MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem2 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem2 27769
Description: Lemma for noinfbnd1 27774. When there is no minimum, if any member of 𝐵 is a prolongment of 𝑇, then so are all elements below it. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑊 ↾ dom 𝑇) = 𝑇)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑔,𝑉   𝑣,𝑊
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)   𝑊(𝑥,𝑦,𝑢,𝑔)

Proof of Theorem noinfbnd1lem2
StepHypRef Expression
1 simp3rl 1247 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑊𝐵)
2 noinfbnd1.1 . . . 4 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
32noinfbnd1lem1 27768 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑊𝐵) → ¬ (𝑊 ↾ dom 𝑇) <s 𝑇)
41, 3syld3an3 1411 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ (𝑊 ↾ dom 𝑇) <s 𝑇)
5 simp3rr 1248 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ 𝑈 <s 𝑊)
6 simp2l 1200 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝐵 No )
7 simp3ll 1245 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑈𝐵)
86, 7sseldd 3984 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑈 No )
96, 1sseldd 3984 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑊 No )
102noinfno 27763 . . . . . . 7 ((𝐵 No 𝐵𝑉) → 𝑇 No )
11103ad2ant2 1135 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑇 No )
12 nodmon 27695 . . . . . 6 (𝑇 No → dom 𝑇 ∈ On)
1311, 12syl 17 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → dom 𝑇 ∈ On)
14 sltres 27707 . . . . 5 ((𝑈 No 𝑊 No ∧ dom 𝑇 ∈ On) → ((𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑈 <s 𝑊))
158, 9, 13, 14syl3anc 1373 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ((𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑈 <s 𝑊))
165, 15mtod 198 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ (𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇))
17 simp3lr 1246 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑈 ↾ dom 𝑇) = 𝑇)
1817breq1d 5153 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ((𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) ↔ 𝑇 <s (𝑊 ↾ dom 𝑇)))
1916, 18mtbid 324 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))
20 noreson 27705 . . . 4 ((𝑊 No ∧ dom 𝑇 ∈ On) → (𝑊 ↾ dom 𝑇) ∈ No )
219, 13, 20syl2anc 584 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑊 ↾ dom 𝑇) ∈ No )
22 sltso 27721 . . . 4 <s Or No
23 sotrieq2 5624 . . . 4 (( <s Or No ∧ ((𝑊 ↾ dom 𝑇) ∈ No 𝑇 No )) → ((𝑊 ↾ dom 𝑇) = 𝑇 ↔ (¬ (𝑊 ↾ dom 𝑇) <s 𝑇 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))))
2422, 23mpan 690 . . 3 (((𝑊 ↾ dom 𝑇) ∈ No 𝑇 No ) → ((𝑊 ↾ dom 𝑇) = 𝑇 ↔ (¬ (𝑊 ↾ dom 𝑇) <s 𝑇 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))))
2521, 11, 24syl2anc 584 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ((𝑊 ↾ dom 𝑇) = 𝑇 ↔ (¬ (𝑊 ↾ dom 𝑇) <s 𝑇 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))))
264, 19, 25mpbir2and 713 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑊 ↾ dom 𝑇) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  wral 3061  wrex 3070  cun 3949  wss 3951  ifcif 4525  {csn 4626  cop 4632   class class class wbr 5143  cmpt 5225   Or wor 5591  dom cdm 5685  cres 5687  Oncon0 6384  suc csuc 6386  cio 6512  cfv 6561  crio 7387  1oc1o 8499   No csur 27684   <s cslt 27685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-riota 7388  df-1o 8506  df-2o 8507  df-no 27687  df-slt 27688  df-bday 27689
This theorem is referenced by:  noinfbnd1lem3  27770  noinfbnd1lem4  27771  noinfbnd1lem5  27772
  Copyright terms: Public domain W3C validator