MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplub2 Structured version   Visualization version   GIF version

Theorem suplub2 8909
Description: Bidirectional form of suplub 8908. (Contributed by Mario Carneiro, 6-Sep-2014.)
Hypotheses
Ref Expression
supmo.1 (𝜑𝑅 Or 𝐴)
supcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
suplub2.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
suplub2 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧𝐵 𝐶𝑅𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦)

Proof of Theorem suplub2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 supmo.1 . . . 4 (𝜑𝑅 Or 𝐴)
2 supcl.2 . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
31, 2suplub 8908 . . 3 (𝜑 → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
43expdimp 456 . 2 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝐶𝑅𝑧))
5 breq2 5034 . . . 4 (𝑧 = 𝑤 → (𝐶𝑅𝑧𝐶𝑅𝑤))
65cbvrexvw 3397 . . 3 (∃𝑧𝐵 𝐶𝑅𝑧 ↔ ∃𝑤𝐵 𝐶𝑅𝑤)
7 breq2 5034 . . . . . . 7 (sup(𝐵, 𝐴, 𝑅) = 𝑤 → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ 𝐶𝑅𝑤))
87biimprd 251 . . . . . 6 (sup(𝐵, 𝐴, 𝑅) = 𝑤 → (𝐶𝑅𝑤𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
98a1i 11 . . . . 5 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → (sup(𝐵, 𝐴, 𝑅) = 𝑤 → (𝐶𝑅𝑤𝐶𝑅sup(𝐵, 𝐴, 𝑅))))
101ad2antrr 725 . . . . . . 7 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → 𝑅 Or 𝐴)
11 simplr 768 . . . . . . 7 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → 𝐶𝐴)
12 suplub2.3 . . . . . . . . 9 (𝜑𝐵𝐴)
1312adantr 484 . . . . . . . 8 ((𝜑𝐶𝐴) → 𝐵𝐴)
1413sselda 3915 . . . . . . 7 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → 𝑤𝐴)
151, 2supcl 8906 . . . . . . . 8 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
1615ad2antrr 725 . . . . . . 7 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
17 sotr 5461 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝐶𝐴𝑤𝐴 ∧ sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)) → ((𝐶𝑅𝑤𝑤𝑅sup(𝐵, 𝐴, 𝑅)) → 𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
1810, 11, 14, 16, 17syl13anc 1369 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → ((𝐶𝑅𝑤𝑤𝑅sup(𝐵, 𝐴, 𝑅)) → 𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
1918expcomd 420 . . . . 5 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → (𝑤𝑅sup(𝐵, 𝐴, 𝑅) → (𝐶𝑅𝑤𝐶𝑅sup(𝐵, 𝐴, 𝑅))))
201, 2supub 8907 . . . . . . . 8 (𝜑 → (𝑤𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
2120adantr 484 . . . . . . 7 ((𝜑𝐶𝐴) → (𝑤𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
2221imp 410 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)
23 sotric 5465 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (sup(𝐵, 𝐴, 𝑅) ∈ 𝐴𝑤𝐴)) → (sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ ¬ (sup(𝐵, 𝐴, 𝑅) = 𝑤𝑤𝑅sup(𝐵, 𝐴, 𝑅))))
2410, 16, 14, 23syl12anc 835 . . . . . . 7 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → (sup(𝐵, 𝐴, 𝑅)𝑅𝑤 ↔ ¬ (sup(𝐵, 𝐴, 𝑅) = 𝑤𝑤𝑅sup(𝐵, 𝐴, 𝑅))))
2524con2bid 358 . . . . . 6 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → ((sup(𝐵, 𝐴, 𝑅) = 𝑤𝑤𝑅sup(𝐵, 𝐴, 𝑅)) ↔ ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
2622, 25mpbird 260 . . . . 5 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → (sup(𝐵, 𝐴, 𝑅) = 𝑤𝑤𝑅sup(𝐵, 𝐴, 𝑅)))
279, 19, 26mpjaod 857 . . . 4 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → (𝐶𝑅𝑤𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
2827rexlimdva 3243 . . 3 ((𝜑𝐶𝐴) → (∃𝑤𝐵 𝐶𝑅𝑤𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
296, 28syl5bi 245 . 2 ((𝜑𝐶𝐴) → (∃𝑧𝐵 𝐶𝑅𝑧𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
304, 29impbid 215 1 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧𝐵 𝐶𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wral 3106  wrex 3107  wss 3881   class class class wbr 5030   Or wor 5437  supcsup 8888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-po 5438  df-so 5439  df-iota 6283  df-riota 7093  df-sup 8890
This theorem is referenced by:  infglbb  8939  suprlub  11592  supxrlub  12706
  Copyright terms: Public domain W3C validator