17292 | . . . 4 ⊢ TopSet = Slot (TopSet‘ndx) | |
| 4 | snsspr2 4775 | . . . . 5 ⊢ {〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ⊆ {〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} | |
| 5 | ssun1 4137 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ⊆ ({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ∪ {〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉}) | |
| 6 | 4, 5 | sstri 3953 | . . . 4 ⊢ {〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ⊆ ({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ∪ {〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉}) |
| 7 | 2, 3, 6 | strfv 17149 | . . 3 ⊢ ((ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}) ∈ V → (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}) = (TopSet‘({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ∪ {〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉}))) |
| 8 | 1, 7 | ax-mp 5 | . 2 ⊢ (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}) = (TopSet‘({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ∪ {〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) |
| 9 | ipole.l | . . . 4 ⊢ ≤ = (le‘𝐼) | |
| 10 | ipoval.i | . . . . 5 ⊢ 𝐼 = (toInc‘𝐹) | |
| 11 | 10 | ipolerval 18467 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) |
| 12 | 9, 11 | eqtr4id 2783 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}) |
| 13 | 12 | fveq2d 6844 | . 2 ⊢ (𝐹 ∈ 𝑉 → (ordTop‘ ≤ ) = (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})) |
| 14 | eqid 2729 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} | |
| 15 | 10, 14 | ipoval 18465 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐼 = ({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ∪ {〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) |
| 16 | 15 | fveq2d 6844 | . 2 ⊢ (𝐹 ∈ 𝑉 → (TopSet‘𝐼) = (TopSet‘({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ∪ {〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉}))) |
| 17 | 8, 13, 16 | 3eqtr4a 2790 | 1 ⊢ (𝐹 ∈ 𝑉 → (ordTop‘ ≤ ) = (TopSet‘𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ∪ cun 3909 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 {csn 4585 {cpr 4587 〈cop 4591 ∪ cuni 4867 {copab 5164 ↦ cmpt 5183 ‘cfv 6499 1c1 11045 ;cdc 12625 ndxcnx 17139 Basecbs 17155 TopSetcts 17202 lecple 17203 occoc 17204 ordTopcordt 17438 toInccipo 18462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-tset 17215 df-ple 17216 df-ocomp 17217 df-ipo 18463 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |