MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem2 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem2 27688
Description: Lemma for noinfbnd1 27693. When there is no minimum, if any member of 𝐵 is a prolongment of 𝑇, then so are all elements below it. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑊 ↾ dom 𝑇) = 𝑇)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑔,𝑉   𝑣,𝑊
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)   𝑊(𝑥,𝑦,𝑢,𝑔)

Proof of Theorem noinfbnd1lem2
StepHypRef Expression
1 simp3rl 1247 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑊𝐵)
2 noinfbnd1.1 . . . 4 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
32noinfbnd1lem1 27687 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑊𝐵) → ¬ (𝑊 ↾ dom 𝑇) <s 𝑇)
41, 3syld3an3 1411 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ (𝑊 ↾ dom 𝑇) <s 𝑇)
5 simp3rr 1248 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ 𝑈 <s 𝑊)
6 simp2l 1200 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝐵 No )
7 simp3ll 1245 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑈𝐵)
86, 7sseldd 3959 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑈 No )
96, 1sseldd 3959 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑊 No )
102noinfno 27682 . . . . . . 7 ((𝐵 No 𝐵𝑉) → 𝑇 No )
11103ad2ant2 1134 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑇 No )
12 nodmon 27614 . . . . . 6 (𝑇 No → dom 𝑇 ∈ On)
1311, 12syl 17 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → dom 𝑇 ∈ On)
14 sltres 27626 . . . . 5 ((𝑈 No 𝑊 No ∧ dom 𝑇 ∈ On) → ((𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑈 <s 𝑊))
158, 9, 13, 14syl3anc 1373 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ((𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑈 <s 𝑊))
165, 15mtod 198 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ (𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇))
17 simp3lr 1246 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑈 ↾ dom 𝑇) = 𝑇)
1817breq1d 5129 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ((𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) ↔ 𝑇 <s (𝑊 ↾ dom 𝑇)))
1916, 18mtbid 324 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))
20 noreson 27624 . . . 4 ((𝑊 No ∧ dom 𝑇 ∈ On) → (𝑊 ↾ dom 𝑇) ∈ No )
219, 13, 20syl2anc 584 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑊 ↾ dom 𝑇) ∈ No )
22 sltso 27640 . . . 4 <s Or No
23 sotrieq2 5593 . . . 4 (( <s Or No ∧ ((𝑊 ↾ dom 𝑇) ∈ No 𝑇 No )) → ((𝑊 ↾ dom 𝑇) = 𝑇 ↔ (¬ (𝑊 ↾ dom 𝑇) <s 𝑇 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))))
2422, 23mpan 690 . . 3 (((𝑊 ↾ dom 𝑇) ∈ No 𝑇 No ) → ((𝑊 ↾ dom 𝑇) = 𝑇 ↔ (¬ (𝑊 ↾ dom 𝑇) <s 𝑇 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))))
2521, 11, 24syl2anc 584 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ((𝑊 ↾ dom 𝑇) = 𝑇 ↔ (¬ (𝑊 ↾ dom 𝑇) <s 𝑇 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))))
264, 19, 25mpbir2and 713 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑊 ↾ dom 𝑇) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wral 3051  wrex 3060  cun 3924  wss 3926  ifcif 4500  {csn 4601  cop 4607   class class class wbr 5119  cmpt 5201   Or wor 5560  dom cdm 5654  cres 5656  Oncon0 6352  suc csuc 6354  cio 6482  cfv 6531  crio 7361  1oc1o 8473   No csur 27603   <s cslt 27604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539  df-riota 7362  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608
This theorem is referenced by:  noinfbnd1lem3  27689  noinfbnd1lem4  27690  noinfbnd1lem5  27691
  Copyright terms: Public domain W3C validator