Proof of Theorem noinfbnd1lem2
| Step | Hyp | Ref
| Expression |
| 1 | | simp3rl 1247 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑊 ∈ 𝐵) |
| 2 | | noinfbnd1.1 |
. . . 4
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
| 3 | 2 | noinfbnd1lem1 27768 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ 𝑊 ∈ 𝐵) → ¬ (𝑊 ↾ dom 𝑇) <s 𝑇) |
| 4 | 1, 3 | syld3an3 1411 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ (𝑊 ↾ dom 𝑇) <s 𝑇) |
| 5 | | simp3rr 1248 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ 𝑈 <s 𝑊) |
| 6 | | simp2l 1200 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝐵 ⊆ No
) |
| 7 | | simp3ll 1245 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑈 ∈ 𝐵) |
| 8 | 6, 7 | sseldd 3984 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑈 ∈ No
) |
| 9 | 6, 1 | sseldd 3984 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑊 ∈ No
) |
| 10 | 2 | noinfno 27763 |
. . . . . . 7
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
𝑉) → 𝑇 ∈ No
) |
| 11 | 10 | 3ad2ant2 1135 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → 𝑇 ∈ No
) |
| 12 | | nodmon 27695 |
. . . . . 6
⊢ (𝑇 ∈
No → dom 𝑇
∈ On) |
| 13 | 11, 12 | syl 17 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → dom 𝑇 ∈ On) |
| 14 | | sltres 27707 |
. . . . 5
⊢ ((𝑈 ∈
No ∧ 𝑊 ∈
No ∧ dom 𝑇 ∈ On) → ((𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑈 <s 𝑊)) |
| 15 | 8, 9, 13, 14 | syl3anc 1373 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ((𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) → 𝑈 <s 𝑊)) |
| 16 | 5, 15 | mtod 198 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ (𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇)) |
| 17 | | simp3lr 1246 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑈 ↾ dom 𝑇) = 𝑇) |
| 18 | 17 | breq1d 5153 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ((𝑈 ↾ dom 𝑇) <s (𝑊 ↾ dom 𝑇) ↔ 𝑇 <s (𝑊 ↾ dom 𝑇))) |
| 19 | 16, 18 | mtbid 324 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)) |
| 20 | | noreson 27705 |
. . . 4
⊢ ((𝑊 ∈
No ∧ dom 𝑇
∈ On) → (𝑊
↾ dom 𝑇) ∈ No ) |
| 21 | 9, 13, 20 | syl2anc 584 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑊 ↾ dom 𝑇) ∈ No
) |
| 22 | | sltso 27721 |
. . . 4
⊢ <s Or
No |
| 23 | | sotrieq2 5624 |
. . . 4
⊢ (( <s
Or No ∧ ((𝑊 ↾ dom 𝑇) ∈ No
∧ 𝑇 ∈ No )) → ((𝑊 ↾ dom 𝑇) = 𝑇 ↔ (¬ (𝑊 ↾ dom 𝑇) <s 𝑇 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)))) |
| 24 | 22, 23 | mpan 690 |
. . 3
⊢ (((𝑊 ↾ dom 𝑇) ∈ No
∧ 𝑇 ∈ No ) → ((𝑊 ↾ dom 𝑇) = 𝑇 ↔ (¬ (𝑊 ↾ dom 𝑇) <s 𝑇 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)))) |
| 25 | 21, 11, 24 | syl2anc 584 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → ((𝑊 ↾ dom 𝑇) = 𝑇 ↔ (¬ (𝑊 ↾ dom 𝑇) <s 𝑇 ∧ ¬ 𝑇 <s (𝑊 ↾ dom 𝑇)))) |
| 26 | 4, 19, 25 | mpbir2and 713 |
1
⊢ ((¬
∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥 ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑉) ∧ ((𝑈 ∈ 𝐵 ∧ (𝑈 ↾ dom 𝑇) = 𝑇) ∧ (𝑊 ∈ 𝐵 ∧ ¬ 𝑈 <s 𝑊))) → (𝑊 ↾ dom 𝑇) = 𝑇) |