MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpr Structured version   Visualization version   GIF version

Theorem gsumpr 19871
Description: Group sum of a pair. (Contributed by AV, 6-Dec-2018.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
gsumpr.b 𝐵 = (Base‘𝐺)
gsumpr.p + = (+g𝐺)
gsumpr.s (𝑘 = 𝑀𝐴 = 𝐶)
gsumpr.t (𝑘 = 𝑁𝐴 = 𝐷)
Assertion
Ref Expression
gsumpr ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷))
Distinct variable groups:   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝑘,𝑉   𝑘,𝑊
Allowed substitution hints:   𝐴(𝑘)   + (𝑘)

Proof of Theorem gsumpr
StepHypRef Expression
1 gsumpr.b . . 3 𝐵 = (Base‘𝐺)
2 gsumpr.p . . 3 + = (+g𝐺)
3 simp1 1136 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐺 ∈ CMnd)
4 prfi 9217 . . . 4 {𝑀, 𝑁} ∈ Fin
54a1i 11 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → {𝑀, 𝑁} ∈ Fin)
6 vex 3441 . . . . . 6 𝑘 ∈ V
76elpr 4602 . . . . 5 (𝑘 ∈ {𝑀, 𝑁} ↔ (𝑘 = 𝑀𝑘 = 𝑁))
8 gsumpr.s . . . . . . 7 (𝑘 = 𝑀𝐴 = 𝐶)
9 eleq1a 2828 . . . . . . . . 9 (𝐶𝐵 → (𝐴 = 𝐶𝐴𝐵))
109adantr 480 . . . . . . . 8 ((𝐶𝐵𝐷𝐵) → (𝐴 = 𝐶𝐴𝐵))
11103ad2ant3 1135 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐴 = 𝐶𝐴𝐵))
128, 11syl5com 31 . . . . . 6 (𝑘 = 𝑀 → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
13 gsumpr.t . . . . . . 7 (𝑘 = 𝑁𝐴 = 𝐷)
14 eleq1a 2828 . . . . . . . . 9 (𝐷𝐵 → (𝐴 = 𝐷𝐴𝐵))
1514adantl 481 . . . . . . . 8 ((𝐶𝐵𝐷𝐵) → (𝐴 = 𝐷𝐴𝐵))
16153ad2ant3 1135 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐴 = 𝐷𝐴𝐵))
1713, 16syl5com 31 . . . . . 6 (𝑘 = 𝑁 → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
1812, 17jaoi 857 . . . . 5 ((𝑘 = 𝑀𝑘 = 𝑁) → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
197, 18sylbi 217 . . . 4 (𝑘 ∈ {𝑀, 𝑁} → ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → 𝐴𝐵))
2019impcom 407 . . 3 (((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝑘 ∈ {𝑀, 𝑁}) → 𝐴𝐵)
21 disjsn2 4666 . . . . 5 (𝑀𝑁 → ({𝑀} ∩ {𝑁}) = ∅)
22213ad2ant3 1135 . . . 4 ((𝑀𝑉𝑁𝑊𝑀𝑁) → ({𝑀} ∩ {𝑁}) = ∅)
23223ad2ant2 1134 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ({𝑀} ∩ {𝑁}) = ∅)
24 df-pr 4580 . . . 4 {𝑀, 𝑁} = ({𝑀} ∪ {𝑁})
2524a1i 11 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → {𝑀, 𝑁} = ({𝑀} ∪ {𝑁}))
26 eqid 2733 . . 3 (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) = (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)
271, 2, 3, 5, 20, 23, 25, 26gsummptfidmsplitres 19847 . 2 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = ((𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) + (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}))))
28 snsspr1 4767 . . . . . 6 {𝑀} ⊆ {𝑀, 𝑁}
29 resmpt 5992 . . . . . 6 ({𝑀} ⊆ {𝑀, 𝑁} → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴))
3028, 29mp1i 13 . . . . 5 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴))
3130oveq2d 7370 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)))
32 cmnmnd 19713 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
33 simp1 1136 . . . . 5 ((𝑀𝑉𝑁𝑊𝑀𝑁) → 𝑀𝑉)
34 simpl 482 . . . . 5 ((𝐶𝐵𝐷𝐵) → 𝐶𝐵)
351, 8gsumsn 19870 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀𝑉𝐶𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
3632, 33, 34, 35syl3an 1160 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
3731, 36eqtrd 2768 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) = 𝐶)
38 snsspr2 4768 . . . . . 6 {𝑁} ⊆ {𝑀, 𝑁}
39 resmpt 5992 . . . . . 6 ({𝑁} ⊆ {𝑀, 𝑁} → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}) = (𝑘 ∈ {𝑁} ↦ 𝐴))
4038, 39mp1i 13 . . . . 5 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}) = (𝑘 ∈ {𝑁} ↦ 𝐴))
4140oveq2d 7370 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁})) = (𝐺 Σg (𝑘 ∈ {𝑁} ↦ 𝐴)))
42 simp2 1137 . . . . 5 ((𝑀𝑉𝑁𝑊𝑀𝑁) → 𝑁𝑊)
43 simpr 484 . . . . 5 ((𝐶𝐵𝐷𝐵) → 𝐷𝐵)
441, 13gsumsn 19870 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁𝑊𝐷𝐵) → (𝐺 Σg (𝑘 ∈ {𝑁} ↦ 𝐴)) = 𝐷)
4532, 42, 43, 44syl3an 1160 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑁} ↦ 𝐴)) = 𝐷)
4641, 45eqtrd 2768 . . 3 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁})) = 𝐷)
4737, 46oveq12d 7372 . 2 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑀})) + (𝐺 Σg ((𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴) ↾ {𝑁}))) = (𝐶 + 𝐷))
4827, 47eqtrd 2768 1 ((𝐺 ∈ CMnd ∧ (𝑀𝑉𝑁𝑊𝑀𝑁) ∧ (𝐶𝐵𝐷𝐵)) → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁} ↦ 𝐴)) = (𝐶 + 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  cun 3896  cin 3897  wss 3898  c0 4282  {csn 4577  {cpr 4579  cmpt 5176  cres 5623  cfv 6488  (class class class)co 7354  Fincfn 8877  Basecbs 17124  +gcplusg 17165   Σg cgsu 17348  Mndcmnd 18646  CMndccmn 19696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-fzo 13559  df-seq 13913  df-hash 14242  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-0g 17349  df-gsum 17350  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698
This theorem is referenced by:  gsumtp  33047  linds2eq  33355  evl1deg1  33548  evl1deg3  33550  lincvalpr  48546  zlmodzxzldeplem3  48630
  Copyright terms: Public domain W3C validator