Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sotrieq2 | Structured version Visualization version GIF version |
Description: Trichotomy law for strict order relation. (Contributed by NM, 5-May-1999.) |
Ref | Expression |
---|---|
sotrieq2 | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ (¬ 𝐵𝑅𝐶 ∧ ¬ 𝐶𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sotrieq 5523 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) | |
2 | ioran 980 | . 2 ⊢ (¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵) ↔ (¬ 𝐵𝑅𝐶 ∧ ¬ 𝐶𝑅𝐵)) | |
3 | 1, 2 | bitrdi 286 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ (¬ 𝐵𝑅𝐶 ∧ ¬ 𝐶𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 Or wor 5493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-po 5494 df-so 5495 |
This theorem is referenced by: fisupg 8992 supmo 9141 infmo 9184 fiinfg 9188 lttri3 10989 xrlttri3 12806 nosupbnd1lem2 33839 noinfbnd1lem2 33854 slttrieq2 33880 wessf1ornlem 42611 |
Copyright terms: Public domain | W3C validator |