![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipotset | Structured version Visualization version GIF version |
Description: Topology of the inclusion poset. (Contributed by Mario Carneiro, 24-Oct-2015.) |
Ref | Expression |
---|---|
ipoval.i | ⊢ 𝐼 = (toInc‘𝐹) |
ipole.l | ⊢ ≤ = (le‘𝐼) |
Ref | Expression |
---|---|
ipotset | ⊢ (𝐹 ∈ 𝑉 → (ordTop‘ ≤ ) = (TopSet‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6422 | . . 3 ⊢ (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}) ∈ V | |
2 | ipostr 17465 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ∪ {〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉}) Struct 〈1, ;11〉 | |
3 | tsetid 16359 | . . . 4 ⊢ TopSet = Slot (TopSet‘ndx) | |
4 | snsspr2 4532 | . . . . 5 ⊢ {〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ⊆ {〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} | |
5 | ssun1 3972 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ⊆ ({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ∪ {〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉}) | |
6 | 4, 5 | sstri 3805 | . . . 4 ⊢ {〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ⊆ ({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ∪ {〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉}) |
7 | 2, 3, 6 | strfv 16229 | . . 3 ⊢ ((ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}) ∈ V → (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}) = (TopSet‘({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ∪ {〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉}))) |
8 | 1, 7 | ax-mp 5 | . 2 ⊢ (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}) = (TopSet‘({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ∪ {〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) |
9 | ipoval.i | . . . . 5 ⊢ 𝐼 = (toInc‘𝐹) | |
10 | 9 | ipolerval 17468 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} = (le‘𝐼)) |
11 | ipole.l | . . . 4 ⊢ ≤ = (le‘𝐼) | |
12 | 10, 11 | syl6reqr 2850 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}) |
13 | 12 | fveq2d 6413 | . 2 ⊢ (𝐹 ∈ 𝑉 → (ordTop‘ ≤ ) = (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})) |
14 | eqid 2797 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)} | |
15 | 9, 14 | ipoval 17466 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐼 = ({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ∪ {〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) |
16 | 15 | fveq2d 6413 | . 2 ⊢ (𝐹 ∈ 𝑉 → (TopSet‘𝐼) = (TopSet‘({〈(Base‘ndx), 𝐹〉, 〈(TopSet‘ndx), (ordTop‘{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)})〉} ∪ {〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐹 ∧ 𝑥 ⊆ 𝑦)}〉, 〈(oc‘ndx), (𝑥 ∈ 𝐹 ↦ ∪ {𝑦 ∈ 𝐹 ∣ (𝑦 ∩ 𝑥) = ∅})〉}))) |
17 | 8, 13, 16 | 3eqtr4a 2857 | 1 ⊢ (𝐹 ∈ 𝑉 → (ordTop‘ ≤ ) = (TopSet‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {crab 3091 Vcvv 3383 ∪ cun 3765 ∩ cin 3766 ⊆ wss 3767 ∅c0 4113 {csn 4366 {cpr 4368 〈cop 4372 ∪ cuni 4626 {copab 4903 ↦ cmpt 4920 ‘cfv 6099 1c1 10223 ;cdc 11779 ndxcnx 16178 Basecbs 16181 TopSetcts 16270 lecple 16271 occoc 16272 ordTopcordt 16471 toInccipo 17463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-fz 12577 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-tset 16283 df-ple 16284 df-ocomp 16285 df-ipo 17464 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |