| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sotrieq2 | Structured version Visualization version GIF version | ||
| Description: Trichotomy law for strict order relation. (Contributed by NM, 5-May-1999.) |
| Ref | Expression |
|---|---|
| sotrieq2 | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ (¬ 𝐵𝑅𝐶 ∧ ¬ 𝐶𝑅𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sotrieq 5577 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) | |
| 2 | ioran 985 | . 2 ⊢ (¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵) ↔ (¬ 𝐵𝑅𝐶 ∧ ¬ 𝐶𝑅𝐵)) | |
| 3 | 1, 2 | bitrdi 287 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ (¬ 𝐵𝑅𝐶 ∧ ¬ 𝐶𝑅𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 Or wor 5545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-po 5546 df-so 5547 |
| This theorem is referenced by: fisupg 9235 supmo 9403 infmo 9448 fiinfg 9452 lttri3 11257 xrlttri3 13103 nosupbnd1lem2 27621 noinfbnd1lem2 27636 slttrieq2 27662 weiunfrlem 36452 wessf1ornlem 45179 |
| Copyright terms: Public domain | W3C validator |