Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fin2solem Structured version   Visualization version   GIF version

Theorem fin2solem 35763
Description: Lemma for fin2so 35764. (Contributed by Brendan Leahy, 29-Jun-2019.)
Assertion
Ref Expression
fin2solem ((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) → (𝑦𝑅𝑧 → {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑧}))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧,𝑅

Proof of Theorem fin2solem
StepHypRef Expression
1 ancom 461 . . . . . . . . . 10 (((𝑦𝑥𝑧𝑥) ∧ 𝑤𝑥) ↔ (𝑤𝑥 ∧ (𝑦𝑥𝑧𝑥)))
2 3anass 1094 . . . . . . . . . 10 ((𝑤𝑥𝑦𝑥𝑧𝑥) ↔ (𝑤𝑥 ∧ (𝑦𝑥𝑧𝑥)))
31, 2bitr4i 277 . . . . . . . . 9 (((𝑦𝑥𝑧𝑥) ∧ 𝑤𝑥) ↔ (𝑤𝑥𝑦𝑥𝑧𝑥))
4 sotr 5527 . . . . . . . . 9 ((𝑅 Or 𝑥 ∧ (𝑤𝑥𝑦𝑥𝑧𝑥)) → ((𝑤𝑅𝑦𝑦𝑅𝑧) → 𝑤𝑅𝑧))
53, 4sylan2b 594 . . . . . . . 8 ((𝑅 Or 𝑥 ∧ ((𝑦𝑥𝑧𝑥) ∧ 𝑤𝑥)) → ((𝑤𝑅𝑦𝑦𝑅𝑧) → 𝑤𝑅𝑧))
65anassrs 468 . . . . . . 7 (((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) ∧ 𝑤𝑥) → ((𝑤𝑅𝑦𝑦𝑅𝑧) → 𝑤𝑅𝑧))
76ancomsd 466 . . . . . 6 (((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) ∧ 𝑤𝑥) → ((𝑦𝑅𝑧𝑤𝑅𝑦) → 𝑤𝑅𝑧))
87expdimp 453 . . . . 5 ((((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) ∧ 𝑤𝑥) ∧ 𝑦𝑅𝑧) → (𝑤𝑅𝑦𝑤𝑅𝑧))
98an32s 649 . . . 4 ((((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) ∧ 𝑦𝑅𝑧) ∧ 𝑤𝑥) → (𝑤𝑅𝑦𝑤𝑅𝑧))
109ss2rabdv 4009 . . 3 (((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) ∧ 𝑦𝑅𝑧) → {𝑤𝑥𝑤𝑅𝑦} ⊆ {𝑤𝑥𝑤𝑅𝑧})
11 breq1 5077 . . . . . . . 8 (𝑤 = 𝑦 → (𝑤𝑅𝑧𝑦𝑅𝑧))
1211elrab 3624 . . . . . . 7 (𝑦 ∈ {𝑤𝑥𝑤𝑅𝑧} ↔ (𝑦𝑥𝑦𝑅𝑧))
1312biimpri 227 . . . . . 6 ((𝑦𝑥𝑦𝑅𝑧) → 𝑦 ∈ {𝑤𝑥𝑤𝑅𝑧})
1413adantll 711 . . . . 5 (((𝑅 Or 𝑥𝑦𝑥) ∧ 𝑦𝑅𝑧) → 𝑦 ∈ {𝑤𝑥𝑤𝑅𝑧})
15 sonr 5526 . . . . . . 7 ((𝑅 Or 𝑥𝑦𝑥) → ¬ 𝑦𝑅𝑦)
16 breq1 5077 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤𝑅𝑦𝑦𝑅𝑦))
1716elrab 3624 . . . . . . . 8 (𝑦 ∈ {𝑤𝑥𝑤𝑅𝑦} ↔ (𝑦𝑥𝑦𝑅𝑦))
1817simprbi 497 . . . . . . 7 (𝑦 ∈ {𝑤𝑥𝑤𝑅𝑦} → 𝑦𝑅𝑦)
1915, 18nsyl 140 . . . . . 6 ((𝑅 Or 𝑥𝑦𝑥) → ¬ 𝑦 ∈ {𝑤𝑥𝑤𝑅𝑦})
2019adantr 481 . . . . 5 (((𝑅 Or 𝑥𝑦𝑥) ∧ 𝑦𝑅𝑧) → ¬ 𝑦 ∈ {𝑤𝑥𝑤𝑅𝑦})
21 nelne1 3041 . . . . . 6 ((𝑦 ∈ {𝑤𝑥𝑤𝑅𝑧} ∧ ¬ 𝑦 ∈ {𝑤𝑥𝑤𝑅𝑦}) → {𝑤𝑥𝑤𝑅𝑧} ≠ {𝑤𝑥𝑤𝑅𝑦})
2221necomd 2999 . . . . 5 ((𝑦 ∈ {𝑤𝑥𝑤𝑅𝑧} ∧ ¬ 𝑦 ∈ {𝑤𝑥𝑤𝑅𝑦}) → {𝑤𝑥𝑤𝑅𝑦} ≠ {𝑤𝑥𝑤𝑅𝑧})
2314, 20, 22syl2anc 584 . . . 4 (((𝑅 Or 𝑥𝑦𝑥) ∧ 𝑦𝑅𝑧) → {𝑤𝑥𝑤𝑅𝑦} ≠ {𝑤𝑥𝑤𝑅𝑧})
2423adantlrr 718 . . 3 (((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) ∧ 𝑦𝑅𝑧) → {𝑤𝑥𝑤𝑅𝑦} ≠ {𝑤𝑥𝑤𝑅𝑧})
25 vex 3436 . . . . . 6 𝑥 ∈ V
2625rabex 5256 . . . . 5 {𝑤𝑥𝑤𝑅𝑧} ∈ V
2726brrpss 7579 . . . 4 ({𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑧} ↔ {𝑤𝑥𝑤𝑅𝑦} ⊊ {𝑤𝑥𝑤𝑅𝑧})
28 df-pss 3906 . . . 4 ({𝑤𝑥𝑤𝑅𝑦} ⊊ {𝑤𝑥𝑤𝑅𝑧} ↔ ({𝑤𝑥𝑤𝑅𝑦} ⊆ {𝑤𝑥𝑤𝑅𝑧} ∧ {𝑤𝑥𝑤𝑅𝑦} ≠ {𝑤𝑥𝑤𝑅𝑧}))
2927, 28bitri 274 . . 3 ({𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑧} ↔ ({𝑤𝑥𝑤𝑅𝑦} ⊆ {𝑤𝑥𝑤𝑅𝑧} ∧ {𝑤𝑥𝑤𝑅𝑦} ≠ {𝑤𝑥𝑤𝑅𝑧}))
3010, 24, 29sylanbrc 583 . 2 (((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) ∧ 𝑦𝑅𝑧) → {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑧})
3130ex 413 1 ((𝑅 Or 𝑥 ∧ (𝑦𝑥𝑧𝑥)) → (𝑦𝑅𝑧 → {𝑤𝑥𝑤𝑅𝑦} [] {𝑤𝑥𝑤𝑅𝑧}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086  wcel 2106  wne 2943  {crab 3068  wss 3887  wpss 3888   class class class wbr 5074   Or wor 5502   [] crpss 7575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-rpss 7576
This theorem is referenced by:  fin2so  35764
  Copyright terms: Public domain W3C validator