Step | Hyp | Ref
| Expression |
1 | | supmo.1 |
. . . 4
⊢ (𝜑 → 𝑅 Or 𝐴) |
2 | | supcl.2 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
3 | 1, 2 | suplub 9149 |
. . 3
⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) |
4 | 3 | expdimp 452 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) |
5 | | breq2 5074 |
. . . 4
⊢ (𝑧 = 𝑤 → (𝐶𝑅𝑧 ↔ 𝐶𝑅𝑤)) |
6 | 5 | cbvrexvw 3373 |
. . 3
⊢
(∃𝑧 ∈
𝐵 𝐶𝑅𝑧 ↔ ∃𝑤 ∈ 𝐵 𝐶𝑅𝑤) |
7 | | breq2 5074 |
. . . . . . 7
⊢
(sup(𝐵, 𝐴, 𝑅) = 𝑤 → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ 𝐶𝑅𝑤)) |
8 | 7 | biimprd 247 |
. . . . . 6
⊢
(sup(𝐵, 𝐴, 𝑅) = 𝑤 → (𝐶𝑅𝑤 → 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) |
9 | 8 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ 𝐴) ∧ 𝑤 ∈ 𝐵) → (sup(𝐵, 𝐴, 𝑅) = 𝑤 → (𝐶𝑅𝑤 → 𝐶𝑅sup(𝐵, 𝐴, 𝑅)))) |
10 | 1 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ 𝐴) ∧ 𝑤 ∈ 𝐵) → 𝑅 Or 𝐴) |
11 | | simplr 765 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ 𝐴) ∧ 𝑤 ∈ 𝐵) → 𝐶 ∈ 𝐴) |
12 | | suplub2.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
13 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
14 | 13 | sselda 3917 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ 𝐴) ∧ 𝑤 ∈ 𝐵) → 𝑤 ∈ 𝐴) |
15 | 1, 2 | supcl 9147 |
. . . . . . . 8
⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
16 | 15 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ 𝐴) ∧ 𝑤 ∈ 𝐵) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
17 | | sotr 5518 |
. . . . . . 7
⊢ ((𝑅 Or 𝐴 ∧ (𝐶 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ∧ sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)) → ((𝐶𝑅𝑤 ∧ 𝑤𝑅sup(𝐵, 𝐴, 𝑅)) → 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) |
18 | 10, 11, 14, 16, 17 | syl13anc 1370 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ 𝐴) ∧ 𝑤 ∈ 𝐵) → ((𝐶𝑅𝑤 ∧ 𝑤𝑅sup(𝐵, 𝐴, 𝑅)) → 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) |
19 | 18 | expcomd 416 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ 𝐴) ∧ 𝑤 ∈ 𝐵) → (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → (𝐶𝑅𝑤 → 𝐶𝑅sup(𝐵, 𝐴, 𝑅)))) |
20 | 1, 2 | supub 9148 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)) |
21 | 20 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝑤 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)) |
22 | 21 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ 𝐴) ∧ 𝑤 ∈ 𝐵) → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤) |
23 | | sotric 5522 |
. . . . . . . 8
⊢ ((𝑅 Or 𝐴 ∧ (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ ¬ (sup(𝐵, 𝐴, 𝑅) = 𝑤 ∨ 𝑤𝑅sup(𝐵, 𝐴, 𝑅)))) |
24 | 10, 16, 14, 23 | syl12anc 833 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ 𝐴) ∧ 𝑤 ∈ 𝐵) → (sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ ¬ (sup(𝐵, 𝐴, 𝑅) = 𝑤 ∨ 𝑤𝑅sup(𝐵, 𝐴, 𝑅)))) |
25 | 24 | con2bid 354 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐶 ∈ 𝐴) ∧ 𝑤 ∈ 𝐵) → ((sup(𝐵, 𝐴, 𝑅) = 𝑤 ∨ 𝑤𝑅sup(𝐵, 𝐴, 𝑅)) ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)) |
26 | 22, 25 | mpbird 256 |
. . . . 5
⊢ (((𝜑 ∧ 𝐶 ∈ 𝐴) ∧ 𝑤 ∈ 𝐵) → (sup(𝐵, 𝐴, 𝑅) = 𝑤 ∨ 𝑤𝑅sup(𝐵, 𝐴, 𝑅))) |
27 | 9, 19, 26 | mpjaod 856 |
. . . 4
⊢ (((𝜑 ∧ 𝐶 ∈ 𝐴) ∧ 𝑤 ∈ 𝐵) → (𝐶𝑅𝑤 → 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) |
28 | 27 | rexlimdva 3212 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (∃𝑤 ∈ 𝐵 𝐶𝑅𝑤 → 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) |
29 | 6, 28 | syl5bi 241 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (∃𝑧 ∈ 𝐵 𝐶𝑅𝑧 → 𝐶𝑅sup(𝐵, 𝐴, 𝑅))) |
30 | 4, 29 | impbid 211 |
1
⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧 ∈ 𝐵 𝐶𝑅𝑧)) |