MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfbnd1lem2 Structured version   Visualization version   GIF version

Theorem noinfbnd1lem2 27643
Description: Lemma for noinfbnd1 27648. When there is no minimum, if any member of 𝐵 is a prolongment of 𝑇, then so are all elements below it. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
noinfbnd1.1 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noinfbnd1lem2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑊 ↾ dom 𝑇) = 𝑇)
Distinct variable groups:   𝐵,𝑔,𝑢,𝑣,𝑥,𝑦   𝑣,𝑈   𝑔,𝑉   𝑣,𝑊
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑈(𝑥,𝑦,𝑢,𝑔)   𝑉(𝑥,𝑦,𝑣,𝑢)   𝑊(𝑥,𝑦,𝑢,𝑔)

Proof of Theorem noinfbnd1lem2
StepHypRef Expression
1 simp3rl 1247 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑊𝐵)
2 noinfbnd1.1 . . . 4 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
32noinfbnd1lem1 27642 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ 𝑊𝐵) → ¬ (𝑊 ↾ dom 𝑇) <s 𝑇)
41, 3syld3an3 1411 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ (𝑊 ↾ dom 𝑇) <s 𝑇)
5 simp3rr 1248 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ 𝑈 <s 𝑊)
6 simp2l 1200 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝐵 No )
7 simp3ll 1245 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑈𝐵)
86, 7sseldd 3950 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑈 No )
96, 1sseldd 3950 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑊 No )
102noinfno 27637 . . . . . . 7 ((𝐵 No 𝐵𝑉) → 𝑇 No )
11103ad2ant2 1134 . . . . . 6 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑇 No )
12 nodmon 27569 . . . . . 6 (𝑇 No → dom 𝑇 ∈ On)
1311, 12syl 17 . . . . 5 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → dom 𝑇 ∈ On)
14 sltres 27581 . . . . 5 ((𝑈 No 𝑊 No ∧ dom 𝑇 ∈ On) → ((𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑈 <s 𝑊))
158, 9, 13, 14syl3anc 1373 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ((𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑈 <s 𝑊))
165, 15mtod 198 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ (𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇))
17 simp3lr 1246 . . . 4 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑈 ↾ dom 𝑇) = 𝑇)
1817breq1d 5120 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ((𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) ↔ 𝑇 <s (𝑊 ↾ dom 𝑇)))
1916, 18mtbid 324 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))
20 noreson 27579 . . . 4 ((𝑊 No ∧ dom 𝑇 ∈ On) → (𝑊 ↾ dom 𝑇) ∈ No )
219, 13, 20syl2anc 584 . . 3 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑊 ↾ dom 𝑇) ∈ No )
22 sltso 27595 . . . 4 <s Or No
23 sotrieq2 5581 . . . 4 (( <s Or No ∧ ((𝑊 ↾ dom 𝑇) ∈ No 𝑇 No )) → ((𝑊 ↾ dom 𝑇) = 𝑇 ↔ (¬ (𝑊 ↾ dom 𝑇) <s 𝑇 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))))
2422, 23mpan 690 . . 3 (((𝑊 ↾ dom 𝑇) ∈ No 𝑇 No ) → ((𝑊 ↾ dom 𝑇) = 𝑇 ↔ (¬ (𝑊 ↾ dom 𝑇) <s 𝑇 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))))
2521, 11, 24syl2anc 584 . 2 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ((𝑊 ↾ dom 𝑇) = 𝑇 ↔ (¬ (𝑊 ↾ dom 𝑇) <s 𝑇 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇))))
264, 19, 25mpbir2and 713 1 ((¬ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 No 𝐵𝑉) ∧ ((𝑈𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑊 ↾ dom 𝑇) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  cun 3915  wss 3917  ifcif 4491  {csn 4592  cop 4598   class class class wbr 5110  cmpt 5191   Or wor 5548  dom cdm 5641  cres 5643  Oncon0 6335  suc csuc 6337  cio 6465  cfv 6514  crio 7346  1oc1o 8430   No csur 27558   <s cslt 27559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-riota 7347  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563
This theorem is referenced by:  noinfbnd1lem3  27644  noinfbnd1lem4  27645  noinfbnd1lem5  27646
  Copyright terms: Public domain W3C validator