MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpr Structured version   Visualization version   GIF version

Theorem gsumpr 19997
Description: Group sum of a pair. (Contributed by AV, 6-Dec-2018.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
gsumpr.b 𝐵 = (Base‘𝐺)
gsumpr.p + = (+g𝐺)
gsumpr.s (𝑘 = 𝑀𝐴 = 𝐶)
gsumpr.t (𝑘 = 𝑁𝐴 = 𝐷)
Assertion
Ref Expression
gsumpr ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷))
Distinct variable groups:   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝑘,𝑉   𝑘,𝑊
Allowed substitution hints:   𝐴(𝑘)   + (𝑘)

Proof of Theorem gsumpr
StepHypRef Expression
1 gsumpr.b . . 3 𝐵 = (Base‘𝐺)
2 gsumpr.p . . 3 + = (+g𝐺)
3 simp1 1136 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐺 ∈ CMnd)
4 prfi 9391 . . . 4 {𝑀, 𝑁} ∈ Fin
54a1i 11 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → {𝑀, 𝑁} ∈ Fin)
6 vex 3492 . . . . . 6 𝑘 ∈ V
76elpr 4672 . . . . 5 (𝑘 ∈ {𝑀, 𝑁} ↔ (𝑘 = 𝑀𝑘 = 𝑁))
8 gsumpr.s . . . . . . 7 (𝑘 = 𝑀𝐴 = 𝐶)
9 eleq1a 2839 . . . . . . . . 9 (𝐶𝐵 → (𝐴 = 𝐶𝐴𝐵))
109adantr 480 . . . . . . . 8 ((𝐶𝐵𝐷𝐵) → (𝐴 = 𝐶𝐴𝐵))
11103ad2ant3 1135 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐴 = 𝐶𝐴𝐵))
128, 11syl5com 31 . . . . . 6 (𝑘 = 𝑀 → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
13 gsumpr.t . . . . . . 7 (𝑘 = 𝑁𝐴 = 𝐷)
14 eleq1a 2839 . . . . . . . . 9 (𝐷𝐵 → (𝐴 = 𝐷𝐴𝐵))
1514adantl 481 . . . . . . . 8 ((𝐶𝐵𝐷𝐵) → (𝐴 = 𝐷𝐴𝐵))
16153ad2ant3 1135 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐴 = 𝐷𝐴𝐵))
1713, 16syl5com 31 . . . . . 6 (𝑘 = 𝑁 → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
1812, 17jaoi 856 . . . . 5 ((𝑘 = 𝑀𝑘 = 𝑁) → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
197, 18sylbi 217 . . . 4 (𝑘 ∈ {𝑀, 𝑁} → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
2019impcom 407 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝑘 ∈ {𝑀, 𝑁}) → 𝐴𝐵)
21 disjsn2 4737 . . . . 5 (𝑀𝑁 → ({𝑀} ∩ {𝑁}) = ∅)
22213ad2ant3 1135 . . . 4 ((𝑀𝑉𝑁𝑊𝑀𝑁) → ({𝑀} ∩ {𝑁}) = ∅)
23223ad2ant2 1134 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ({𝑀} ∩ {𝑁}) = ∅)
24 df-pr 4651 . . . 4 {𝑀, 𝑁} = ({𝑀} ∪ {𝑁})
2524a1i 11 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → {𝑀, 𝑁} = ({𝑀} ∪ {𝑁}))
26 eqid 2740 . . 3 (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) = (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)
271, 2, 3, 5, 20, 23, 25, 26gsummptfidmsplitres 19973 . 2 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = ((𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) + (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}))))
28 snsspr1 4839 . . . . . 6 {𝑀} ⊆ {𝑀, 𝑁}
29 resmpt 6066 . . . . . 6 ({𝑀} ⊆ {𝑀, 𝑁} → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴))
3028, 29mp1i 13 . . . . 5 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴))
3130oveq2d 7464 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)))
32 cmnmnd 19839 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
33 simp1 1136 . . . . 5 ((𝑀𝑉𝑁𝑊𝑀𝑁) → 𝑀𝑉)
34 simpl 482 . . . . 5 ((𝐶𝐵𝐷𝐵) → 𝐶𝐵)
351, 8gsumsn 19996 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀𝑉𝐶𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
3632, 33, 34, 35syl3an 1160 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
3731, 36eqtrd 2780 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) = 𝐶)
38 snsspr2 4840 . . . . . 6 {𝑁} ⊆ {𝑀, 𝑁}
39 resmpt 6066 . . . . . 6 ({𝑁} ⊆ {𝑀, 𝑁} → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}) = (𝑘 ∈ {𝑁} ↦ 𝐴))
4038, 39mp1i 13 . . . . 5 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}) = (𝑘 ∈ {𝑁} ↦ 𝐴))
4140oveq2d 7464 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁})) = (𝐺 Σg (𝑘 ∈ {𝑁} ↦ 𝐴)))
42 simp2 1137 . . . . 5 ((𝑀𝑉𝑁𝑊𝑀𝑁) → 𝑁𝑊)
43 simpr 484 . . . . 5 ((𝐶𝐵𝐷𝐵) → 𝐷𝐵)
441, 13gsumsn 19996 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁𝑊𝐷𝐵) → (𝐺 Σg (𝑘 ∈ {𝑁} ↦ 𝐴)) = 𝐷)
4532, 42, 43, 44syl3an 1160 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑁} ↦ 𝐴)) = 𝐷)
4641, 45eqtrd 2780 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁})) = 𝐷)
4737, 46oveq12d 7466 . 2 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) + (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}))) = (𝐶 + 𝐷))
4827, 47eqtrd 2780 1 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  {cpr 4650  cmpt 5249  cres 5702  cfv 6573  (class class class)co 7448  Fincfn 9003  Basecbs 17258  +gcplusg 17311   Σg cgsu 17500  Mndcmnd 18772  CMndccmn 19822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824
This theorem is referenced by:  gsumtp  33039  linds2eq  33374  evl1deg1  33566  evl1deg3  33568  lincvalpr  48147  zlmodzxzldeplem3  48231
  Copyright terms: Public domain W3C validator