MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpr Structured version   Visualization version   GIF version

Theorem gsumpr 19941
Description: Group sum of a pair. (Contributed by AV, 6-Dec-2018.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
gsumpr.b 𝐵 = (Base‘𝐺)
gsumpr.p + = (+g𝐺)
gsumpr.s (𝑘 = 𝑀𝐴 = 𝐶)
gsumpr.t (𝑘 = 𝑁𝐴 = 𝐷)
Assertion
Ref Expression
gsumpr ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷))
Distinct variable groups:   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝑘,𝑉   𝑘,𝑊
Allowed substitution hints:   𝐴(𝑘)   + (𝑘)

Proof of Theorem gsumpr
StepHypRef Expression
1 gsumpr.b . . 3 𝐵 = (Base‘𝐺)
2 gsumpr.p . . 3 + = (+g𝐺)
3 simp1 1136 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐺 ∈ CMnd)
4 prfi 9340 . . . 4 {𝑀, 𝑁} ∈ Fin
54a1i 11 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → {𝑀, 𝑁} ∈ Fin)
6 vex 3468 . . . . . 6 𝑘 ∈ V
76elpr 4631 . . . . 5 (𝑘 ∈ {𝑀, 𝑁} ↔ (𝑘 = 𝑀𝑘 = 𝑁))
8 gsumpr.s . . . . . . 7 (𝑘 = 𝑀𝐴 = 𝐶)
9 eleq1a 2830 . . . . . . . . 9 (𝐶𝐵 → (𝐴 = 𝐶𝐴𝐵))
109adantr 480 . . . . . . . 8 ((𝐶𝐵𝐷𝐵) → (𝐴 = 𝐶𝐴𝐵))
11103ad2ant3 1135 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐴 = 𝐶𝐴𝐵))
128, 11syl5com 31 . . . . . 6 (𝑘 = 𝑀 → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
13 gsumpr.t . . . . . . 7 (𝑘 = 𝑁𝐴 = 𝐷)
14 eleq1a 2830 . . . . . . . . 9 (𝐷𝐵 → (𝐴 = 𝐷𝐴𝐵))
1514adantl 481 . . . . . . . 8 ((𝐶𝐵𝐷𝐵) → (𝐴 = 𝐷𝐴𝐵))
16153ad2ant3 1135 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐴 = 𝐷𝐴𝐵))
1713, 16syl5com 31 . . . . . 6 (𝑘 = 𝑁 → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
1812, 17jaoi 857 . . . . 5 ((𝑘 = 𝑀𝑘 = 𝑁) → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
197, 18sylbi 217 . . . 4 (𝑘 ∈ {𝑀, 𝑁} → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
2019impcom 407 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝑘 ∈ {𝑀, 𝑁}) → 𝐴𝐵)
21 disjsn2 4693 . . . . 5 (𝑀𝑁 → ({𝑀} ∩ {𝑁}) = ∅)
22213ad2ant3 1135 . . . 4 ((𝑀𝑉𝑁𝑊𝑀𝑁) → ({𝑀} ∩ {𝑁}) = ∅)
23223ad2ant2 1134 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ({𝑀} ∩ {𝑁}) = ∅)
24 df-pr 4609 . . . 4 {𝑀, 𝑁} = ({𝑀} ∪ {𝑁})
2524a1i 11 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → {𝑀, 𝑁} = ({𝑀} ∪ {𝑁}))
26 eqid 2736 . . 3 (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) = (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)
271, 2, 3, 5, 20, 23, 25, 26gsummptfidmsplitres 19917 . 2 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = ((𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) + (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}))))
28 snsspr1 4795 . . . . . 6 {𝑀} ⊆ {𝑀, 𝑁}
29 resmpt 6029 . . . . . 6 ({𝑀} ⊆ {𝑀, 𝑁} → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴))
3028, 29mp1i 13 . . . . 5 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴))
3130oveq2d 7426 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)))
32 cmnmnd 19783 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
33 simp1 1136 . . . . 5 ((𝑀𝑉𝑁𝑊𝑀𝑁) → 𝑀𝑉)
34 simpl 482 . . . . 5 ((𝐶𝐵𝐷𝐵) → 𝐶𝐵)
351, 8gsumsn 19940 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀𝑉𝐶𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
3632, 33, 34, 35syl3an 1160 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
3731, 36eqtrd 2771 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) = 𝐶)
38 snsspr2 4796 . . . . . 6 {𝑁} ⊆ {𝑀, 𝑁}
39 resmpt 6029 . . . . . 6 ({𝑁} ⊆ {𝑀, 𝑁} → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}) = (𝑘 ∈ {𝑁} ↦ 𝐴))
4038, 39mp1i 13 . . . . 5 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}) = (𝑘 ∈ {𝑁} ↦ 𝐴))
4140oveq2d 7426 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁})) = (𝐺 Σg (𝑘 ∈ {𝑁} ↦ 𝐴)))
42 simp2 1137 . . . . 5 ((𝑀𝑉𝑁𝑊𝑀𝑁) → 𝑁𝑊)
43 simpr 484 . . . . 5 ((𝐶𝐵𝐷𝐵) → 𝐷𝐵)
441, 13gsumsn 19940 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁𝑊𝐷𝐵) → (𝐺 Σg (𝑘 ∈ {𝑁} ↦ 𝐴)) = 𝐷)
4532, 42, 43, 44syl3an 1160 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑁} ↦ 𝐴)) = 𝐷)
4641, 45eqtrd 2771 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁})) = 𝐷)
4737, 46oveq12d 7428 . 2 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) + (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}))) = (𝐶 + 𝐷))
4827, 47eqtrd 2771 1 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606  {cpr 4608  cmpt 5206  cres 5661  cfv 6536  (class class class)co 7410  Fincfn 8964  Basecbs 17233  +gcplusg 17276   Σg cgsu 17459  Mndcmnd 18717  CMndccmn 19766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768
This theorem is referenced by:  gsumtp  33057  linds2eq  33401  evl1deg1  33594  evl1deg3  33596  lincvalpr  48361  zlmodzxzldeplem3  48445
  Copyright terms: Public domain W3C validator