Proof of Theorem fin2solem
Step | Hyp | Ref
| Expression |
1 | | ancom 465 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥) ∧ 𝑤 ∈ 𝑥) ↔ (𝑤 ∈ 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥))) |
2 | | 3anass 1093 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥) ↔ (𝑤 ∈ 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥))) |
3 | 1, 2 | bitr4i 281 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥) ∧ 𝑤 ∈ 𝑥) ↔ (𝑤 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) |
4 | | sotr 5467 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝑥 ∧ (𝑤 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) → ((𝑤𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑤𝑅𝑧)) |
5 | 3, 4 | sylan2b 597 |
. . . . . . . 8
⊢ ((𝑅 Or 𝑥 ∧ ((𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥) ∧ 𝑤 ∈ 𝑥)) → ((𝑤𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑤𝑅𝑧)) |
6 | 5 | anassrs 472 |
. . . . . . 7
⊢ (((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) ∧ 𝑤 ∈ 𝑥) → ((𝑤𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑤𝑅𝑧)) |
7 | 6 | ancomsd 470 |
. . . . . 6
⊢ (((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) ∧ 𝑤 ∈ 𝑥) → ((𝑦𝑅𝑧 ∧ 𝑤𝑅𝑦) → 𝑤𝑅𝑧)) |
8 | 7 | expdimp 457 |
. . . . 5
⊢ ((((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) ∧ 𝑤 ∈ 𝑥) ∧ 𝑦𝑅𝑧) → (𝑤𝑅𝑦 → 𝑤𝑅𝑧)) |
9 | 8 | an32s 652 |
. . . 4
⊢ ((((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) ∧ 𝑦𝑅𝑧) ∧ 𝑤 ∈ 𝑥) → (𝑤𝑅𝑦 → 𝑤𝑅𝑧)) |
10 | 9 | ss2rabdv 3981 |
. . 3
⊢ (((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) ∧ 𝑦𝑅𝑧) → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ⊆ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
11 | | breq1 5036 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝑤𝑅𝑧 ↔ 𝑦𝑅𝑧)) |
12 | 11 | elrab 3603 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ↔ (𝑦 ∈ 𝑥 ∧ 𝑦𝑅𝑧)) |
13 | 12 | biimpri 231 |
. . . . . 6
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑦𝑅𝑧) → 𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
14 | 13 | adantll 714 |
. . . . 5
⊢ (((𝑅 Or 𝑥 ∧ 𝑦 ∈ 𝑥) ∧ 𝑦𝑅𝑧) → 𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
15 | | sonr 5466 |
. . . . . . 7
⊢ ((𝑅 Or 𝑥 ∧ 𝑦 ∈ 𝑥) → ¬ 𝑦𝑅𝑦) |
16 | | breq1 5036 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑤𝑅𝑦 ↔ 𝑦𝑅𝑦)) |
17 | 16 | elrab 3603 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ↔ (𝑦 ∈ 𝑥 ∧ 𝑦𝑅𝑦)) |
18 | 17 | simprbi 501 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} → 𝑦𝑅𝑦) |
19 | 15, 18 | nsyl 142 |
. . . . . 6
⊢ ((𝑅 Or 𝑥 ∧ 𝑦 ∈ 𝑥) → ¬ 𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) |
20 | 19 | adantr 485 |
. . . . 5
⊢ (((𝑅 Or 𝑥 ∧ 𝑦 ∈ 𝑥) ∧ 𝑦𝑅𝑧) → ¬ 𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) |
21 | | nelne1 3048 |
. . . . . 6
⊢ ((𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ∧ ¬ 𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ≠ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) |
22 | 21 | necomd 3007 |
. . . . 5
⊢ ((𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ∧ ¬ 𝑦 ∈ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦}) → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ≠ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
23 | 14, 20, 22 | syl2anc 588 |
. . . 4
⊢ (((𝑅 Or 𝑥 ∧ 𝑦 ∈ 𝑥) ∧ 𝑦𝑅𝑧) → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ≠ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
24 | 23 | adantlrr 721 |
. . 3
⊢ (((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) ∧ 𝑦𝑅𝑧) → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ≠ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
25 | | vex 3414 |
. . . . . 6
⊢ 𝑥 ∈ V |
26 | 25 | rabex 5203 |
. . . . 5
⊢ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ∈ V |
27 | 26 | brrpss 7451 |
. . . 4
⊢ ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ↔ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ⊊ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
28 | | df-pss 3878 |
. . . 4
⊢ ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ⊊ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ↔ ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ⊆ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ∧ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ≠ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧})) |
29 | 27, 28 | bitri 278 |
. . 3
⊢ ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ↔ ({𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ⊆ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧} ∧ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} ≠ {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧})) |
30 | 10, 24, 29 | sylanbrc 587 |
. 2
⊢ (((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) ∧ 𝑦𝑅𝑧) → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧}) |
31 | 30 | ex 417 |
1
⊢ ((𝑅 Or 𝑥 ∧ (𝑦 ∈ 𝑥 ∧ 𝑧 ∈ 𝑥)) → (𝑦𝑅𝑧 → {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑦} [⊊] {𝑤 ∈ 𝑥 ∣ 𝑤𝑅𝑧})) |