Proof of Theorem fin2solem
| Step | Hyp | Ref
| Expression |
| 1 | | ancom 460 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥) ∧ 𝑤 ∈ 𝑥) ↔ (𝑤 ∈ 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥))) |
| 2 | | 3anass 1095 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥) ↔ (𝑤 ∈ 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥))) |
| 3 | 1, 2 | bitr4i 278 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥) ∧ 𝑤 ∈ 𝑥) ↔ (𝑤 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) |
| 4 | | sotr 5617 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝑥 ∧ (𝑤 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) → ((𝑤𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑤𝑅𝑧)) |
| 5 | 3, 4 | sylan2b 594 |
. . . . . . . 8
⊢ ((𝑅 Or 𝑥 ∧ ((𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥) ∧ 𝑤 ∈ 𝑥)) → ((𝑤𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑤𝑅𝑧)) |
| 6 | 5 | anassrs 467 |
. . . . . . 7
⊢ (((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) ∧ 𝑤 ∈ 𝑥) → ((𝑤𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑤𝑅𝑧)) |
| 7 | 6 | ancomsd 465 |
. . . . . 6
⊢ (((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) ∧ 𝑤 ∈ 𝑥) → ((𝑦𝑅𝑧 ∧ 𝑤𝑅𝑦) → 𝑤𝑅𝑧)) |
| 8 | 7 | expdimp 452 |
. . . . 5
⊢ ((((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) ∧ 𝑤 ∈ 𝑥) ∧ 𝑦𝑅𝑧) → (𝑤𝑅𝑦 → 𝑤𝑅𝑧)) |
| 9 | 8 | an32s 652 |
. . . 4
⊢ ((((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) ∧ 𝑦𝑅𝑧) ∧ 𝑤 ∈ 𝑥) → (𝑤𝑅𝑦 → 𝑤𝑅𝑧)) |
| 10 | 9 | ss2rabdv 4076 |
. . 3
⊢ (((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) ∧ 𝑦𝑅𝑧) → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ⊆ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
| 11 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝑤𝑅𝑧 ↔ 𝑦𝑅𝑧)) |
| 12 | 11 | elrab 3692 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ↔ (𝑦 ∈ 𝑥 ∧ 𝑦𝑅𝑧)) |
| 13 | 12 | biimpri 228 |
. . . . . 6
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑦𝑅𝑧) → 𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
| 14 | 13 | adantll 714 |
. . . . 5
⊢ (((𝑅 Or 𝑥 ∧ 𝑦 ∈ 𝑥) ∧ 𝑦𝑅𝑧) → 𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
| 15 | | sonr 5616 |
. . . . . . 7
⊢ ((𝑅 Or 𝑥 ∧ 𝑦 ∈ 𝑥) → ¬ 𝑦𝑅𝑦) |
| 16 | | breq1 5146 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑤𝑅𝑦 ↔ 𝑦𝑅𝑦)) |
| 17 | 16 | elrab 3692 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ↔ (𝑦 ∈ 𝑥 ∧ 𝑦𝑅𝑦)) |
| 18 | 17 | simprbi 496 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → 𝑦𝑅𝑦) |
| 19 | 15, 18 | nsyl 140 |
. . . . . 6
⊢ ((𝑅 Or 𝑥 ∧ 𝑦 ∈ 𝑥) → ¬ 𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) |
| 20 | 19 | adantr 480 |
. . . . 5
⊢ (((𝑅 Or 𝑥 ∧ 𝑦 ∈ 𝑥) ∧ 𝑦𝑅𝑧) → ¬ 𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) |
| 21 | | nelne1 3039 |
. . . . . 6
⊢ ((𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ∧ ¬ 𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ≠ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) |
| 22 | 21 | necomd 2996 |
. . . . 5
⊢ ((𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ∧ ¬ 𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ≠ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
| 23 | 14, 20, 22 | syl2anc 584 |
. . . 4
⊢ (((𝑅 Or 𝑥 ∧ 𝑦 ∈ 𝑥) ∧ 𝑦𝑅𝑧) → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ≠ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
| 24 | 23 | adantlrr 721 |
. . 3
⊢ (((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) ∧ 𝑦𝑅𝑧) → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ≠ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
| 25 | | vex 3484 |
. . . . . 6
⊢ 𝑥 ∈ V |
| 26 | 25 | rabex 5339 |
. . . . 5
⊢ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ∈ V |
| 27 | 26 | brrpss 7746 |
. . . 4
⊢ ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ↔ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ⊊ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
| 28 | | df-pss 3971 |
. . . 4
⊢ ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ⊊ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ↔ ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ⊆ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ∧ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ≠ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧})) |
| 29 | 27, 28 | bitri 275 |
. . 3
⊢ ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ↔ ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ⊆ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ∧ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ≠ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧})) |
| 30 | 10, 24, 29 | sylanbrc 583 |
. 2
⊢ (((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) ∧ 𝑦𝑅𝑧) → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
| 31 | 30 | ex 412 |
1
⊢ ((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) → (𝑦𝑅𝑧 → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧})) |