MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotrieq2 Structured version   Visualization version   GIF version

Theorem sotrieq2 5578
Description: Trichotomy law for strict order relation. (Contributed by NM, 5-May-1999.)
Assertion
Ref Expression
sotrieq2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ↔ (¬ 𝐵𝑅𝐶 ∧ ¬ 𝐶𝑅𝐵)))

Proof of Theorem sotrieq2
StepHypRef Expression
1 sotrieq 5577 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
2 ioran 985 . 2 (¬ (𝐵𝑅𝐶𝐶𝑅𝐵) ↔ (¬ 𝐵𝑅𝐶 ∧ ¬ 𝐶𝑅𝐵))
31, 2bitrdi 287 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ↔ (¬ 𝐵𝑅𝐶 ∧ ¬ 𝐶𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109   class class class wbr 5107   Or wor 5545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-po 5546  df-so 5547
This theorem is referenced by:  fisupg  9235  supmo  9403  infmo  9448  fiinfg  9452  lttri3  11257  xrlttri3  13103  nosupbnd1lem2  27621  noinfbnd1lem2  27636  slttrieq2  27662  weiunfrlem  36452  wessf1ornlem  45179
  Copyright terms: Public domain W3C validator