Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fin2solem Structured version   Visualization version   GIF version

Theorem fin2solem 37656
Description: Lemma for fin2so 37657. (Contributed by Brendan Leahy, 29-Jun-2019.)
Assertion
Ref Expression
fin2solem ((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) → (𝑦𝑅𝑧 → {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑧}))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧,𝑅

Proof of Theorem fin2solem
StepHypRef Expression
1 ancom 460 . . . . . . . . . 10 (((𝑦𝑥𝑧𝑥) ∧ 𝑤𝑥) ↔ (𝑤𝑥 ∧ (𝑦𝑥𝑧𝑥)))
2 3anass 1094 . . . . . . . . . 10 ((𝑤𝑥𝑦𝑥𝑧𝑥) ↔ (𝑤𝑥 ∧ (𝑦𝑥𝑧𝑥)))
31, 2bitr4i 278 . . . . . . . . 9 (((𝑦𝑥𝑧𝑥) ∧ 𝑤𝑥) ↔ (𝑤𝑥𝑦𝑥𝑧𝑥))
4 sotr 5547 . . . . . . . . 9 ((𝑅 Or 𝑥 ∧ (𝑤𝑥𝑦𝑥𝑧𝑥)) → ((𝑤𝑅𝑦𝑦𝑅𝑧) → 𝑤𝑅𝑧))
53, 4sylan2b 594 . . . . . . . 8 ((𝑅 Or 𝑥 ∧ ((𝑦𝑥𝑧𝑥) ∧ 𝑤𝑥)) → ((𝑤𝑅𝑦𝑦𝑅𝑧) → 𝑤𝑅𝑧))
65anassrs 467 . . . . . . 7 (((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) ∧ 𝑤𝑥) → ((𝑤𝑅𝑦𝑦𝑅𝑧) → 𝑤𝑅𝑧))
76ancomsd 465 . . . . . 6 (((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) ∧ 𝑤𝑥) → ((𝑦𝑅𝑧𝑤𝑅𝑦) → 𝑤𝑅𝑧))
87expdimp 452 . . . . 5 ((((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) ∧ 𝑤𝑥) ∧ 𝑦𝑅𝑧) → (𝑤𝑅𝑦𝑤𝑅𝑧))
98an32s 652 . . . 4 ((((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) ∧ 𝑦𝑅𝑧) ∧ 𝑤𝑥) → (𝑤𝑅𝑦𝑤𝑅𝑧))
109ss2rabdv 4021 . . 3 (((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) ∧ 𝑦𝑅𝑧) → {𝑤𝑥𝑤𝑅𝑦} ⊆ {𝑤𝑥𝑤𝑅𝑧})
11 breq1 5092 . . . . . . . 8 (𝑤 = 𝑦 → (𝑤𝑅𝑧𝑦𝑅𝑧))
1211elrab 3642 . . . . . . 7 (𝑦 ∈ {𝑤𝑥𝑤𝑅𝑧} ↔ (𝑦𝑥𝑦𝑅𝑧))
1312biimpri 228 . . . . . 6 ((𝑦𝑥𝑦𝑅𝑧) → 𝑦 ∈ {𝑤𝑥𝑤𝑅𝑧})
1413adantll 714 . . . . 5 (((𝑅 Or 𝑥𝑦𝑥) ∧ 𝑦𝑅𝑧) → 𝑦 ∈ {𝑤𝑥𝑤𝑅𝑧})
15 sonr 5546 . . . . . . 7 ((𝑅 Or 𝑥𝑦𝑥) → ¬ 𝑦𝑅𝑦)
16 breq1 5092 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤𝑅𝑦𝑦𝑅𝑦))
1716elrab 3642 . . . . . . . 8 (𝑦 ∈ {𝑤𝑥𝑤𝑅𝑦} ↔ (𝑦𝑥𝑦𝑅𝑦))
1817simprbi 496 . . . . . . 7 (𝑦 ∈ {𝑤𝑥𝑤𝑅𝑦} → 𝑦𝑅𝑦)
1915, 18nsyl 140 . . . . . 6 ((𝑅 Or 𝑥𝑦𝑥) → ¬ 𝑦 ∈ {𝑤𝑥𝑤𝑅𝑦})
2019adantr 480 . . . . 5 (((𝑅 Or 𝑥𝑦𝑥) ∧ 𝑦𝑅𝑧) → ¬ 𝑦 ∈ {𝑤𝑥𝑤𝑅𝑦})
21 nelne1 3025 . . . . . 6 ((𝑦 ∈ {𝑤𝑥𝑤𝑅𝑧} ∧ ¬ 𝑦 ∈ {𝑤𝑥𝑤𝑅𝑦}) → {𝑤𝑥𝑤𝑅𝑧} ≠ {𝑤𝑥𝑤𝑅𝑦})
2221necomd 2983 . . . . 5 ((𝑦 ∈ {𝑤𝑥𝑤𝑅𝑧} ∧ ¬ 𝑦 ∈ {𝑤𝑥𝑤𝑅𝑦}) → {𝑤𝑥𝑤𝑅𝑦} ≠ {𝑤𝑥𝑤𝑅𝑧})
2314, 20, 22syl2anc 584 . . . 4 (((𝑅 Or 𝑥𝑦𝑥) ∧ 𝑦𝑅𝑧) → {𝑤𝑥𝑤𝑅𝑦} ≠ {𝑤𝑥𝑤𝑅𝑧})
2423adantlrr 721 . . 3 (((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) ∧ 𝑦𝑅𝑧) → {𝑤𝑥𝑤𝑅𝑦} ≠ {𝑤𝑥𝑤𝑅𝑧})
25 vex 3440 . . . . . 6 𝑥 ∈ V
2625rabex 5275 . . . . 5 {𝑤𝑥𝑤𝑅𝑧} ∈ V
2726brrpss 7659 . . . 4 ({𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑧} ↔ {𝑤𝑥𝑤𝑅𝑦} ⊊ {𝑤𝑥𝑤𝑅𝑧})
28 df-pss 3917 . . . 4 ({𝑤𝑥𝑤𝑅𝑦} ⊊ {𝑤𝑥𝑤𝑅𝑧} ↔ ({𝑤𝑥𝑤𝑅𝑦} ⊆ {𝑤𝑥𝑤𝑅𝑧} ∧ {𝑤𝑥𝑤𝑅𝑦} ≠ {𝑤𝑥𝑤𝑅𝑧}))
2927, 28bitri 275 . . 3 ({𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑧} ↔ ({𝑤𝑥𝑤𝑅𝑦} ⊆ {𝑤𝑥𝑤𝑅𝑧} ∧ {𝑤𝑥𝑤𝑅𝑦} ≠ {𝑤𝑥𝑤𝑅𝑧}))
3010, 24, 29sylanbrc 583 . 2 (((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) ∧ 𝑦𝑅𝑧) → {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑧})
3130ex 412 1 ((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) → (𝑦𝑅𝑧 → {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑧}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2111  wne 2928  {crab 3395  wss 3897  wpss 3898   class class class wbr 5089   Or wor 5521   [] crpss 7655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-rpss 7656
This theorem is referenced by:  fin2so  37657
  Copyright terms: Public domain W3C validator