MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpr Structured version   Visualization version   GIF version

Theorem gsumpr 19868
Description: Group sum of a pair. (Contributed by AV, 6-Dec-2018.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
gsumpr.b 𝐵 = (Base‘𝐺)
gsumpr.p + = (+g𝐺)
gsumpr.s (𝑘 = 𝑀𝐴 = 𝐶)
gsumpr.t (𝑘 = 𝑁𝐴 = 𝐷)
Assertion
Ref Expression
gsumpr ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷))
Distinct variable groups:   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝑘,𝑉   𝑘,𝑊
Allowed substitution hints:   𝐴(𝑘)   + (𝑘)

Proof of Theorem gsumpr
StepHypRef Expression
1 gsumpr.b . . 3 𝐵 = (Base‘𝐺)
2 gsumpr.p . . 3 + = (+g𝐺)
3 simp1 1136 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐺 ∈ CMnd)
4 prfi 9208 . . . 4 {𝑀, 𝑁} ∈ Fin
54a1i 11 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → {𝑀, 𝑁} ∈ Fin)
6 vex 3440 . . . . . 6 𝑘 ∈ V
76elpr 4601 . . . . 5 (𝑘 ∈ {𝑀, 𝑁} ↔ (𝑘 = 𝑀𝑘 = 𝑁))
8 gsumpr.s . . . . . . 7 (𝑘 = 𝑀𝐴 = 𝐶)
9 eleq1a 2826 . . . . . . . . 9 (𝐶𝐵 → (𝐴 = 𝐶𝐴𝐵))
109adantr 480 . . . . . . . 8 ((𝐶𝐵𝐷𝐵) → (𝐴 = 𝐶𝐴𝐵))
11103ad2ant3 1135 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐴 = 𝐶𝐴𝐵))
128, 11syl5com 31 . . . . . 6 (𝑘 = 𝑀 → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
13 gsumpr.t . . . . . . 7 (𝑘 = 𝑁𝐴 = 𝐷)
14 eleq1a 2826 . . . . . . . . 9 (𝐷𝐵 → (𝐴 = 𝐷𝐴𝐵))
1514adantl 481 . . . . . . . 8 ((𝐶𝐵𝐷𝐵) → (𝐴 = 𝐷𝐴𝐵))
16153ad2ant3 1135 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐴 = 𝐷𝐴𝐵))
1713, 16syl5com 31 . . . . . 6 (𝑘 = 𝑁 → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
1812, 17jaoi 857 . . . . 5 ((𝑘 = 𝑀𝑘 = 𝑁) → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
197, 18sylbi 217 . . . 4 (𝑘 ∈ {𝑀, 𝑁} → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
2019impcom 407 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝑘 ∈ {𝑀, 𝑁}) → 𝐴𝐵)
21 disjsn2 4665 . . . . 5 (𝑀𝑁 → ({𝑀} ∩ {𝑁}) = ∅)
22213ad2ant3 1135 . . . 4 ((𝑀𝑉𝑁𝑊𝑀𝑁) → ({𝑀} ∩ {𝑁}) = ∅)
23223ad2ant2 1134 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ({𝑀} ∩ {𝑁}) = ∅)
24 df-pr 4579 . . . 4 {𝑀, 𝑁} = ({𝑀} ∪ {𝑁})
2524a1i 11 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → {𝑀, 𝑁} = ({𝑀} ∪ {𝑁}))
26 eqid 2731 . . 3 (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) = (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)
271, 2, 3, 5, 20, 23, 25, 26gsummptfidmsplitres 19844 . 2 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = ((𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) + (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}))))
28 snsspr1 4766 . . . . . 6 {𝑀} ⊆ {𝑀, 𝑁}
29 resmpt 5986 . . . . . 6 ({𝑀} ⊆ {𝑀, 𝑁} → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴))
3028, 29mp1i 13 . . . . 5 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴))
3130oveq2d 7362 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)))
32 cmnmnd 19710 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
33 simp1 1136 . . . . 5 ((𝑀𝑉𝑁𝑊𝑀𝑁) → 𝑀𝑉)
34 simpl 482 . . . . 5 ((𝐶𝐵𝐷𝐵) → 𝐶𝐵)
351, 8gsumsn 19867 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀𝑉𝐶𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
3632, 33, 34, 35syl3an 1160 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
3731, 36eqtrd 2766 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) = 𝐶)
38 snsspr2 4767 . . . . . 6 {𝑁} ⊆ {𝑀, 𝑁}
39 resmpt 5986 . . . . . 6 ({𝑁} ⊆ {𝑀, 𝑁} → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}) = (𝑘 ∈ {𝑁} ↦ 𝐴))
4038, 39mp1i 13 . . . . 5 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}) = (𝑘 ∈ {𝑁} ↦ 𝐴))
4140oveq2d 7362 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁})) = (𝐺 Σg (𝑘 ∈ {𝑁} ↦ 𝐴)))
42 simp2 1137 . . . . 5 ((𝑀𝑉𝑁𝑊𝑀𝑁) → 𝑁𝑊)
43 simpr 484 . . . . 5 ((𝐶𝐵𝐷𝐵) → 𝐷𝐵)
441, 13gsumsn 19867 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁𝑊𝐷𝐵) → (𝐺 Σg (𝑘 ∈ {𝑁} ↦ 𝐴)) = 𝐷)
4532, 42, 43, 44syl3an 1160 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑁} ↦ 𝐴)) = 𝐷)
4641, 45eqtrd 2766 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁})) = 𝐷)
4737, 46oveq12d 7364 . 2 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) + (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}))) = (𝐶 + 𝐷))
4827, 47eqtrd 2766 1 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cun 3900  cin 3901  wss 3902  c0 4283  {csn 4576  {cpr 4578  cmpt 5172  cres 5618  cfv 6481  (class class class)co 7346  Fincfn 8869  Basecbs 17120  +gcplusg 17161   Σg cgsu 17344  Mndcmnd 18642  CMndccmn 19693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695
This theorem is referenced by:  gsumtp  33036  linds2eq  33344  evl1deg1  33537  evl1deg3  33539  lincvalpr  48456  zlmodzxzldeplem3  48540
  Copyright terms: Public domain W3C validator